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Robust Training Sequence Design for Spatially
Correlated MIMO Channel Estimation

Chin-Te Chiang and Carrson C. Fung, Member, IEEE

Abstract—A robust superimposed training sequence design is
proposed for spatially correlated multiple-input–multiple-output
(MIMO) channel estimation. The proposed scheme does not re-
quire accurate knowledge of the spatial correlation matrix, and
it is shown to outperform previously proposed robust correlated
MIMO channel estimators, such as relaxed minimum mean square
error (RMMSE) and least-square RMMSE. Since the training
sequence is overlaid into the data stream, the spectral efficiency of
the system is higher than those that use time-multiplexed pilots.
A solution for the sequence can easily be obtained by using a
projection on convex-set-based iterative algorithm that is guar-
anteed to converge as long as the training sequence matrix is
initialized to have full rank. Furthermore, it is shown that the
proposed scheme is identical to the RMMSE-based schemes when
the MIMO channel is spatially uncorrelated. The computational
complexity of the proposed algorithm is also illustrated.

Index Terms—Affine precoder, majorization, multiple-input–
multiple-output (MIMO), robust channel estimation, spatial cor-
relation, superimposed training (SIT) sequence.

I. INTRODUCTION

THE DEVELOPMENT of single-user multiple-input–
multiple-output (MIMO) systems [1]–[3] has spurred

tremendous research effort in advancing techniques that maxi-
mize diversity and spatial multiplexing gains [4], [5]. To realize
such gains, channel state information (CSI) must accurately be
obtained. Although techniques such as differential space–time
coding [6], [7] and differential orthogonal space–time block
coding (STBC) [8], [9] have been proposed to blindly de-
modulate and decode the received signal, this degrades both
performance (compared with coherent techniques) and spec-
trum efficiency. Therefore, coherent detection is widely used
in current MIMO systems where CSI is usually obtained using
time-multiplexed pilot symbols.

Theoretically, MIMO performance gain depends only on the
minimum between the number of transmit and receive antennas.
However, propagation limitations such as channel rank loss
and antenna correlation have to be properly handled before
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such performance gains can be realized. Increased antenna
correlation can be attributed to a reduction in antenna spacing or
angular spread, which is caused by the lack of a rich scattering
environment around the transceiver. Hence, some degree of
spatial correlation will be experienced at the transmitter and/or
receiver. Hence, it is vital to account for spatial correlation dur-
ing the channel estimation process to maximize the decoding
performance.

Many techniques have been proposed to tackle the prob-
lem of correlated MIMO channel estimation. Reference [10]
proposed using a state-space approach to estimate and track
time-varying correlated MIMO channels, where the channel
correlation matrix is estimated from the received data and
treated as part of the state variable. In [11], a precoder-
assisted linear minimum mean-square error (MMSE) estimator
was proposed to estimate the channel. In [12], two channel
estimators were derived under the MMSE and conditional
mutual information criteria by exploiting the virtual channel
representation. Unfortunately, there is no closed-form solution;
thus, the solution has to be computed numerically. Another
MMSE-based channel estimator was derived in [13] using
structured correlation, which allows it to obtain better mean-
square error (MSE) performance than the unstructured-based
MMSE estimator. One major drawback shared among these
estimators is that they require exact knowledge about the spatial
correlation to outperform channel estimators that take no such
correlation into account. Another disadvantage is that they
were all derived under the premise that time-multiplexed pilot
symbols are used, which can drastically reduce the transmission
efficiency, particularly in cases where the channel is undergoing
fast fading.

To bypass the second problem, a superimposed training (SIT)
sequence-based channel estimation algorithm was proposed in
[14], where the SIT sequence is arithmetically added into the
transmitted signal, thus allowing the system to free up valuable
time slots that were previously used by time-multiplexed pilot
symbols. The training sequence can also be used to deal with
the problem of synchronization [17]. Improved channel estima-
tion algorithms based on the SIT sequence have since appeared
in the literature [15]–[17]. The sequence itself can be extracted
at the receiver by using first-order statistics [15], [16] or by
using affine precoding [18]–[20]. However, the effectiveness of
these algorithms still hinges on acquiring accurate estimates
of the spatial correlation, making these methods somewhat
infeasible in real situations. To combat against this problem,
the relaxed MMSE (RMMSE) and least-square RMMSE (LS-
RMMSE) algorithms that have recently been proposed by [21]
can circumvent the dependency on the correlation matrix by
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using diagonal loading. A different approach using basis ex-
pansion was proposed in [22].

In this paper, a deterministic approach is taken in the design
of SIT sequences that are robust toward spatial correlation un-
certainty. Such a training sequence is then applied to the MMSE
estimator to estimate the channel. The approach taken in this
work allows for accurate and robust channel estimation without
a priori knowledge about the channel distribution model. For
ease of presentation, such an estimator will be called RoMMSE
estimator (despite the fact that it is the sequence that is robust
to spatial correlation error). The proposed design exploits the
affine precoder scheme proposed in [20] and [24] to extract
the training sequence for channel estimation. Since the training
sequence is overlaid onto the information-bearing signal, it
allows for greater spectral efficiency compared with conven-
tional systems that use time-multiplexed pilot symbols. The
simulation results will show that the proposed scheme performs
extremely well against the estimator in [20], which does not
take into account the spatial correlation estimate error. More-
over, the RoMMSE estimator also outperforms the RMMSE
and LS-RMMSE estimators when the MIMO channels are
spatially correlated. Finally, the RoMMSE estimator will also
be compared, analytically and by simulation, to the RMMSE
and LS-RMMSE estimators for uncorrelated MIMO channels
in which it is shown that the three estimators are identical. The
rest of this paper is organized as follows: The system model and
the affine precoding method are given in Section II, followed by
a detailed description of the proposed RoMMSE algorithm in
Section III. Simulation results are provided in Section IV, and
this paper is concluded in Section V.

Notation: Upper (lower) boldface letters indicate matrices
(column vectors). Superscript H denotes Hermitian, T denotes
transposition, and ∗ denotes conjugation. E[·] stands for ex-
pectation. N (A) denotes the null space of A. The operation
vec(A) forms a column vector by vertically stacking the col-
umn vectors of A. tr(A) denotes the trace of the matrix A.
diag(x) denotes a diagonal matrix with x on its main diagonal,
IN denotes an N × N identity matrix, and 0M×N denotes
an M × N all zero matrix. ⊗ denotes the Kronecker product.
‖A‖F denotes the Frobenius norm of the matrix A.

II. SYSTEM MODEL AND AFFINE PRECODING

A. System Model

The system model used in [20] is adopted herein. For the
sake of completeness, the model will also be described in
the sequel. Consider a spatially correlated flat-fading MIMO
channel with Nt transmit and Nr receive antennas, as shown
in Fig. 1. The information-bearing signal vector is denoted as
u(k) = [u(kNs) u(kNs + 1) · · ·u(kNs + Ns − 1)]T , where k
is the block index, and Ns denotes the block size. Each block
of the signal is encoded using STBC, which can be used to
increase the transmit diversity or multiplexing gain [23]. The
STBC has Nt number of output vectors, with each vector
containing K ≥ Nt symbols as full rate STBC is assumed. This
can be represented in matrix form as X = [x1 x2 · · ·xNt

]T ∈
C

Nt×K , where xi ∈ C
K , i = 1, 2, . . . , Nt denotes the ith out-

Fig. 1. Block diagram of MIMO transceiver.

put vector. Each vector is then fed into the precoder P =
[p1 p2 · · ·pK ]T ∈ C

K×(K+L), which adds L ≥ Nt redundant
symbols to each block of signal, resulting in the output signal
vector di ∈ C

K+L for i = 1, 2, . . . , Nt. All Nt outputs of the
precoder can be represented in matrix form as

D Δ=

⎡⎢⎢⎣
dT

1

dT
2
...

dT
Nt

⎤⎥⎥⎦ = XP =

⎡⎢⎢⎣
xT

1 P
xT

2 P
...

xT
Nt

P

⎤⎥⎥⎦ ∈ C
Nt×(K+L). (1)

As seen in the sequel, the precoder is used to assist in the
channel estimation [8]–[10] by eliminating the information-
bearing signal at the receiver, thus leaving the SIT sequence
intact for channel estimation. It was shown in [24] that the
precoder can also be designed to improve the symbol detection
rate or minimize the mean square error between the transmitted
and recovered signals [8]. After precoding, the SIT sequence
vector ci, i = 1, 2, . . . , Nt is added to di. Each vector is then
serialized before it is transmitted across the flat-fading MIMO
channel, which is represented in matrix form as H ∈ C

Nr×Nt .
Thus, the received signal can be written as

Y = H(C + D) + η = HC + HXP + η (2)

where

C Δ=

⎡⎢⎢⎣
cT
1

cT
2
...

cT
Nt

⎤⎥⎥⎦ ∈ C
Nt×(K+L), and η ∈ C

Nr×(K+L)

are the SIT sequence matrix and the additive channel noise ma-
trix, respectively. Notice in (2) that the received signal in space
lies in the rows of Y. Thus, the rows of the information-bearing
portion of the signal, i.e., xT

i P, i = 1, 2, . . . , Nt, belong to
the row space of P. Hence, the rows of HXP also belong
to the same subspace. This is different from the conventional
model used in [9], [25], and [26], where the information-
bearing portion of the received signal is embedded inside the
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range space of the unknown channel matrix, thus making it
difficult for channel estimation using the SIT sequence. The
affine precoding approach adopted herein eases the decoupling
of the information-bearing signal and the training sequence
because decoupling can now be done by postmultiplying Y by
a decoupling matrix Q = [q1 q2 . . .qK+L]T ∈ C

(K+L)×Nt ,
resulting in

YQ = HCQ + HXPQ + ηQ. (3)

Thus, by requiring the columns of Q to lie in N (P), i.e., PQ =
0K×Nt

, then (3) becomes

YQ = HCQ + ηQ. (4)

In other words, the training sequence vector ci, i = 1,
2, . . . , Nt, should lie in the column space of Q. Therefore,
the condition that CPH = 0Nt×K guarantees the subspaces
spanned by the vectors in P and C are complementary [20].
This suggests a simple way to design P and Q by extracting
components off of an orthogonal matrix, i.e.,

P =

√
K + L

K
O(1 : K, :) ∈ C

K×(K+L)

Q = (O ((K + 1) : (K + Nt), :))
H ∈ C

(K+L)×Nt .

Note that O(1 : K, :) and O((K + 1) : (K + Nt), :) keep only
rows 1 to K and rows (K + 1) to (K + Nt) of an orthogonal
matrix O ∈ C

(K+Nt)×(K+L) [24]. Hence, QHQ = INt
so that

noise amplification will not occur in the channel estimation
process.

In addition to channel estimation, another decoupling matrix
QD can be designed to maximize the symbol detection per-
formance. Such a decoupling matrix can be chosen to satisfy
the condition QD = PH(PPH)−1, where P is designed such
that CPH = 0Nt×K . This ensures that the detection process
is free of interference from the SIT sequence when QD is
postmultiplied to Y. Therefore

PPH =
(
QH

DQD

)−1
=

K + L

K
IK

such that tr(PPH) = K + L. This is to ensure that the av-
erage transmitted power of the information-bearing signal is
unchanged after precoding.

According to the Kronecker model [23], the channel matrix
can be decomposed as

H = Σ
1
2
r HwΣ

1
2
t (5)

where Σ1/2
r ∈ C

Nr×Nr and Σ1/2
t ∈ C

Nt×Nt are the Cholesky
factors of the spatial correlation matrix of the receiver
and transmitter, respectively. Hence, the overall spatial cor-
relation is R = Σt ⊗ Σr. The entries of Hw ∈ C

Nr×Nt

are independent and identically distributed zero-mean com-
plex Gaussian random variables with unit variance. Thus,
E[vec(Hw)vecH(Hw)] = INrNt

.

B. MMSE Estimator and Training Sequence Design

To derive the proposed RoMMSE estimator, (4) is first vec-
torized to obtain the received signal vector

y = C̃h + n (6)

where y = vec(YQ) ∈ C
NrNt , C̃ = (CQ)T ⊗ INr

∈
C

NrNt×NrNt , h = vec(H) ∈ C
NrNt , and n = vec(ηQ) ∈

C
NrNt . E[nnH ] = σ2

nINrNt
. From the vectorized received

signal y, the linear MMSE estimator of h is [27, p. 387]

ĥ = RH
yhR

−1
yyy = RC̃H

(
C̃RC̃H + σ2

nnINrNt

)−1

y (7)

where Ryy
Δ= E[yyH ], Ryh

Δ= E[yhH ], and R Δ= E[hhH ]
are the autocorrelation matrix of the received signal y, the
cross-correlation matrix of y and h, and the spatial correlation
matrix of the channel, respectively. All the matrices are of size
NrNt × NrNt. Therefore, the optimal MMSE estimate of h
can be obtained by finding the optimal training sequence matrix
C̃. Note that the mean-square error matrix between h and ĥ is
written as [27, p. 387]

ξ = E
[
(h − ĥ)(h − ĥ)H

]
=

(
R−1 + C̃H

(
σ2
nnINrNt

)−1 C̃
)−1

. (8)

From (8), [20] proposed to design the optimal training sequence
matrix C̃ by minimizing the trace of ξ subject to the power

constraint tr(CCH) ≤ Nt(K + L)σ2
cc

Δ= PT , where σ2
cc is the

average power of the training sequence. It was assumed in [20]
that the average transmitted power, which includes the power of
the information-bearing and training signals, is normalized as
σ2
xx + σ2

cc = 1, where σ2
xx is the variance of the information-

bearing signal. This assumption will also be applied to the pro-
posed RoMMSE estimator. Since C̃ = (CQ)T ⊗ INr

, using
the properties that tr(AB) = tr(BA), (A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD), (A ⊗ B)H = AH ⊗ BH , and tr(A ⊗ B) =
tr(A)tr(B), the power constraint on C̃ can be written as

tr(C̃C̃H) = tr
([

(CQ)T ⊗ INr

] [
(CQ)T ⊗ INr

]H
)

= tr
([

(CQ)T ⊗ INr

]
[(CQ)∗ ⊗ INr

]
)

= tr
([

(CQ)T (CQ)∗
]
⊗ INr

)
= tr

(
(CQ)T (CQ)∗

)
tr(INr

)

= Nrtr(QT CT C∗Q∗)

= Nrtr(CT C∗)

≤NrPT
Δ= P̃T . (9)

The inequality is obtained because tr(CT C∗) = tr(CHC) =
tr(CCH) = ‖C‖2

F ≤ PT . It is important to note that the per-
formance of the RoMMSE estimator is dependent on the to-
tal transmission power PT and not the number of redundant
vectors L. The latter is, however, necessary to allow for the
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Fig. 2. MSE versus SNR performance comparison between different numbers
of redundant vectors with different PT for spatially correlated 2 × 2 MIMO
system, Δ = 5◦, dt = 0.5λ, and dr = 0.2λ. ε = 0.3.

Fig. 3. MSE versus SNR performance comparison between different numbers
of redundant vectors with fixed PT for spatially correlated 2 × 2 MIMO
system, Δ = 5◦, dt = 0.5λ, and dr = 0.2λ. ε = 0.3.

SIT sequence to be decoupled from the information-bearing
signal at the receiver. Figs. 2 and 3 show the MSE performance
of the proposed RoMMSE estimator (to be described in the
next section) for 2 × 2 correlated MIMO channels when L is
increased with different and fixed PT , respectively. In the latter
case, σ2

cc is decreased while L is increased to keep PT constant.
From Fig. 2, it is clear that the MSE performance improves
as L increases, whereas Fig. 3 shows that such performance
improvement is due to the increase in PT , not just L, because
as PT is kept constant even while L is increased, there is no
change in MSE performance.

III. PROPOSED ROMMSE DESIGN

A. Proposed Training Sequence Design

It is clear from (8) that exact knowledge of R is required
at the receiver to obtain an accurate estimate of h using (7).
However, in all likelihood, only an estimate of R can be
obtained, for example, using the method proposed in [28]. To

desensitize the MSE from the estimation error of R, a novel
SIT sequence design is proposed herein to incorporate such an
estimation error. As the spatial correlation matrix is estimated
at the receiver before it is fed back to the transmitter using
a low-rate control channel, the quantization error will tend to
color the spatial correlation mismatch between the estimated
and actual spatial correlations. Hence, a deterministic approach
is proposed herein to bound the error in a norm ball. Applying
such a SIT sequence into the MMSE estimator in (7) allows
the estimator to be more robust against estimation error in the
spatial correlation than other MMSE-based estimators that do
not take such error into account. Although the rate of change
of the channel statistics is slower than that of the channel
coefficients, imperfect channel statistics will still adversely
affect the channel estimation performance and thus the bit error
rate (BER), if not properly accounted for in the system design.
Moreover, better robust channel estimation can be obtained
if the spatial correlation and channel coefficient mismatches
can separately be accounted for as the structure of the spatial
correlation mismatch matrix will be different from that of the
channel coefficient matrix.

Let

R = R̂ + E (10)

where R̂ denotes the estimate of R, and E is its corresponding
spatial correlation mismatch matrix, respectively. In the present
scheme, the error power is upper bounded such that ‖E‖F ≤ ε,
where ε is a predefined error power bound. In practice, a table of
sequences for different ε can be computed a priori and placed
in memory at the transmitter. An adaptive approach can then be
used to choose a suitable sequence for channel estimation.

Using this bound with (9) and (10), the training sequence
matrix C (or its equivalent C̃) can be designed by minimizing
the maximum mean square error ξ, i.e.,

min
‖C̃‖2

F
≤P̃T

max
‖E‖F ≤ε

tr
([

(R̂+E)−1+C̃H
(
σ2
nnINrNt

)−1 C̃
]−1

)
.

(11)

Note that (11) is not a convex problem with respect to E
and C. However, the problem can be decomposed into two
separate convex optimization problems: one with respect to E
and the other to C. Furthermore, performing SVD on C̃, i.e.,
C̃ = U

C̃
Σ

C̃
VH

C̃
and using the property tr(AB) = tr(BA),

the objective function of the maximization problem in (11) can
be rewritten as

tr
([

(R̂ + E)−1 + C̃H
(
σ2
nnINrNt

)−1 C̃
]−1

)
= tr

([
(R̂ + E)−1 + σ−2

nnVC̃
ΣH

C̃
Σ

C̃
VH

C̃

]−1
)

= tr
([

VH

C̃
(R̂ + E)−1V

C̃
+ σ−2

nnΣ
H

C̃
Σ

C̃

]−1
)

. (12)

Next, using the property tr(A + B) = tr(A) + tr(B) and the
matrix inversion lemma (A + BCD)−1 = A−1 − A−1B
(C−1 + DA−1B)−1DA−1, and letting A = σ−2

nnΣ
H

C̃
Σ

C̃
,
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C = VH

C̃
(R̂ + E)−1V

C̃
and B = D = INrNt

, then (12)
becomes

tr
(

σ2
nnΣ

−1

C̃
Σ−H

C̃
− σ2

nnΣ
−1

C̃
Σ−H

C̃

×
[
σ2
nnΣ

−1

C̃
Σ−H

C̃
+ VH

C̃
(R̂ + E)V

C̃

]−1

σ2
nnΣ

−1

C̃
Σ−H

C̃

)
= tr

(
σ2
nnΛ

−1

C̃

)
− σ4

nntr
(
Λ−1

C̃

[
σ2
nnΛ

−1

C̃
+ VH

C̃
(R̂ + E)V

C̃

]−1

Λ−1

C̃

)
= tr

(
σ2
nnΛ

−1

C̃

)
− σ2

nntr
([

Λ
C̃

+ σ−2
nnΛC̃

VH

C̃
(R̂ + E)V

C̃
Λ

C̃

]−1
)

= tr
(
σ2
nnΛ

−1

C̃

)
− σ2

nntr
([

C̃HC̃ + σ−2
nnC̃

HC̃(R̂ + E)C̃HC̃
]−1

)
(13)

where Λ
C̃

Δ= ΣH

C̃
Σ

C̃
. Since the first term of (13) does not

depend on E, maximizing (11) is equivalent to minimizing the
second term in (13). Therefore, the maximization problem in
(11) becomes

min
‖E‖F ≤ε

tr
([

C̃HC̃ + σ−2
nnC̃

HC̃(R̂ + E)C̃HC̃
]−1

)
(14)

and it can easily be solved using convex optimization toolbox
such as cvx [29] since the (R̂ + E)−1 term is eliminated.

Unfortunately, even if (14) is substituted into (11), it is
difficult to find a closed-form solution for C. Therefore, the
iterative algorithm in Fig. 4 is proposed. As seen from the
figure, C̃ is first initialized to be a full rank matrix satisfying
the condition C(0)PH = 0. C(0) is then used in (17) [or,
equivalently, (14)] to solve for a solution for E. This is then
used in (18) to solve for C̃. This process will be repeated until
‖E(n) − E(n − 1)‖2/ε is less than some preset threshold α.
Note that C̃ needs to be initialized to have full rank; otherwise,
the inverse in (17) cannot be taken.

Assuming C has full row rank. Initializing C in the algorithm
shown in Fig. 4 to be C(0), it is obvious that

C(0) = UC(0)[ΣC(0) 0Nt×(K+L−Nt)]V
H
C(0) (15)

where UC(0), VC(0), and ΣC(0) are the left and singular vector
matrix of C(0) and the invertible portion of the singular value
matrix of C(0), respectively. Hence, to satisfy the condition that
CPH = 0Nt×K , it is necessary that VC(0) = UQ, where UQ

is the eigenvector matrix of QQH . That is

QQH =UQΛQUH
Q

=UQ

[
Λ′

Q 0Nt×(K+L−Nt)

0(K+L−Nt)×Nt
0(K+L−Nt)×(K+L−Nt)

]
UH

Q

where Λ′
Q ∈ C

Nt×Nt is a diagonal matrix containing the
nonzero eigenvalues of QQH . Assume that the diagonal values

Fig. 4. Algorithm pseudocode for training sequence design.

of ΛQ are arranged in descending order. Hence, C̃2(n) =
(UC(n)ΛC(n)UH

C(n))
∗ ⊗ INr

, n = 0, 1, . . . , n0, where n and
n0 denote the iteration index and the iteration time
when ‖E(n) − E(n − 1)‖2/ε < α, respectively, and ΛC(n) =
ΣC(n)Σ∗

C(n). Thus, VC(n) = VC(0) = UQ, n = 0, 1, . . . , n0,
and the training sequence, when convergence has been reached,
becomes

C(n0) = UC(n0)

[
ΣC(n0) 0Nt×(K+L−Nt)

]
UH

Q (16)

where UC(n0) is the singular vector matrix for C(n0), and
ΣC(n0) ∈ C

Nt×Nt is a singular value matrix of C(n0) con-
taining all nonzero singular values. This conforms with the
structure previously derived in [20].

B. Convergence Analysis

Theorem 1: The iteration depicted in Fig. 4 will always con-
verge to the global optimal solution given that C is initialized
as a matrix with full rank, where the constraint C(0)PH =
0Nt×K is satisfied.

Proof: Define the convex sets E = {(C̃,E)|‖E‖F ≤ ε}
and C = {(C̃,E)|‖C̃‖2

F ≤ P̃T } containing elements that are
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two tuples.1 Express the objective function in (11) as f(C̃,E).
Given C̃, it is clear that max f(C̃,E) with respect to E is a
nonexpansive operator, i.e.,

0 =
∥∥∥∥ max
‖E1‖F ≤ε

f(C̃,E1) − max
‖E2‖F ≤ε

f(C̃,E2)
∥∥∥∥

≤‖E1 − E2‖. (19)

Similarly, given E, min f(C̃,E) with respect to C̃ is also a
nonexpansive operator, i.e.,

0 =

∥∥∥∥∥ min
‖C̃1‖2F ≤P̃T

f(C̃1,E) − min
‖C̃2‖2F ≤P̃T

f(C̃2,E)

∥∥∥∥∥
≤‖C̃1 − C̃2‖. (20)

Moreover, the solutions for (19) and (20) will always belong
to E and C, respectively. Then, according to the theory of
alternating projections [31], the algorithm depicted in Fig. 4
will always converge given appropriate initial conditions. Since
the two sets are convex, there is a unique point of intersection,
and thus, the solution obtained in Fig. 4 will always be the
global optimal solution. �

Note that it is possible for C(n) to lose rank when the SNR
is low and when ε is sufficiently small (e.g., SNR = 0 dB and
ε = 0.1). To prevent this from occurring, C̃2(n) is diagonally
loaded, i.e., C̃2(n) = C̃2(n) + ρINtNr

, where ρ is a small
value compared with ‖C̃2(n)‖F , e.g., ρ = 0.01‖C̃2(n)‖F .

C. Power Allocation

The use of the SIT sequence has an adverse effect on the
recovery of the information-bearing signal at the receiver as the
sequence reduces the power of the transmitted data signal. A
suboptimal power allocation scheme for the training sequence
was derived in [20], in which the effective SNR

SNReff =
E

[
‖ĤX‖2

]
E

[
‖H̃X + NQD‖2

] (21)

was maximized, which consequently maximizes the probability
of detecting the correct signal at the receiver. A similar power
allocation scheme can similarly be derived with the spatial
correlation mismatch matrix E taken into account. The method
is suboptimal due to the fact that the numerator in (21) can be
written as

E
[
‖ĤX‖2

]
= tr

(
E[ĤXXHĤH ]

)
=Kσ2

xtr
(
E[HHH ] + E[H̃H̃H ]

)
=Kσ2

x

(
tr(R̂ + E) + ε

)
=Kσ2

xx(NtNr + ε) (22)

where it has been assumed that tr(E[HHH ]) = tr(R̂ + E) =
NtNr, with ε = tr(E[H̃H̃H ]) denoting the mean square error

1Both sets are convex because their respective constraints form a norm ball.

of the channel. Note that the received SNR is defined as
SNR = −10 log10 σ2

nn under the assumption that the power of
the received signal is normalized to 1. Thus, trace(R̂ + E) =
NtNr. In addition, it should be noted that there is an error in
the expression for E[‖ĤX‖2] in [20] in which ε was preceded
by a minus sign, even if it should be preceded by a plus sign
instead, as indicated in (22). Hence, SNReff becomes

SNReff =
σ2
xx(NtNr + ε)

σ2
xxε + γ

(23)

where γ = Nrσ
2
nn(K/K + L). Using the property that if

tr(A) > tr(B), then tr(B−1) > tr(A−1), given that A and B
are positive definite matrices. It then follows that ε is upper
bounded by (NrNt/Nr + Nt)(σ2

nn/σ2
cc) = β(σ2

nn/σ2
cc). Sub-

stituting this upper bound into (22), the effective SNR is then
lower bounded as

SNReff

(
σ2
cc

)
≥

(
1 − σ2

cc

) [
(NtNr+)σ2

cc + βσ2
nn

]
βσ2

nn − βσ2
nnσ2

cc + γσ2
cc

. (24)

The maximum of the effective SNR can then be achieved by
maximizing the lower bound in (24), which can be accom-
plished by differentiating the bound with respect to σ2

cc, setting
the result to zero, and solving for σ2

cc. This results in the
suboptimal power allocation for the SIT sequence

σ2
cc,subopt =

δβσ2
nn −

√
δγβσ2

nn (δ − γ + βσ2
nn)

δ (βσ2
nn)

(25)

where δ = NtNr. σ2
cc,subopt in (25) is similar to the expression

derived in [20] except for the sign error, as previously indicated.
The difference is due to the sign error in (22). However, the
foregoing power allocation expression is derived directly with
inclusion of the spatial correlation mismatch, thus generalizing
the result previously reported in [20].

IV. SIMULATION RESULTS

Monte Carlo simulations were used to demonstrate the ro-
bustness of the proposed scheme. The channels used in all
the simulations are assumed to be quasi-static block Rayleigh
fading and spatially correlated, unless otherwise specified. The
one-ring model [30] is used to generate entries of the Cholesky
factors of the spatial transmit and receive correlation matrices

Σt(m,n) ≈J0

(
Δ

2π

λ
dt|m − n|

)
(26)

Σr(i, j) ≈J0

(
2π

λ
dr|i − j|

)
(27)

where dt and dr are the spacing between transmit and receive
antennas, respectively. Δ denotes the angular spread, λ de-
notes the carrier wavelength, and J0 is the 0th-order Bessel
function of the first kind. The power allocation scheme in
(25) for the training sequence is adopted. Quaternary phase-
shift keying and Alamouti STBC are used for modulation
of the information-bearing signals. In all the simulations, the
threshold for the iteration algorithm is α = 10−6.
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Fig. 5. MSE versus SNR performance comparison between RoMMSE and
[20] for spatially correlated 2 × 2 MIMO channel. Δ = 5◦, dt = 0.5λ, and
dr = 0.2λ. ε = 0.3.

Fig. 6. MSE versus ε performance comparison between RoMMSE and
[20] for spatially correlated 2 × 2 MIMO channel. Δ = 5◦, dt = 0.5λ, and
dr = 0.2λ. SNR = 5 dB.

A 2 × 2 spatially correlated MIMO system with Δ = 5◦,
dt = 0.5λ, and dr = 0.2λ is considered in Fig. 5. The data
block size K is 60, and L = Nt = 2. When the correlation
matrix R is estimated perfectly, i.e., R = R̂, the sequence
design in [20] outperforms the proposed RoMMSE algorithm
with ε = 0.3. This is the case because the sequence design
in [20] is MMSE optimal when perfect knowledge of R is
available. However, when R is not estimated accurately, i.e.,
R = R̂ + E, the proposed RoMMSE estimator outperforms
the estimator in [20] by as much as 8 dB.

Fig. 6 compares the MSE performance of the proposed
scheme with that of [20] when the spatial correlation matrix
error power is varied. The channel parameters in this figure
are identical to those in Fig. 5 with SNR = 5 dB. For the
case of “imperfect R”, i.e., E �= 0NrNt×NrNt

, the results for
[20] are obtained by solving (8) with R = R̂. In the case of
“perfect R”, i.e., E = 0NrNt×NrNt

, the exact matrix channel
correlation matrix is used to design the training sequence
for both algorithms. It can be seen from the figure that the
algorithm in [20] outperforms the proposed scheme when an

Fig. 7. MSE versus SNR performance comparison between RoMMSE and
[20] for spatially correlated 4 × 4 MIMO channel. Δ = 15◦, dt = 0.5λ, and
dr = 0.2λ. ε = 0.3.

Fig. 8. MSE versus ε performance comparison between RoMMSE and
[20] for spatially correlated 4 × 4 MIMO channel. Δ = 15◦, dt = 0.5λ, and
dr = 0.2λ. SNR = 5 dB.

accurate spatial correlation matrix is available for estimation.
However, when R̂ �= R, then the proposed scheme outperforms
[20]. Moreover, as the estimation error ε increases, the MSE of
the RoMMSE estimator rises only gradually, whereas the MSE
increases unbounded for [20].

Figs. 7 and 8 illustrate the same performance comparison
as Figs. 5 and 6 but for 4 × 4 MIMO systems. The angular
spread Δ is set to be 15◦, and the antenna spacing dt and dr are
0.5λ and 0.2λ, respectively. K = 60, and L = Nt = 4. ε = 0.3
is used in Fig. 7, whereas SNR = 5 dB is used for Fig. 8.
From Fig. 7, the performance of both algorithms for the 4 × 4
system follows the same pattern as that of the 2 × 2 system.
Specifically, the proposed RoMMSE estimator outperforms the
estimator in [20] by as much as 9 dB when MSE = −1 dB. In
addition, unlike the algorithm in [20], the RoMMSE estimator
performance does not flatten out as the SNR increases. This is
because the inaccuracy in R has been taken into account during
the channel estimation process. However, since there are more
parameters to be estimated in the 4 × 4 system compared with
the 2 × 2 system, there is a performance degradation not only
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Fig. 9. BER versus SNR performance comparison between RoMMSE and
[20] for spatially correlated 2 × 2 MIMO channel. Δ = 5◦, dt = 0.5λ, and
dr = 0.2λ. ε = 0.3.

Fig. 10. BER versus SNR performance comparison between RoMMSE and
[20] for spatially correlated 2 × 2 MIMO channel. Δ = 5◦, dt = 0.5λ, and
dr = 0.2λ. ε = 0.3.

in terms of the absolute MSE, but the rate of decrease of the
MSE has also diminished.

In addition to MSE performance, Figs. 9 and 10 compare
the BER performance of the RoMMSE algorithm and that of
[20] when the estimate of spatial correlation is imperfect and
when it is perfect, respectively. The 2 × 2 MIMO systems are
used. From Fig. 9, it can be seen that the RoMMSE algorithm
outperforms the algorithm in [20] by 2 dB when the SNR is
low. However, when the spatial correlation has been perfectly
estimated, the RoMMSE algorithm and the algorithm in [20]
render identical performance.

Figs. 11 and 12 compare the MSE performance for spatially
correlated and uncorrelated MIMO channels of the RoMMSE
estimator to the RMMSE and LS-RMMSE estimators in [21].
The spatial correlation in Fig. 11 is created by letting Δ = 5◦,
dt = 0.5λ, and dr = 0.2λ. The RMMSE uses diagonal loading
to derive an MMSE estimator that requires only knowledge
of tr(R) instead of R to estimate the MIMO channel. LS-
RMMSE further relaxes the requirement in RMMSE by using

Fig. 11. MSE versus SNR performance comparison between RoMMSE,
LS-RMMSE, and RMMSE [21] for spatially correlated 2 × 2 MIMO system.
Δ = 5◦, dt = 0.5λ, and dr = 0.2λ.

Fig. 12. MSE versus SNR performance comparison between RoMMSE,
LS-RMMSE, and RMMSE [21] for spatially uncorrelated 2 × 2 MIMO system,
i.e., R = INrNt . ε = 0.3.

TABLE I
NUMBER OF EIGENMODES USED DURING CHANNEL ESTIMATION FOR

SPATIALLY CORRELATED MIMO CHANNEL

the LS method to derive an MMSE estimator that no longer
requires knowledge of tr(R). Instead, only knowledge about
the Frobenius norm of the received signal matrix is required.
As seen in Fig. 11, when spatial correlation exists, the pro-
posed RoMMSE algorithm outperforms the RMMSE and LS-
RMMSE algorithms in low SNR by 4 dB when ε = 0.05 but
only by about 2 dB when ε = 0.2. This shows that the error
power bound cannot be too high; otherwise, the performance
of the proposed scheme will degrade. This is so because as ε
increases, E obtained from the iterative algorithm will decor-
relate the spatial correlation more, thus adversely affecting the
performance of the proposed scheme. This can be explained
as follows. The RoMMSE estimator strives to minimize the
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Fig. 13. MSE versus ε performance comparison between RoMMSE and RMMSE [21] for spatially correlated 2 × 2 MIMO system. Δ = 5◦, dt = 0.5λ, and
dr = 0.2λ. Actual correlation mismatch power is 0.3. (a) SNR = 0 dB. (b) SNR = 5 dB. (c) SNR = 10 dB. (d) SNR = 20 dB.

worst case MSE, as seen in (11). The worst-case MSE can be
attained by increasing the number of parameters that needs to
be estimated, the maximum being NrNt. In other words, the
present method attempts to increase the degrees of freedom in
the correlated MIMO channel by reducing the spatial correla-
tion. As ε increases, ‖E‖F also increases, which allows E more
freedom to zero out the off-diagonal elements of R, therefore
lessening the spatial correlation. Complete decorrelation of
R is attained as ε → ∞. In addition, it has been observed
that when the threshold α is met, E and C̃2 share the same
eigenvector matrix as R̂. This has been proven analytically in
Appendix A. When there is no spatial correlation mismatch, it
was shown in [12] that the transmitted signal corresponds to
transmitting in specific eigenmodes of the spatial correlation,
which determines which particular eigenmode of the channel
will be estimated. Furthermore, the power on each eigenmode is
determined by waterfilling solution based on certain optimiza-
tion criteria, such as minimum MSE and maximum conditional
mutual information. When the SNR is low, it was found that
all the power will be allocated to the strongest eigenmode.
However, when the SNR is high, the power is evenly distributed
among all the eigenmodes. When spatial correlation mismatch

has been accounted for, it can be seen from the simulations
that regardless of whether the system is operating under low
or high SNR, the mismatch matrix E not only decorrelates the
channel but equalizes all the diagonal values of R̂ as well, such
that tr(R̂ + E) = NrNt given that ε is sufficiently large. Note
that this is also true even when tr(R̂ + E) = NrNt is not a
constraint in (17). Hence, the robust training sequence evenly
distributes power across all the eigenmodes. This is because the
worst-case mismatch matrix Ew can be obtained only when R̂,
E, and C̃2 are all diagonalized and because E and C̃2 share
the same eigenvectors as R̂ (see Appendix A). The constraint
tr(R̂ + E) = NrNt forces E to diagonalize R̂ and equalizes
the diagonal values of R̂ such that the constraint is satisfied.
Hence, the mismatch matrix E will evenly distribute power
across all the eigenmodes of R. If ε is not sufficient large, then
E will not have enough degrees of freedom to diagonalize and
equalize the diagonal values of R̂. This phenomenon has been
summarized in Table I.

The MSE performance for different values of ε is compared
between RoMMSE and RMMSE when the actual mismatch
error power is equal to 0.3. The results in Fig. 13 suggest that
ε should not be chosen to be smaller than the actual mismatch
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Fig. 14. MSE versus SNR performance comparison using time-multiplexed
pilots between RoMMSE, LS-RMMSE, and RMMSE [21] for spatially corre-
lated 2 × 2 MIMO system. Δ = 5◦, dt = 0.5λ, and dr = 0.2λ.

error power (if that is estimated a priori) as that will greatly
and adversely affect the MSE. ε should not be chosen to be too
high either, but that will be less detrimental as having a small
ε, particularly under low SNR condition. Hence, in the absence
of knowledge about the actual mismatch error power, a high
value should be selected for ε. The results for higher SNR [see
Fig. 13(b)–(d)] corroborate with those in Fig. 11, i.e., the MSE
of the RMMSE and RoMMSE estimator converges as the SNR
increases.

The performance of the RoMMSE estimator is also com-
pared with that of RMMSE and LS-RMMSE when the MIMO
channel is spatially uncorrelated. Fig. 12 indicates that in this
situation all three estimators render similar MSE performance,
which suggests that all three estimators are identical. This is
indeed the case, and it is proven in Appendix B.

The data detection performance for the RMMSE and
RoMMSE algorithms is also compared in the case of spatially
correlated and uncorrelated channels. Since the RMMSE al-
gorithm is proposed in a time-multiplexed pilot scheme, both
MSE and BER are compared using time-multiplexed pilots.
The channel estimation performance using time-multiplexed
pilots is shown in Fig. 14, where the RoMMSE algorithm
outperforms the RMMSE and LS-RMMSE algorithms, similar
to the performance shown in Fig. 11. Notice that the estimation
performance of the RoMMSE algorithm in Fig. 14 is worse than
that shown in Fig. 11. This is because the power of the pilot is
less than that of the SIT sequence. Next, the BER performance
comparison is shown in Fig. 15. With ε = 0.05, RoMMSE
outperforms the RMMSE by 2.5 dB in the low SNR region.

The BER performance of the RoMMSE algorithm versus
different values of ε is shown in Fig. 16. Notice that a lower
BER is obtained with increasing ε. As previously explained,
this is because the mismatch matrix has more freedom to
decorrelate the spatial correlation matrix as ε increases, which
enhances the spatial diversity of the system, thus improving the
BER performance.

Table II shows the number of iterations needed before the
algorithm in Fig. 4 converges under different initial conditions

Fig. 15. BER versus SNR performance comparison using time-multiplexed
pilots between RoMMSE and RMMSE [21] for spatially correlated 2 × 2
MIMO channel. Δ = 5◦, dt = 0.5λ, and dr = 0.2λ. ε = 0.05.

Fig. 16. BER versus SNR performance comparison using time-multiplexed
pilots of RoMMSE with different ε for spatially correlated 2 × 2 MIMO
channel. Δ = 5◦, dt = 0.5λ, and dr = 0.2λ.

TABLE II
AVERAGE NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE FOR

THE PROPOSED ROMMSE ESTIMATOR. dt = 0.5λ, dr = 0.2λ, ε = 0.3,
AND SNR = 5 dB, ANGULAR SPREAD = 15◦ (4 × 4), 5◦ (2 × 2)

C(0). It shows that the proposed iterative algorithm always,
on the average, converges faster if C(0) is initialized to be an
orthogonal matrix than when it is initialized to be a random
matrix. Although the table only shows the performance when
the SNR is 5 dB, this convergence behavior has been observed
for all the SNR values that have been tested. This speed up
is due to the fact that the worst case MSE is achieved if the
argument inside the trace operator in (17) forms a diagonal
matrix. Hence, if C(0) is initialized to be an orthogonal matrix,
then C̃(n), n > 0 will be closer to the optimal solution than
when C(0) is initialized to be a random matrix, as it is already
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TABLE III
AVERAGE NUMBER OF ITERATIONS REQUIRED FOR THE

IMPLEMENTATION OF THE SDPT3 ALGORITHM FOR ROMMSE AND [20].
dt = 0.5λ, dr = 0.2λ, ε = 0.3, ANGULAR SPREAD = 15◦ (4 × 4), AND

5◦ (2 × 2). ORTHOGONAL MATRIX IS USED TO INITIATE E(0)
IN ROMMSE

equal to a diagonal matrix of the form αINrNt
, for α being

equal to an arbitrary constant.
Table III shows the average number of iterations required

for the proposed RoMMSE and the algorithm in [20]. Note
that the computational complexity in [12] is similar to that
of [20]. The complexity figures depicted in Table III are the
average number of iterations used in the primal–dual interior-
point method in SDPT3 [33]. This is the default solver used
in cvx, and it is also used to find solutions for (17) and (18).
The entries in Table III are computed by noting the number of
times (17) and (18) are invoked, multiplied by the number of
iterations required to obtain optimal values in (17) and (18). The
values obtained for the low and high SNR conditions are then
averaged to obtain the entries in the table. The computational
complexity for RoMMSE is understandably higher than those
of [20] and [12] because the RoMMSE algorithm requires an
extra step to solve for the worst-case E to compensate for the
spatial correlation mismatch.

V. CONCLUSION

A robust SIT sequence design algorithm for spatially cor-
related MIMO channel estimation has been proposed. The
algorithm has been shown to be robust against error in the
spatial correlation estimate. When the robust training sequence
is inserted into the MMSE estimator, a robust MMSE, or
RoMMSE, estimator is derived. Simulation results have shown
that the proposed RoMMSE estimator not only outperforms the
optimal MMSE estimator in [20] when the error in the spatial
correlation exists, albeit at the cost of higher computational
complexity, but it also outperforms other robust designs, such
as RMMSE and LS-RMMSE [21]. Furthermore, it has been
shown that the spatial correlation mismatch matrix decorrelates
the spatial correlation matrix when the error power bound goes
to infinity. Finally, the RoMMSE scheme is identical to the
RMMSE-based schemes when the MIMO channel is spatially
uncorrelated.

APPENDIX A
DECORRELATION OF R̂

Insert (14) into (11), and note that the SVDs of C̃HC̃ and R̂
are V

C̃2ΛC̃2VH

C̃2
and UR̂ΛR̂UH

R̂
, respectively. The sequence

design problem in (11) is equivalent to solving (17) and (18)
iteratively. Using the SVD, (17) can be rewritten as

min
‖E‖F ≤ε

tr
([

Λ
C̃2 +Λ

C̃2V
H

C̃2

(
U

R̂
Λ

R̂
UH

R̂
+E

)
V

C̃2ΛC̃2

]−1
)

.

Define A Δ= Λ
C̃2 + Λ

C̃2VH

C̃2
(U

R̂
Λ

R̂
UH

R̂
+ E)V

C̃2ΛC̃2 .

The objective function can then be written as f(λ(A)) =

∑
i(1/λi(A)), where λ(A) denotes a vector composed of

eigenvalues of A. Since φ(λi(A)) = 1/λi(A) is a convex
function, f(λ(A)) is Schur convex [12]. Moreover, A is a
symmetric matrix. Therefore, f(λ(A)) majorizes f(d(A)),
i.e., f(λ(A)) ≥ f(d(A)) [12], where d(A) denotes a vector
that is composed of diagonal values of A. Since the equality
will hold when A is a diagonal matrix, then the worst-case
mismatch error will be Ew = V

C̃
ΛEVH

C̃
, which ensures

that the lower bound of the MSE is reached. This implies that
VH

C̃2
U

R̂
has to be a diagonal matrix and that E shares the same

eigenvectors as R̂. The first condition can thus be achieved if
R̂ and C̃2 also share the same eigenvector matrix.

APPENDIX B
COMPARISON OF ROMMSE AND RELAXED MINIMUM

MEAN SQUARE ERROR ESTIMATORS

When the MIMO system is spatially uncorrelated, i.e., R =
INrNt

, the channel estimate from the RMMSE channel estima-
tor in [21] becomes

ĥRMMSE = C̃H

(
C̃C̃H +

σ2
nnNrNt

tr(R̂)
INrNt

)−1

y

= C̃H
(
C̃C̃H + σ2

nnINrNt

)−1

y.

It is assumed that orthogonal sequences are employed for the
RMMSE channel estimator [21], i.e., CHC = (PT /Nt)IK+L.
The estimate of the RoMMSE estimator is written as

ĥRoMMSE

=(R̂+Ew)C̃H
(
C̃(R̂+Ew)C̃H +σ2

nnINrNt

)−1

y

=(INrNt
+Ew)C̃H

(
C̃(INrNt

+Ew)C̃H +σ2
nnINrNt

)−1

y

where Ew is the worst-case error of the estimated spatial corre-
lation. Let V

C̃2 and Λ
C̃2 denote the eigenvector and eigenvalue

matrix of C̃2, respectively. From (13), (17) is equivalent to

min
‖E‖F ≤ε

tr
([

Λ
C̃2 + Λ

C̃2V
H

C̃2
(INrNt

+ E)V
C̃2ΛC̃2

]−1
)

= min
‖E‖F ≤ε

tr
([

Λ
C̃2 + Λ2

C̃2
+ Λ

C̃2V
H

C̃2
EV

C̃2ΛC̃2

]−1
)

.

(28)

Define A Δ= Λ
C̃2 + Λ2

C̃2
+ Λ

C̃2VH

C̃2
EV

C̃2ΛC̃2 . The objec-

tive function can then be written as f(λ(A)) =
∑

i(1/λi(A)),
where λ(A) denotes a vector composed of eigenvalues of A.
Since φ(λi(A)) = 1/λi(A) is a convex function, f(λ(A)) is
Schur convex [12]. Moreover, A is a symmetric matrix. There-
fore, f(λ(A)) majorizes f(d(A)), i.e., f(λ(A)) ≥ f(d(A))
[12], where d(A) denotes a vector that is composed of di-
agonal values of A. Since the equality will hold when A is
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a diagonal matrix, then the worst-case mismatch error will
be Ew = V

C̃
ΛEVH

C̃
, which ensures that the lower bound of

the MSE is reached. Since R̂ = INrNt
, from Section IV, Ew

will have to be a diagonal matrix (or a linear combination
of one) so that it will not minimize the degrees of freedom
in the MIMO channel. This implies that either V

C̃2 or ΛE

is an identity matrix. However, since C̃2 is not necessarily a
diagonal matrix, it is not necessary for V

C̃2 to be an identity
matrix. This implies that ΛE must be either an identity or an
all zero matrix. Since the constraint tr(R̂ + E) = NtNr must
be satisfied, therefore, Ew must be an all zero matrix, i.e.,
Ew = 0NrNt×NrNt

. Substituting Ew = 0NrNt×NrNt
into (11)

and solving for C, C becomes an orthogonal matrix. That is, the
optimal SIT sequence is an orthogonal sequence, which agrees
with the conclusion in [21] that the optimal training sequence
for spatially uncorrelated MIMO channel is an orthogonal
sequence. Therefore, ĥRoMMSE becomes

ĥRoMMSE = C̃H
(
C̃C̃H + σ2

nnINrNt

)−1

y

which implies that the estimation performance of the proposed
RoMMSE estimator and the RMMSE estimator is identical
when the MIMO channel is spatially uncorrelated, thus agree-
ing with the simulation results in Section IV.
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