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Abstract—Antenna selection is a simple but effective technique
to enhance the performance of a spatial multiplexing multiple-
input–multiple-output (MIMO) system. The selection criterion
depends on the detector used at the receiver. For the maximum-
likelihood detector, the criterion is to maximize the free distance.
However, an exhaustive search is required to derive the distance,
and the computational complexity can be prohibitively high. To
avoid the exhaustive search, a lower bound of the free distance
derived with the singular value decomposition (SVD) was then
developed. This bound only involves the smallest singular value of
the channel matrix, and its maximization can easily be conducted.
An alternative lower bound of the free distance with the QR
decomposition (QRD) was also derived in the literature. In this
paper, we first propose a QRD-based selection method maximizing
the lower bound. With some matrix properties, we theoretically
prove that the lower bound yielded by the QRD is tighter than that
by the SVD. We then propose a basis transformation method so
that the lower bound yielded by the QRD can further be tightened.
As a result, the QRD-based selection method can achieve near
optimum performance. Finally, we extend the use of the proposed
methods to other applications, such as receive antenna selection,
joint transmit/receive antenna selection, and antenna selection in
MIMO relay systems. Simulations show that the proposed selec-
tion methods can significantly outperform existing methods.

Index Terms—Antenna selection, free distance, multiple-
input–multiple-output (MIMO), QR decomposition (QRD),
spatial multiplexing.

I. INTRODUCTION

A. Background

MULTIPLE-input–multiple-output (MIMO) technology
has been widely adopted in wireless communication

systems since it can provide higher spectral efficiency without
bandwidth expansion [1]. Consider a MIMO system with Nt

transmit antennas and Nr receive antennas. If we let Nt = M
and Nr = M , then M independent bit streams can simulta-
neously be transmitted. This scheme is generally referred to
as spatial multiplexing. However, the performance of spatial
multiplexing can seriously be affected in fading environments

Manuscript received September 17, 2010; revised February 21, 2011 and
April 22, 2011; accepted May 27, 2011. Date of publication June 20, 2011;
date of current version September 19, 2011. This work was supported in part by
the National Science Council under Grant NSC-98-2221-E-009-046-MY3 and
was presented at the 20th Annual IEEE International Symposium on Personal,
Indoor, and Mobile Radio Communications, Tokyo, Japan, September 2009.
The review of this paper was coordinated by Prof. G. Bauch.

The authors are with the Institute of Communications Engineering,
National Chiao Tung University, Hsinchu 300, Taiwan (e-mail: tow.cm91g@
nctu.edu.tw; wrwu@faculty.nctu.edu.tw).

Digital Object Identifier 10.1109/TVT.2011.2160003

[2]. One way to combat the fading is to let Nt > M and Nr >
M so that higher spatial diversity can be achieved. The main
disadvantage of this approach is that the implementation cost
can be much higher than that of the original system. Transmit
antenna selection is one effective yet simple solution to solve
the problem. The idea of this scheme comes from the fact that
the cost of antennas is low, whereas that of radio-frequency
(RF) chains is relatively high. In transmit antenna selection,
only M antennas are selected for signal transmission, although
there are Nt antennas. With a low-rate feedback channel,
the transmitter can conduct optimum selection such that the
performance of the M × Nr system can approach that of the
unselected Nt × Nr system. Since the number of RF chains is
reduced, the implementation cost of the MIMO system can be
reduced. In this paper, we investigate the selection methods for
spatial multiplexing MIMO systems with maximum-likelihood
(ML) detection.

B. Related Work

The transmit antenna selection criterion design for a spa-
tial multiplexing MIMO system has extensively been studied.
In [3], the performance of antenna selection using the ca-
pacity maximization criterion was theoretically analyzed. The
capacity-based method is derived from a general formula of the
MIMO channel capacity, which is independent of the receiver
type. Therefore, maximizing the channel capacity may not pro-
vide the optimum performance in some receivers. In [4], sev-
eral selection criteria for linear receivers have been proposed,
including post signal-to-noise ratio (SNR) maximization and
mean-square-error minimization. In [5], the selection method
aiming to optimize the performance of ordered successive
interference cancellation was proposed. For the ML detector,
the general criterion is to minimize the error probability. In
[6], a selection method minimizing the union upper bound of
the error probability was derived; however, the computational
complexity of this method can be very high. It is well known
that the error probability of the ML detection under high SNR
is determined by the minimum Euclidean distance between the
received signal constellation, which is generally referred to as
free distance. To have the optimum performance, we can then
maximize the free distance in the selection problem [7]. Unfor-
tunately, finding the free distance requires an exhaustive search,
and the computational complexity can be prohibitively high.
To reduce the computational complexity, a method utilizing the
singular value decomposition (SVD) was proposed in [7]. The
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SVD-based method selects the antenna subset that maximizes
the smallest singular value of the channel matrix. It was shown
that this singular value can serve as a lower bound of the free
distance. Although the computational complexity of the SVD-
based method is low, the solution is suboptimum. In addition,
the tightness of the lower bound has not been analyzed.

C. Contributions of Our Work

In this paper, we develop new methods providing tight lower
bounds in the antenna selection problem. We first propose a QR
decomposition (QRD)-based selection method maximizing the
smallest diagonal entry in the R-factor of the channel matrix,
where the R-factor is the upper triangular matrix obtained with
the QRD of the channel matrix. We theoretically prove that the
lower bound achieved with the QRD-based method is tighter
than that with the SVD-based method. The tightness of the
lower bound is related to the spread of the diagonal entries in the
R-factor. If the spread is smaller, then the lower bound is tighter.
This property motivates us to propose a basis transformation
method, further tightening the lower bound of the QRD-based
method. The idea is to find a basis transformation for the
transmitted symbol vector so that the spread can be reduced.
In this paper, we propose two basis transformation matrices
to do the work. The first matrix is the permutation matrix,
and the second matrix is the transformation matrix used in
lattice reduction (LR) [8], [9]. The LR technique has been
used in antenna selection [10] for performance improvement.
The selection method in [10] is designed for a linear detector
operated in the basis-transformed domain. In this paper, LR
is used only for the derivation of the transformation matrix.
An ML detector operating in the original basis is used at the
receiver. Therefore, the role of the LR is much different from
that in [10]. We theoretically prove that the proposed basis
transformations can further tighten the lower bound obtained
with the original QRD-based method. The basis transformation
method needs extra QRDs, and the computational complexity
will be increased. We propose an efficient permutation method
and the use of Givens rotations to reduce the computational
complexity of our selection methods.

Except for transmit antenna selection, we also consider
the applications of the proposed algorithms in other scenar-
ios, which include receive antenna selection [11]–[13], joint
transmit/receive antenna selection [14], and antenna selection
in MIMO relay systems. For receive antenna selection, no
feedback is required, and this will be a great advantage in
high-mobility environments. In some scenarios, the number of
receive antenna elements may be limited due to size constraints.
Joint transmit/receive antenna selection provides a solution to
this problem. MIMO relay systems have recently been exten-
sively studied [15], [16] since they can provide range extension
or diversity enhancement for MIMO systems. In general, it
is desirable to minimize the hardware complexity in a relay.
Antenna selection is then a good candidate for performance
enhancement in the system.

The remainder of this paper is organized as follows.
Section II describes the lower bounds obtained with the SVD-
and QRD-based methods. Section III describes the proposed

Fig. 1. System model for transmit antenna selection in a spatial multiplexing
MIMO system.

basis transformation method. Section IV considers the imple-
mentation issues, and Section V describes the applications of
the proposed methods. Section VI reports the simulation results
evaluating the performance of our proposed algorithms. Finally,
Section VII draws conclusions.

II. LOWER BOUNDS FOR FREE DISTANCE

A. System and Signal Models

Consider a spatial multiplexing wireless MIMO system with
Nt transmit antennas and Nr receive antennas, as described
in Fig. 1. Let Nt > M , Nr ≥ M , and H denote the Nr × Nt

channel matrix. In transmit antenna selection, the receiver first
selects M transmit antennas according to a selection criterion,
where M is the number of transmitted bit streams. Let each
transmit antenna subset be represented by an index p. Then, via
a feedback channel, the receiver sends the index of the optimum
antenna subset back to the transmitter. Finally, the transmitter
uses the selected antennas for signal transmission. Note that
there are

(
Nt

M

)
antenna subsets, each of which corresponds to

an Nr × M MIMO channel. Let xi be the symbol transmit-
ted at antenna i, and let x = [x1, x2, . . . , xM ]T , where (.)T

represents the transpose operation. The corresponding received
signal vector can then be expressed as

y = Hpx + n (1)

where Hp is the channel matrix corresponding to the selected
antenna subset, and n is the Nr × 1 Gaussian noise vector. As-
sume that each entry of n is independent identically distributed
(i.i.d.) with the covariance matrix of σ2INr

, where σ2 is the
noise variance, and INr

is an Nr × Nr identity matrix. The ML
detector searches all the possible symbol vectors to obtain an
estimate x̂ such that

x̂ = min
x∈XM

‖y − Hpx‖2 (2)

where XM is a set consisting of all the possible transmitted
symbol vectors. We also define XM as the symbol vector
constellation of x.

It is well known that the performance of ML detection in high
SNR depends on the free distance defined as

dfree = min
x,x′∈XM ,x�=x′

‖Hp(x − x′)‖2

= min
x,x′∈XM ,x�=x′

(x − x′)HHH
p Hp(x − x′) (3)
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where (.)H represents the Hermitian operation, and (x − x′) is
the difference vector. The free distance represents the minimum
distance of the received signal constellation. Therefore, the
optimum antenna selection criterion [7] for the ML receiver
is equivalent to choosing the antenna subset whose Hp gives
the maximum free distance. We can compute the free distance
of each candidate channel matrix using (3) and then choose the
antenna subset with the largest dfree. This optimum solution can
be found by an exhaustive search over all possible

(
Nt

M

)
candi-

date channel matrices and all difference vectors. However, this
exhaustive search requires very high computational complexity
when considering a large number of transmitted bit streams
with a large constellation modulation scheme. A suboptimum
approach is considered to minimize a lower bound of the free
distance instead of the free distance itself.

B. Lower Bound With SVD-Based Method

Let Hp be an Nr × M full column-rank matrix with its
SVD given as Hp = UΛVH , where U is an Nr × Nr unitary
matrix, V is an M × M unitary matrix, and Λ is an Nr × M
diagonal matrix. The nonzero entries of Λ are the singular
values of Hp. Define the symbol constellation of xk as Xk and
the minimum distance of Xk as

dmin(Xk) = min
xk,x′

k
∈Xk,xk �=x′

k

|xk − x′
k|

2
. (4)

In addition, define the minimum distance of the symbol vector
constellation XM as

dmin(XM ) = min
x,x′∈XM ,x�=x′

‖x − x′‖2. (5)

In a spatial multiplexing MIMO system, xk’s are usually uncor-
related. Thus, we can have

dmin(XM )=min{dmin(X1), dmin(X2), . . . , dmin(XM )} . (6)

Note that if xk’s are correlated, then (6) is not valid in general.
With (6), dmin(XM ) can easily be computed for quadratic-
amplitude modulation (QAM) constellations. Let a QAM sym-
bol be represented by aI +jaQ, where aI ∈{±1,±3, · · ·},
and aQ∈{±1,±3, · · ·}. We then have dmin(X1)=dmin(X2)=
· · · = dmin(XM ) = 4 and dmin(XM ) = min{4, 4, . . . , 4} = 4.

Using the Rayleigh–Ritz theorem, the SVD-based lower
bound of the free distance was derived in [7] as

dfree ≥ λ2
Mdmin(XM ) (7)

where λM is the minimum singular value of the matrix Hp.
Note that (7) is different from that in [7] by a factor of M .
The reason for this is that the free distance in our application
is a relative not absolute value. Since all Hp’s are of the
same dimension, scaling the free distance will not change the
selection result. Thus, the factor M is omitted for simplicity
in this paper. The lower bound in (7) indicates that the free
distance can be evaluated with λM and dmin(XM ). It is simple
to see that the value of dmin(XM ) is the same for each Hp.

Thus, with the SVD-based method, only the minimum singular
value of each Hp is required to compute, and the computational
complexity can be reduced dramatically. However, the main
problem for the SVD-based method is that the lower bound (7)
may not be tight enough. An alternative lower bound of the free
distance derived from the QRD was developed in [17]. In this
paper, we propose the use of this lower bound for solving the
antenna selection problem.

C. Lower Bound With QRD-Based Method

The matrix Hp can be factorized in the form of Hp = QR,
where Q is an Nr × M column-wise orthonormal matrix, and
R is an M × M upper triangular matrix with positive real-
valued diagonal entries as

R =

⎡
⎢⎢⎣

R1,1 R1,2 . . . R1,M

0 R2,2 . . . R2,M

...
...

. . .
...

0 0 . . . RM,M

⎤
⎥⎥⎦ .

As mentioned, the matrix R is also referred to as the R-factor
[17] of Hp. Let [R]k denote the kth diagonal entry of R. Via
this decomposition, we can have another lower bound of the
free distance as

dfree ≥
(

min
1≤k≤M

[R]2k

)
dmin(XM )

= [R]2mindmin(XM ) (8)

where [R]min represents the minimum diagonal entry in the
matrix R. Thus, we propose the use of (8) as a selection
criterion, which is referred to as QRD-based method in this
paper. In what follows, we show that the lower bound obtained
with the QRD-based method is tighter than that with the SVD-
based method.

For an arbitrary M × M positive-definite matrix A =
HH

p Hp, we can have its eigenvalue decomposition expressed
as A = VΣVH , where Σ is an M × M diagonal matrix
whose nonzero entries are the eigenvalues of A. It is known
that a positive-definite matrix can also be decomposed by the
Cholesky factorization in the form of A = BDBH , where D
is an M × M diagonal matrix, and B is an M × M unit lower
triangular matrix expressed as

B =

⎡
⎢⎢⎣

1 0 . . . 0
B2,1 1 . . . 0

...
...

. . .
...

BM,1 BM,2 . . . 1

⎤
⎥⎥⎦ .

The diagonal entries of D are also referred to as Cholesky
values [18]. Consider two sequences σ = (σ1, σ2, . . . , σM )
and d = (d1, d2, . . . , dM ) consisting of the eigenvalues and
Cholesky values of A, respectively. Note that the entries of
both sequences σ and d are arranged in descending order so
that σ1 ≥ σ2 ≥ · · · ≥ σM and d1 ≥ d2 ≥ · · · ≥ dM . With the
preceding definitions, we can have the following proposition.
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Proposition 1: For an Nr × M full column-rank matrix Hp

with its QRD and SVD expressed as Hp = QR and Hp =
UΛVH , respectively, the inequality λM ≤ [R]min holds true
for all channel realizations.

Proof: It is known that the Cholesky factorization of a
positive-definite matrix A = HH

p Hp is unique [19] and can be
expressed as A = BDBH . With the QRD Hp = QR, we can
also have

A = RHR = RH
u D′Ru (9)

where Ru is an M × M unit upper triangular matrix, and
D′ is an M × M diagonal matrix. Let r = (r1, r2, . . . , rM )
and d′ = (d′1, d

′
2, . . . , d

′
M ) denote the diagonal entries of R

and D′, respectively. From (9), we know that r2
k = d′k for all

k = 1, 2, . . . ,M . Furthermore, using the uniqueness property
of the Cholesky factorization, it can be seen that the entries of
the sequence d′ exactly represent the Cholesky values of A.

Definition 1: Let b = (b1, b2, . . . , bM ) and c = (c1, c2, . . . ,
cM ) be two positive real-valued sequences satisfying b1 ≥ b2 ≥
· · · ≥ bM and c1 ≥ c2 ≥ · · · ≥ cM . We say that b majorizes c
in the product sense [20] if

l∏
k=1

bk ≥
l∏

k=1

ck (10)

for all l = 1, 2, . . . ,M and with equality when l = M .
Lemma 1: For a positive-definite matrix A = HH

p Hp, the
sequence σ majorizes the sequence d in the product sense, i.e.,

l∏
k=1

σk ≥
l∏

k=1

dk (11)

for all l = 1, 2, . . . ,M and with equality when l = M .
This lemma and its proof can be found in [18] and [20].
Assume that the entries of both r and d′ are also in descend-

ing order. Then, by Lemma 1, we can obtain

l∏
k=1

σk ≥
l∏

k=1

dk =
l∏

k=1

d′k =
l∏

k=1

r2
k (12)

for all l = 1, 2, . . . , M and with equality when l = M . For a
positive-definite matrix A = HH

p Hp, it is known that σk = λ2
k,

where λk is the kth largest singular value of Hp. We thus have

l∏
k=1

λ2
k =

l∏
k=1

σk ≥
l∏

k=1

r2
k (13)

for all l = 1, 2, . . . ,M and with equality when l = M . From
(13), we arrive at that λ2

M ≤ r2
M . Note that rM = [R]min. We

can have λM ≤ [R]min since both λM and [R]min are positive
values, which completes the proof. �

III. BASIS TRANSFORMATION METHOD

In the previous section, we see that the lower bound obtained
with the QRD-based method is tighter than that with the SVD-
based method. In this section, we propose a method for further

tightening the lower bound of the free distance. To do that,
we first observe how the channel matrix affects the tightness
of the bound in (8). From [17], it can be seen that when the
diagonal entries of R are all equal, the equality in (8) will
hold. We then conjecture that the tightness of the lower bound
is related to the spread of the diagonal entries in the R-factor,
which is defined as the [R]-value spread. The [R]-value spread
is the value of [R]max divided by that of [R]min, where [R]max

is the maximum diagonal entry in the matrix R. If the [R]-
value spread is smaller, then the bound in (8) is tighter. Now,
considering the signal part in (1), we have

ys =Hpx

=x1hp,1 + x2hp,2 + · · · + xMhp,M (14)

where hp,k is the kth column of Hp. Thus, ys can be seen as
a vector expanded by a basis formed by the columns of Hp,
i.e., [hp,1,hp,2, . . . ,hp,M ], and the corresponding coordinate is
[x1, x2, . . . , xM ]T . With an invertible matrix Z, we can rewrite
(14) as

ys =HpZZ−1x

= H̄px̄ (15)

where H̄p = HpZ, and x̄ = Z−1x. Thus, the basis is trans-
formed to the columns of H̄p, and the corresponding coordinate
is x̄ = [x̄1, x̄2, . . . , x̄M ]T . If a proper Z can be chosen such that
the [R]-value spread of the R-factor in H̄p is reduced, then the
bound in (8) can be tightened. This is the basic concept of our
basis transformation method.

Using the idea previously described, we rewrite the free
distance as

dfree = min
x,x′∈XM ,x�=x′

‖Hp(x − x′)‖2

= min
x,x′∈XM ,x�=x′

∥∥HpZZ−1(x − x′)
∥∥2

= min
x̄,x̄′∈X̄M ,x̄�=x̄′

∥∥H̄p(x̄ − x̄′)
∥∥2

(16)

where X̄M is the symbol vector constellation reshaped
by Z−1. In Appendix A, we show that the lower bound
yielded by the SVD in (7) is still valid. However, dmin(X̄k)
becomes difficult to find since in general dmin(X̄M ) �=
min{dmin(X̄1), . . . dmin(X̄M )}, where dmin(X̄k) = min |x̄k −
x̄′

k|2. On the other hand, the lower bound yielded by the QRD
in (8) is no longer valid. From [17], we see that the lower
bound in (8) is derived with the assumption of (6). Thus,
if let dmin(X̄ 1) = min{dmin(X̄1), dmin(X̄2), · · · dmin(X̄M )},
then we can have a new lower bound from (8) as

dfree ≥ [R̄]2mindmin(X̄ 1). (17)

As mentioned, dmin(X̄ 1) �= dmin(XM ) in general. We cannot
conclude that (17) is tighter than (8) even when [R̄]2min ≥
[R]2min. The other problem with (17) is that the value of
dmin(X̄ 1) is no longer easy to obtain. This is because after
the transformation, the signal constellation in each dimension



3182 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 60, NO. 7, SEPTEMBER 2011

is significantly expanded. The challenge in the basis transfor-
mation method is to find Z such that dmin(X̄ 1) can easily be
computed and at the same time dmin(X̄ 1) = dmin(XM ). The
constraints are stringent and cannot be satisfied by most of the
transformations. Fortunately, we have found two matrices that
can do the job.

A. Permutation Matrix

The first transformation matrix we propose is the permutation
matrix. For a given Nr × M candidate channel matrix Hp,
we can have M ! different column permutation patterns. Let
Πi denote the permutation matrix corresponding to the ith
permutation pattern, where 1 ≤ i ≤ M !. We can rewrite the
free distance as

dfree = min
x,x′∈XM ,x�=x′

∥∥HpΠiΠ−1
i (x − x′)

∥∥2

= min
x,x′∈XM ,x�=x′

∥∥HpΠiΠT
i (x − x′)

∥∥2
(18)

where ΠT
i = Π−1

i since Πi is an orthogonal matrix. Note that
the combinations of ΠT

i (x − x′) are the same as those of (x −
x′), which allows us to rewrite (18) as

dfree = min
x,x′∈XM ,x�=x′

‖HpΠi(x − x′)‖2
. (19)

Let Ri denote the R-factor of HpΠi. The free distance can be
bounded as

dfree ≥ [Ri]2mindmin(XM ). (20)

For a given Hp, we can obtain M ! different R-factors with M !
permutations. Denote Rper as the R-factor having the largest
minimum diagonal entry. Then, the minimum diagonal entry of
Rper can be used in the lower bound in (8). Then, we have

dfree ≥ [Rper]2mindmin(XM ) (21)

where [Rper]min = max([R1]min, [R2]min, . . . , [RM !]min). In
other words, we find the optimum permutation pattern such that
the smallest [R]-value spread can be obtained. We summarize
the proposed basis transformation method with the permutation
matrix (which is denoted as QRD-based BT-P) in Table I.
Assume that Π1 = IM . Then, [R1]min = [R]min. Clearly, we
can have the following inequality:

[Rper]min ≥ [R]min. (22)

The inequality in (22) indicates that this permutation method
can improve the tightness of (8).

B. Transformation Matrix in LR

The second transformation matrix we found is the basis
transformation matrix used in LR. The LR technique has
been successfully applied to MIMO systems for enhancing
the detection performance [8], [9]. The basic idea is to find a
new basis for the transmitted symbol vector, and then, signal
detection is conducted in the basis-transformed domain. In

TABLE I
ALGORITHM OF PROPOSED QRD-BASED BT-P METHOD

Fig. 2. LR for M = 2.

this paper, we propose using the transformation matrix used
in LR to obtain a tighter lower bound of the free distance.
Note that the ML detection is still conducted in the original
basis. With Hp = [hp,1,hp,2, . . . ,hp,M ], we can describe an
M -dimensional lattice L as

L{hp,1,hp,2, . . . ,hp,M} =
M∑

k=1

skhp,k (23)

where sk is a complex integer. The vector set {hp,1,hp,2, . . . ,
hp,M} is a basis spanning L. Let P be an invertible matrix
whose entries are all complex integers, and we have

HLR,p =HpP

= [hLR,p,1,hLR,p,2, . . . ,hLR,p,M ]. (24)

Note that all the entries of P−1 are also complex integers. Thus,
the column vectors of the matrix HLR,p also form a basis for the
same lattice. The LR method finds a basis whose elements are
as orthogonal as possible, and at the same time, the magnitudes
of the basis elements are as short as possible. An example
of LR with M = 2 is illustrated in Fig. 2. As we can see,
the reduced basis vectors will have a shorter length, and the
orthogonality of HLR,p is improved as well. Several algorithms
to implement LR have been proposed in the literature. Among
them, the complex Lenstra–Lenstra–Lovász (CLLL) algorithm
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TABLE II
OPERATIONS OF CLLL ALGORITHM

is most widely used since its computational complexity is lower.
We then use the CLLL as our LR algorithm in this paper. The
operation of the CLLL algorithm is summarized in Table II. As
we can see in the table, a parameter δ ∈ (0.5, 1) is defined in
the CLLL. This parameter determines the orthogonality of the
transformed channel matrix HLR,p. A larger δ will make HLR,p

closer to an orthogonal matrix. However, the CLLL algorithm
will require more iterations to converge, and its computational
complexity is higher.

Now, we can conduct LR on Hp to obtain P. Rewrite the free
distance in (3) as

dfree = min
x,x′∈XM ,x�=x′

∥∥HpPP−1(x − x′)
∥∥2

= min
xLR,x′

LR∈XM
LR,xLR �=x′

LR

‖HLR,p (xLR − x′
LR)‖2 (25)

where xLR − x′
LR = P−1(x − x′), and XM

LR represents the
symbol vector constellation after the transformation. Thus, we
can conduct the QRD on HLR,p, obtaining HLR,p = QLRRLR.
Using (17), we can have a lower bound of the free distance as

dfree ≥ [RLR]2mindmin

(
X 1

LR

)
(26)

where dmin(X 1
LR) is expressed as

dmin

(
X 1

LR

)
=min{dmin(XLR,1), dmin(XLR,2), . . . , dmin(XLR,M )} . (27)

In Appendix B, we show that dmin(X 1
LR) can be seen as equal

to dmin(XM ). As a result, only [RLR]min needs to be evaluated
in the comparison of (26) and (8).

Proposition 2: For an Nr × M full column-rank matrix Hp,
if LR is conducted with the CLLL algorithm, the following
inequality is held:

[RLR]min ≥ [R]min. (28)

Proof: See Appendix C. �
Thus, for a candidate channel matrix, the lower bound

obtained with (26) will be always tighter than or equal to
the original QRD-based lower bound. We can then select the
antenna subset whose corresponding channel matrix has the
maximum [RLR]min. Note that the singular values of a matrix
are invariant under the column permutation operation. There-
fore, the tightness of the SVD-based lower bound cannot be
improved by the transformation with permutation matrices. As
for the transformation with the LR matrix P, the minimum
singular value may also be enlarged. However, as proved in
Proposition 1, the resultant minimum singular value will still
be smaller than [RLR]min.

C. Cascade of Permutation and LR Matrices

To further improve performance, we can consider the cascade
of a permutation and an LR matrix as another transforma-
tion matrix. Let Si = PΠi. The free distance can then be
expressed as

dfree = min
x,x′∈XM ,x�=x′

∥∥HpSiS−1
i (x − x′)

∥∥2
(29)

= min
x,x′∈XM ,x�=x′

∥∥HpPΠiΠT
i P−1(x − x′)

∥∥2
. (30)

With the effective channel matrix HpPΠi, the QRD-based
lower bound of the free distance can be tightened even further.
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TABLE III
ALGORITHM OF PROPOSED QRD-BASED BT-C METHOD

In this paper, we denote QRD-based BT-C as the proposed
QRD-based method with the basis transformation using the
cascade of permutation and LR matrices. Table III summarizes
the operations of the proposed QRD-based BT-C method. De-
note RLR,i as the R-factor of HpPΠi and [Rcas]min as the
R-factor having the largest minimum diagonal entry among
all RLR,i’s. In other words, [Rcas]min = max([RLR,1]min,
[RLR,2]min, . . . , [RLR,M !]min). Thus, we can have the follow-
ing inequality:

[Rcas]min ≥ [RLR]min. (31)

From (31) and (22), we see that the lower bound of [Rcas]min

is larger than that of [Rper]min since [RLR]min ≥ [R]min. This,
however, does not imply that [Rcas]min ≥ [Rper]min. We can
only say that the probability of [Rcas]min ≥ [Rper]min is larger.
Furthermore, we can exchange the cascading order. In other
words, we can let the transformation matrix be Si = ΠiPi. In
this case, however, we have to conduct LR for each HpΠi, and
the resultant computational complexity is then higher. Finally,
we can even use a transformation matrix by cascading a series
of permutation and LR matrices. For example, we can have a
transformation matrix in the form of P1ΠiP2Πi′ , where 1 ≤
i ≤ M !, and 1 ≤ i′ ≤ M !. Simulations show that this may not
be required. With only one-level cascading, the performance of
the selection is very close to the optimum solution.

IV. IMPLEMENTATION ISSUES AND

COMPLEXITY COMPARISON

The computational complexity of the basis transformation
method will be increased due to extra transformations and QRD
operations. To reduce the computational complexity, we pro-
posed several efficient methods for real-world implementations.

A. Givens Rotation Method

To reduce the computational complexity of the QRDs, we
propose using Givens rotations [21] to compute each [Ri]min.
Assume that Hp,1 = Q1R1 is available via a complete QRD.
Let Hp,2 be another matrix obtained by exchanging two neigh-
bor columns of Hp,1. We seek to find R2 of Hp,2 without
using another complete QRD. Denote Π̌ as a permutation ma-
trix conducting a column-exchange operation on two neighbor
columns, i.e.,

Hp,2 = Q1R1Π̌ = Q1Ř1 (32)

Fig. 3. [Ri]min computations for M = 3.

where Ř1 is a near upper triangular matrix. Now, all we have
to do is to transform Ř1 into an upper triangular matrix again.
Since Π̌ only exchanges two neighbor columns of R1, we can
upper triangulize Ř1 by a simple Givens rotation matrix G1.
Then, G1Ř1 = T, where T is an upper triangular matrix. Thus,
we can rewrite (32) as

Hp,2 = Q1GH
1 G1Ř1 = Q2T (33)

where Q2 = Q1GH
1 is a unitary matrix. From (33), we know

that Q2T is the QRD of Hp,2, and T is equal to R2. In other
words, we obtain R2 by simply left multiplying a Givens
rotation matrix on Ř1 rather than by performing a complete
QRD on Hp,2. Therefore, we can dramatically reduce the
computational complexity of the proposed basis transformation
method when conducting the permutation operations. Note that
applying Givens rotations will not affect the performance of the
proposed selection methods. Fig. 3 illustrates an example (for
M =3) of how each [Ri]min can be derived with Givens
rotations.

B. Efficient Permutations

Consider a Rayleigh flat-fading MIMO channel matrix
Hp. With the QRD, we have Hp = QR. It has been
shown that the square value of each diagonal entry in R is
independently distributed with Gamma distribution [22]. That
is, [R]2k ∼ G(M + 1 − k), where G(M + 1 − k) denotes the
Gamma distribution with mean E[[R]2k] = (M + 1 − k). Thus,
the expectation of [R]2M , which is equal to 1, is the smallest. As
a result, [R]M has the highest probability to be the minimum
diagonal entry of R. In addition, note that Givens rotations
have to be conducted sequentially. Using these two properties,
we propose an efficient permutation method to reduce the
required computational complexity. The idea is to conduct
permutations in a local rather than global manner. Define an
integer M̄ and M̄ < M . With Givens rotations, permutating
the first M̄ columns of Hp will not change the resultant values
of ([R]M̄+1, [R]M̄+2, . . . , [R]M ). This is to say, if [R]M is the
minimum value, then these permutations are totally useless.
Thus, we choose the last M − M̄ columns of Hp for local per-
mutations. If M̄ is chosen to be much smaller than M , then the
computational complexity can be reduced significantly. Note
that local permutations will result in some performance loss.
In [22] and [23], it has theoretically been shown that E[[R]2M ]
tends to be larger when the columns of Hp are exchanged
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TABLE IV
ALGORITHM OF PROPOSED QRD-BASED BT-E METHOD

according to the norm-ascending order. This is referred to as
preordering. Thus, we can combine this preordering with our
efficient permutation method to compensate the performance
loss.

The idea of efficient permutation can also be applied to
the QRD-based BT-C scheme. As shown in Appendix C, the
[R]-value spread of RLR will effectively be reduced with the
CLLL algorithm. Thus, the values of the diagonal entries in
RLR can become very close. Preordering is then not required.
From the simulations, we found that due to some special
properties of the CLLL, using the first M̄ neighbor columns
for local permutations can provide slightly better performance.
For this reason, when conducting efficient permutations for the
QRD-based BT-C scheme, we choose the first M̄ columns
of HpP. The operation of the QRD-based BT-C method im-
plemented with efficient permutations (which is denoted as
QRD-based BT-E) is shown in Table IV.

C. Complexity Comparison

In this paper, we use the number of floating operations
(FLOPS) required in an algorithm as the measure for the
computational complexity. Many algorithms for conducting the
QRD and SVD have been developed [21]. In general, the QRD
requires fewer FLOPS than the SVD does [21], [24]. Thus, the
QRD-based selection scheme not only has better performance
but also requires lower computational complexity. In Table V,
we summarize the order of the computational complexity in
each proposed method.

As we can see, computing [Ri]min for i = 2, . . . , M ! in the
QRD-based BT-P method requires O(M3M !) FLOPS, which
can be reduced to O(MM !) with Givens rotations. It has
been shown that the computational complexity of the CLLL
algorithm is O(M4) [25]. Therefore, the total computational
complexity of the QRD-based BT-C scheme with Given rota-
tions is O(M4 + MM !). The term MM ! may grow rapidly
when M becomes very large, which dominates the total com-
putational complexity. This problem can be solved with the
efficient permutation method proposed in Section IV-B. In the
QRD-based BT-E scheme, M̄ can be chosen much smaller than
M , and the resultant computational complexity can further be
reduced to O(M4 + MM̄ !) ∼= O(M4). Although the required
complexity will be increased when the LR is considered, the
overall complexity is still much lower than that of the exhaus-
tive search.

V. OTHER APPLICATIONS

A. Receive and Joint Transmit/Receive Antenna Selection

Antenna selection can also be conducted at the receiver. As
we did in transmit antenna selection, we can select a subset of
receive antennas according to a performance criterion. Here,
we select M out of Nr receive antenna elements. Note that
the receiver does not have to feed the index of the selected
antenna subset back to the transmitter, which is a significant
advantage. However, the performance of receive antenna selec-
tion may be inferior to transmit antenna selection for the same
number of candidate channel matrices. We now give a simple
example to illustrate this property. Consider a MIMO system
with Nt = 2, Nr = 3, and M = 2, where the channel matrix
can be expressed as

H =

⎡
⎣h1,1 h1,2

h2,1 h2,2

h3,1 h3,2

⎤
⎦ .

From the diversity point of view, we can treat a 3 × 2 MIMO
channel H as two separate 3 × 1 subchannels, each of which is
obtained from a column of H. The reason is that either x1 or x2

has the same diversity as the original 3 × 2 MIMO system since
the ML detection is adopted at the receiver. This facilitates a
simple performance analysis for the antenna selection problem.
For receive antenna selection, x1 has three candidate channel
columns for selection, which are denoted as

h1 =
[

h1,1

h2,1

]
,h2 =

[
h1,1

h3,1

]
, and h3 =

[
h2,1

h3,1

]
.

It can be seen that there exists a correlation between any
two columns since those candidate channel columns have the
common entries. This correlation will degrade the performance
of receive antenna selection.

Now, consider transmit antenna selection in a MIMO system
with Nt = 3, Nr = 2 and M = 2, where the channel matrix can
be expressed as

H =
[

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

]
.

For transmit antenna selection, x1 also has three candidate
channel columns given by

h1 =
[

h1,1

h2,1

]
,h2 =

[
h1,2

h2,2

]
, and h3 =

[
h1,3

h2,3

]
.

Note here that three independent columns are available for
selection, which is different from receive antenna selection.
This clearly indicates that transmit antenna selection can out-
perform receive antenna selection for the same number of
candidate channel matrices. However, as mentioned, conduct-
ing antenna selection at the transmitter side requires feedback
overhead. Thus, there is a tradeoff between the feedback re-
quirement and diversity performance. In addition, note that
increasing the number of receive antennas may not be al-
ways possible due to the receiver size constraint. Therefore,
we can then consider joint transmit/receive antenna selection,
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TABLE V
COMPLEXITY COMPARISONS

Fig. 4. System model of a two-hop AF MIMO relay system.

conducting antenna selection at both the transmitter and the
receiver side simultaneously, to achieve the optimum tradeoff.

Consider an Nr × Nt MIMO channel H, where Nr > M ,
and Nt > M . We have

(
Nt

M

)
×

(
Nr

M

)
possible candidate channel

matrices. It is worth noting that we only need 	log2

(
Nt

M

)

 bits

for feedback, where 	t
 denotes the smallest integer larger than
t. In addition, the joint selection scheme may provide more
candidate channel matrices for a fixed number of total antennas.
For example, if Nt = 4, Nr = 4, and M = 3, then we have
16 candidate channel matrices, and only two bits are required
for feedback. If we conduct pure transmit antenna selection
with Nt = 5, Nr = 3, and M = 3, then the number of the
candidates is reduced to ten. Furthermore, the required bits for
feedback will be increased to four. Note that the total numbers
of antenna elements are the same for these two cases, i.e.,
Nt + Nr = 8.

B. Antenna Selection in MIMO Relay Channels

Recently, cooperative communications have drawn a great
deal of attention in wireless transmission. With the additional
relay nodes, spatial diversity can effectively be enhanced. Mul-
tiple antennas can be placed at the source, the relays, and
the destination. Such a cooperative system is referred to as a
MIMO relay system. We now extend the proposed methods
to antenna selection in MIMO relay systems. In this paper,
we only consider a simple two-hop amplify-and-forward (AF)
system, as illustrated in Fig. 4.

As mentioned, we can consider antenna selection at each
node for performance improvement. Assume that the relay node

is equipped with Nre antennas. Let HSR be the Nre × Nt

source-to-relay channel matrix and HRD be the Nr × Nre

relay-to-destination channel matrix. In the AF relay scheme,
signal transmission is divided into two phases. Denote p1 and
p2 as the indices of the candidate channel matrices in Phases I
and II, respectively. With antenna selection at all nodes, the
source transmits the signal x to the relay through an M × M
channel HSR,p1 during Phase I. Note that in a two-hop system,
the destination cannot receive the transmitted signal from the
source in Phase I. Thus, the received signal at the relay can
be expressed as y1 = HSR,p1x + nSR, where nSR is a white
Gaussian noise vector. In Phase II, the relay amplifies and
retransmits y1 through an M × M channel HRD,p2 . The cor-
responding received signal at the destination, which is denoted
by y2, can then be expressed as

y2 = HRD,p2 (HSR,p1x + nSR) + nRD (34)

where nRD is also a white Gaussian noise vector. Equivalently,
(34) can be written as

y2 = Heq,px + neq (35)

where Heq,p = HRD,p2HSR,p1 , neq = HRD,p2nSR + nRD,
and p depends on p1 and p2. Note that the equivalent noise
vector neq is colored with the covariance matrix of

Kp = σ2
SR

(
HRD,p2H

H
RD,p2

+
σ2

RD

σ2
SR

IM

)
(36)

where σ2
SR and σ2

RD are the variances of nSR and nRD, respec-
tively. To conduct ML detection, the equivalent noise vector
must be whitened, and this can be achieved by left multiplying
a matrix Wp on y2, where

Wp =
(
HRD,p2H

H
RD,p2

+
σ2

RD

σ2
SR

IM

)− 1
2

. (37)

After the whitening process, the resultant received signal can be
expressed as

y′
2 = WpHeq,px + Wpneq (38)

where y′
2 = Wpy2. Since the covariance of Wpneq becomes a

scaled identity matrix σ2
SRIM , the selection schemes described
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in Sections II and III can directly be used to enhance the system
performance.

C. Sphere Decoding Algorithm (SDA)

The SDA is an efficient method to realize the ML detection
in MIMO systems. In this section, we demonstrate the use of
our proposed selection methods for the SDA. Considering the
signal model in (1), the idea of the SDA is to search a subset of
XM such that

‖y − Hpx‖2 ≤ γ2 (39)

where γ is the radius of the searching sphere. First, we conduct
the QRD on Hp, yielding Hp = QR. Since Q is a unitary
matrix, (39) can be rewritten as

‖y − Hpx‖2 = ‖y − QRx‖2

= ‖y′ − Rx‖2

≤ γ2 (40)

where y′ = QHy. Let y′
i denote the ith entry of y′. With the

upper triangular structure of R, we can further rewrite (40) as

‖y−Hpx‖2 = (y′
M−RM,MxM )2

+
(
y′

M−1 − RM−1,MxM−RM−1,M−1xM−1

)2

+· · ·
≤γ2. (41)

The expression of (41) allows a tree search operation, starting
with xM , for finding the solution candidates. Then, the candi-
date with the minimum distance is chosen as the output.

As we can see, the QRD operation is required in the SDA.
Thus, the QRD processing unit can be shared with proposed
antenna selection methods. However, if we adopt other selec-
tion methods such as the SVD- or capacity-based method [7],
then extra circuits are required to conduct the SVD or calcu-
late the channel capacity. Thus, with the proposed methods,
the implementation complexity of the receiver can effectively
be reduced. The capacity-based method, maximizing the ca-
pacity of the channel matrix, is described as follows. For a
given candidate channel matrix Hp, the channel capacity is
expressed as

C = log2 det
(
IM +

ρ

M
HH

p Hp

)
(42)

where ρ is the average SNR. The method then evaluates (42)
for each candidate channel matrix and selects the antenna sub-
set having the maximum channel capacity. The computational
complexity of the capacity-based method is O(M3), mainly
arising from the matrix multiplication and the determinant
computation in (42). One additional overhead for the method
is that the estimation of the noise variance is required.

Fig. 5. BER performance comparison for transmit antenna selection (Nt = 6,
Nr = 3, and M = 3).

VI. SIMULATION RESULTS

In this section, we report simulations evaluating the perfor-
mance of our proposed selection methods. The simulation setup
is described as follows. A flat-fading MIMO channel H is used;
its entries are assumed to be i.i.d. complex Gaussian random
variables with zero mean and unit variance. The modulation
scheme is quadrature phase-shift keying (QPSK), and the de-
tection method is ML. In addition, the parameter δ in the CLLL
algorithm is set as 0.99. In our simulations, several selection
methods are compared, including 1) the SVD-based method,
2) the capacity-based method, 3) the QRD-based method,
4) the QRD-based BT-P method, 5) the QRD-based BT-C
method, 6) the QRD-based BT-E method, and 7) the optimum
method realized with an exhaustive search.

Fig. 5 shows the bit error rate (BER) performance of trans-
mit antenna selection in the MIMO system. Here, Nt = 6,
Nr = 3, and M = 3. As we can see, the QRD-based method
indeed outperforms the SVD-based method. The performance
of the capacity-based method is comparable with that of the
QRD-based scheme. However, the capacity-based method
requires additional information of the noise variance. The
QRD-based BT-C method can outperform the SVD-based
method by 1.8 dB at the BER of 10−4. We also observe that
the QRD-based BT-C method provides near-optimum perfor-
mance. These results indicate that the [R]-value spread can
effectively be reduced with the QRD-based BT-C method. The
performance of the CLLL depends on the parameter δ. As
mentioned, if δ is smaller (close to 0.5), then the computational
complexity will be lower. However, the performance will be
poorer. As the value of δ we use is close to 1, the columns
of the channel matrix will approximately be orthogonal after
the transformation. Thus, the number of channel columns to be
permutated can be chosen as a smaller value for the reduction
of the computational complexity. Here, we let M̄ = 2. In other
words, only two permutation patterns are considered. As we can
see, the performance of the QRD-based BT-E method is almost
the same as that of the QRD-based BT-C method. Note that the
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Fig. 6. BER performance comparison for receive antenna selection (Nt = 3,
Nr = 6, and M = 3).

Fig. 7. BER performance comparison for joint transmit/receive antenna se-
lection (Nt = 5, Nr = 4, and M = 3).

computational complexity of the QRD-based BT-E method
is much lower.

Fig. 6 shows the BER comparison for receive antenna selec-
tion. We assume that Nt = 3, Nr = 6, and M = 3. The results
show that the proposed QRD-based BT-C method can also
achieve near-optimum performance. As for other methods, a
similar behavior can be observed. Note that we also let the num-
ber of candidate channel matrices equal to that in Fig. 5. This
allows us to verify the analysis shown in Section V-A. From
Fig. 6, we can see that receive antenna selection indeed suffers
from performance loss compared to transmit antenna selection,
which is consistent with our analysis. Furthermore, another ob-
servation is that the performance gaps between various methods
are slightly reduced in Fig. 6. This result can also be attributed
to the correlation between candidate channel matrices.

Fig. 7 compares the performance of various selection
schemes for joint transmit/receive antenna selection. Similarly,
we let Nt = 5, Nr = 4, and M = 3 such that the number of the

Fig. 8. BER performance comparison for antenna selection in a two-hop
MIMO relay system (Nt = 4, Nre = 4, Nr = 4, and M = 3).

total antennas remains the same. Distributing the extra antennas
at both the transmitter and the receiver sides, we can have(
5
3

)
×

(
4
3

)
candidate channel matrices to choose from. Note

that the receive antenna selection is involved, indicating that
its performance may be worse than the pure transmit antenna
selection with the same total number of antennas. However, the
number of the candidate channel matrices becomes larger in
this case, and the selection performance can then be enhanced.
Overall, the performance is improved in all the methods.

Next, we consider the performance comparison for a two-hop
AF MIMO relay system. Fig. 8 shows the simulation results. In
the figure, the performance is evaluated as a function of the av-
erage SNR per antenna at the relay, which is denoted as SNRR.
In addition, the average SNR per antenna at the destination,
which is denoted by SNRD, is assumed to be 25 dB. Here,
we let Nt = 4, Nr = 4, Nre = 4, and M = 3. In this case, we
require two bits for sending the optimum indices of antenna
subsets back to the source and the relay node, respectively.
With the system model described in Section V-B, the relay node
can receive and retransmit signal with different antenna subsets,
which means we have

(
4
3

)
×

(
4
3

)
×

(
4
3

)
×

(
4
3

)
candidate channel

matrices to be evaluated, and the computational complexity
can be very high. Thus, we can consider a simplified scheme
where the same antenna subset is used for signal reception
and retransmission at the relay. With this simplification, the
number of candidate channel matrices is reduced to 64. Similar
to the previous results, the proposed QRD-based BT-C method
can still achieve near-optimum performance. In this scenario,
it outperforms the SVD-based method by 2 dB at the BER of
10−4. Note that all the schemes will exhibit an error floor when
SNRR is close to SNRD. The reason is that as σ2

SR is small, the
system performance is dominated by σ2

RD.
Finally, we provide the BER performance comparison when

the ML detection is implemented with the SDA. Transmit
antenna selection is considered, and the result is shown in
Fig. 9. The search radius γ is determined according to γ2 = κ ×
det(HpHH

p )(1/2M) [26]. We set κ = 5 so that the SDA can pro-
vide good performance and at the same time its computational
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Fig. 9. BER performance comparison for transmit antenna selection with
SDA (Nt = 6, Nr = 3, and M = 3).

complexity remains reasonably low. From Fig. 9, we can ob-
serve that the behavior of each scheme is very similar to that in
Fig. 5. The performance of the QRD-based BT-C scheme with
the SDA is still comparable with that of the optimum method.

VII. CONCLUSION

In this paper, we have considered antenna selection methods
in spatially multiplexed MIMO systems. First, we proposed
a QRD-based transmit antenna selection method for ML re-
ceivers. The theoretical analysis and simulation results indi-
cated that the QRD-based method not only outperforms the
conventional SVD-based method but has a lower computational
complexity as well. To further improve the performance, a basis
transformation method was then proposed. Two transformation
matrices were proposed to conduct the basis transformation,
i.e., the permutation matrix and the LR matrix. The cascade
of the permutation and LR matrices can also serve as another
transformation matrix. We have shown that the basis trans-
formation method can effectively tighten the original QRD-
based lower bound. Efficient methods were also developed for
the reduction of the computational complexity in the proposed
selection schemes. We have also considered the applications of
the proposed methods in other selection scenarios. Simulation
results showed that the proposed basis transformation method
can provide near-optimum performance.

APPENDIX A
SINGULAR VALUE DECOMPOSITION-BASED LOWER

BOUND WITH THE TRANSFORMED SYMBOL VECTOR

In what follows, we will show that the SVD-based lower
bound can still be used when a transformation is conducted on
x. Starting from (16), we can rewrite the free distance as

dfree = min
x̄,x̄′∈X̄M ,x̄�=x̄′

∥∥H̄p(x̄ − x̄′)
∥∥2

‖x̄ − x̄′‖2
‖x̄ − x̄′‖2. (43)

Using the Rayleigh–Ritz theorem, we can have the following
result: ∥∥H̄p(x̄ − x̄′)

∥∥2

‖x̄ − x̄′‖2
≥ min

x̄�=x̄′

∥∥H̄p(x̄ − x̄′)
∥∥2

‖x̄ − x̄′‖2
= λ̄2

M

where λ̄M is the minimum singular value of H̄p. Conse-
quently, we can have the modified SVD-based lower bound
expressed as

dfree ≥ λ̄2
Mdmin(X̄M ) (44)

where dmin(X̄M ) is defined as (5). From (44), it can be
seen that the SVD-based lower bound is still valid though the
entries of x̄ are correlated. However, dmin(X̄M ) is no longer
straightforward to obtain. Finding dmin(X̄M ) may require an
exhaustive search algorithm.

APPENDIX B
EVALUATION OF dmin(X 1

LR)

For ease of description, we assume that the symbol vector is
scaled and shifted such that the symbols before and after the
transformation are located on the same lattice. As defined, for
an M × M MIMO system, the LR-transformed symbol vector
will be xLR = P−1x. Let xLR = [xLR,1, xLR,2, . . . , xLR,M ]T .
Denote the (n, k)th entry of P−1 as P I

n,k. Then, the nth entry
of xLR can be obtained by

xLR,n =
M∑

k=1

P I
n,kxk. (45)

Note that P I
n,k is a complex integer, and xLR,n is a combination

of x1, x2, . . ., and xM . If xk has S constellation points, then
xLR,n may have SM constellation points. As we can see, the
number of the constellation points for xLR,n can greatly be
increased. As defined, dmin(XLR,n) = min |xn − x′

n|2. Note
that dmin(XLR,n) is changed only when no constellation points
are allocated in the neighbor. In addition, dmin(X 1

LR) is changed
only when all dmin(XLR,n)’s are changed.

We now use an example to illustrate this property. Consider a
2 × 2 system with QPSK modulation for each transmit antenna.
Let an LR matrix P be given by

P =
[

2 − 1j 4 + 1j
1 1 + 1j

]
.

Assume that the minimum distance of the original symbol
constellation is g. That is

dmin(X1) = dmin(X2) = dmin(XM ) = g.

Note that LR makes the transformed vectors located on the orig-
inal constellation lattice. Therefore, we can have the result that
dmin(XLR,1)≥g and dmin(XLR,2)≥g. Fig. 10 shows the cons-
tellations before and after the transformation. It can be seen that
dmin(XLR,1) > g while dmin(XLR,2) = g. As defined, we have

dmin

(
X 1

LR

)
= min {dmin(XLR,1), dmin(XLR,2)} = g. (46)

From (46), we can see that dmin(X 1
LR) = dmin(XM ) when at

least one of {dmin(XLR,1), dmin(XLR,2)} is equal to g. This
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Fig. 10. Symbol constellations in which dmin(X 1
LR) = dmin(XM )

(M = 2, ×: original constellation, •: transformed constellation).

result clearly indicates that dmin(X 1
LR) is larger than g only

when all dmin(XLR,i)’s are changed simultaneously. Fortu-
nately, the case that all dmin(XLR,i)’s are changed can be of
very low probability when M increases. From the simulations,
we found that the probability of dmin(X 1

LR) �= g is about 10−3

for M = 2, and it can be lower than 10−6 when M = 3. Thus,
we can assume that the value of dmin(X 1

LR) is the same for all
the candidate channel matrices.

APPENDIX C
PROOF OF PROPOSITION 2

In the CLLL algorithm shown in Table II, the reduction op-
erations are performed on two neighbor columns sequentially,
from the left to the right column pairs. Consider a candidate
channel matrix Hp with its QRD expressed as Hp = QR.
For the (m − 1)th neighbor column pair of R, the swap will
occur when the condition that δ|Rm−1,m−1|2 > |Rm,m|2 +
|Rm−1,m|2 is met, where m = 2, 3, . . . ,M . Let Π(m−1) be a
permutation matrix that swaps the (m − 1)th and mth columns
of R. We can have HpΠ(m−1) = QRΠ(m−1) = QR′. Then,
the Givens rotation matrix Θ, which is expressed as

Θ =

⎡
⎢⎣

(R′
m−1,m−1)

H∥∥R′
(m−1:m,m−1)

∥∥ R′
m,m−1∥∥R′

(m−1:m,m−1)

∥∥
−R′

m,m−1∥∥R′
(m−1:m,m−1)

∥∥ R′
m−1,m−1∥∥R′

(m−1:m,m−1)

∥∥

⎤
⎥⎦

is applied so that R′ can be transformed into an upper triangular
matrix denoted as R′′. Letting

R′′
(m−1:m,m−1:M) = ΘR′

(m−1:m,m−1:M)

we can have

∣∣R′′
1,1

∣∣2 =

(
|Rm−1,m|2 + |Rm,m|2

)2

w
(47)

∣∣R′′
2,2

∣∣2 =
|Rm−1,m−1|2|Rm,m|2

w
(48)

where w= |Rm−1,m|2+|Rm,m|2 is a real-valued number. Then

∣∣R′′
1,1

∣∣2 =

(
|Rm−1,m|2 + |Rm,m|2

)2

w
= |Rm−1,m|2 + |Rm,m|2
≥ |Rm,m|2. (49)

Notice that δ|Rm−1,m−1|2 > |Rm,m|2 + |Rm−1,m|2, which
means |Rm−1,m−1|2 > |Rm,m|2+|Rm−1,m|2 since 0.5<δ<1.
Hence, we have∣∣R′′

1,1

∣∣2 = |Rm−1,m|2 + |Rm,m|2 < |Rm−1,m−1|2. (50)

From (49) and (50), we know

|Rm,m|2 ≤
∣∣R′′

1,1

∣∣2 < |Rm−1,m−1|2. (51)

Next, we will show that |R′′
2,2|2 also has a similar property as

that in (51). First, |R′′
2,2|2 can be expressed as

∣∣R′′
2,2

∣∣2 =
|Rm−1,m−1|2|Rm,m|2

w

=
|Rm−1,m−1|2|Rm,m|2
|Rm−1,m|2 + |Rm,m|2 . (52)

Using the fact that |Rm,m|2 + |Rm−1,m|2 < |Rm−1,m−1|2,
we can have

∣∣R′′
2,2

∣∣2 >
|Rm−1,m−1|2|Rm,m|2

|Rm−1,m−1|2
= |Rm,m|2. (53)

Second, it is obvious that |Rm−1,m|2 + |Rm,m|2 ≥ |Rm,m|2.
Therefore

∣∣R′′
2,2

∣∣2 =
|Rm−1,m−1|2|Rm,m|2
|Rm−1,m|2 + |Rm,m|2

≤ |Rm−1,m−1|2|Rm,m|2
|Rm,m|2

= |Rm−1,m−1|2. (54)

Combining (53) with (54), we have

|Rm,m|2 <
∣∣R′′

2,2

∣∣2 ≤ |Rm−1,m−1|2. (55)

Using (51) and (55), we can see that when the swap operation
occurs at the (m − 1)th column pair

|Rm,m|2 ≤ min
{∣∣R′′

1,1

∣∣2 ,
∣∣R′′

2,2

∣∣2}

≤ max
{∣∣R′′

1,1

∣∣2 ,
∣∣R′′

2,2

∣∣2}
≤ |Rm−1,m−1|2. (56)

Then, we consider the condition for δ|Rm−1,m−1|2 ≤
|Rm,m|2 + |Rm−1,m|2, where the swap operation is not con-
ducted. Obviously, |Rm,m|2 = |R′′

2,2|2, and |Rm−1,m−1|2 =
|R′′

1,1|2. Note that, in this case, we cannot determine if
|Rm−1,m−1|2 or |Rm,m|2 is larger. Taking this case into con-
sideration, we can have the following inequality:

min{|Rm−1,m−1|2, |Rm,m|2}
≤ min

{∣∣R′′
1,1

∣∣2 ,
∣∣R′′

2,2

∣∣2} (57)

≤ max
{∣∣R′′

1,1

∣∣2 ,
∣∣R′′

2,2

∣∣2} (58)

≤ max
{
|Rm−1,m−1|2, |Rm,m|2

}
. (59)

From the results of (57)–(59), we observe that the swap
operation in the CLLL algorithm can enlarge the value of
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min{|Rm−1,m−1|2, |Rm,m|2}. Let [R](m−1)
min denote the min-

imum diagonal entry of R′′ when the CLLL algorithm has
processed the (m − 1)th neighbor column pair. Note that
[R](m−1)

min is not necessarily identical to min{|Rm−1,m−1|,
|Rm,m|}. In addition, let [R](0)min = [R]min. We can also see that

[R](M−1)
min ≥ [R](0)min when the CLLL algorithm has completed

its processing. Since [R](M−1)
min = [RLR]min, we can conclude

that [RLR]min ≥ [R]min.
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