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Abstract The influence of the joint distribution of predictor
and moderator variables on the identification of interactions
has been well described, but the impact on sample size
determinations has received rather limited attention within the
framework of moderated multiple regression (MMR). This
article investigates the deficiency in sample size determina-
tions for precise interval estimation of interaction effects that
can result from ignoring the stochastic nature of continuous
predictor and moderator variables in MMR. The primary
finding of our examinations is that failure to accommodate the
distributional properties of regressors can lead to underesti-
mation of the necessary sample size and distortion of the
desired interval precision. In order to take account of the
randomness of regressor variables, two general and effective
procedures for computing sample size estimates are presented.
Moreover, corresponding programs are provided to facilitate
use of the suggested approaches. This exposition helps to
correct drawbacks in the existing techniques and to advance
the practice of reporting confidence intervals in MMR
analyses.
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Moderated multiple regression (MMR) has been extensively
employed to study the interaction effects between predictor

and moderator variables in management, psychology, educa-
tion, and related disciplines. It follows from the comprehen-
sive reviews of Stone-Romero, Alliger, and Aguinis (1994),
Aguinis (1995), Aguinis and Stone-Romero (1997), Aguinis,
Beaty, Boik, and Pierce (2005), and relatedwork that most of
the methodological research in MMR has been concerned
with the statistical power of hypothesis testing for detecting
moderating effects. Although null hypothesis significance
testing is useful in various applications, the dichotomous
accept–reject decision ignores other useful information in its
analysis. As an alternative, the notion of interval estimation
has been stressed in studies such as Hahn and Meeker
(1991), Steiger and Fouladi (1997), and Smithson (2003).
Accordingly, the inferential procedures of interval estimators
are strongly recommended by Wilkinson and the American
Psychological Association Task Force on Statistical Inference
(1999), as well as the Publication Manualof the American
Psychological Association (American Psychological Associ-
ation, 2001). Since confidence intervals constructed with the
desired reliability are more informative about the location of
a targeted parameter, they should be the best reporting
strategy in practical study. However, the methodological
artifacts and statistical implications associated with interval
estimation of moderating effects have received little attention
within the framework of MMR.

The interactional formulation of MMR can be viewed as a
special case of the statistical linear models, and so the
inferential procedures of hypothesis testing and interval
estimation of moderation can be conducted with standard
methods and software packages for linear regression analysis.
In this article, we consider the simple interaction models with
criterion variable Y, predictor variable X, moderator variable
Z, their cross-product term XZ, and a normal error term ε in
the formulation of Y ¼ bI þ XbX þ ZbZ þ XZbXZ þ ",
where both the predictor X and moderator Z are continuous
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variables. Naturally, the special consideration of continuous
moderator and predictor variables incurs the important notion
of two different regression formulations. Because of the
inherent nature of continuous measurements of the two
regressor variables, they are not typically fixed in advance
and are available only after the data has been collected. In
order to recognize this stochastic feature of regressor
variables, the appropriate strategy is to consider a random
regression or unconditional formation, rather than a fixed or
conditional setting, in experimental designs where the factors
are under the control of investigators. The intrinsic appro-
priateness and theoretical properties of fixed and random
regression models have been discussed in Cramer and
Appelbaum (1978) and Sampson (1974). Essentially, the
inferential procedures of hypothesis testing and interval
estimation are the same under both fixed and random
formulations. The distinction between the two modeling
approaches, however, becomes crucial when power, cover-
age probability, and corresponding sample size calculations
are to be made.

In the context of MMR, the distinct formulations of fixed
and random modeling of the simple interaction models
were especially emphasized in Shieh (2009, 2010). Specif-
ically, Shieh (2009) considered the power calculation and
sample size determination for significance tests of moder-
ating effects. The procedure takes account of the critical
factors of strength of moderator effect, magnitude of error
variation, and distributional property of predictor and
moderator variables. On the other hand, Shieh (2010)
incorporated the random nature of continuous moderator
and predictor variables into two approaches to sample size
computation for precise interval estimation of interaction
effects. One approach provides the necessary sample size so
that the designated interval for the least squares estimator of
moderating effects attains the specified coverage probabil-
ity. The other approach gives the sample size required to
ensure, with a given tolerance probability, that a confidence
interval of moderating effects will be within a specified
range. The vital discrepancies between the conditional and
unconditional settings in power and precision analyses are
also closely evaluated in Shieh (2009, 2010). The results
reveal substantial detrimental effects of failing to account
for the randomness of predictor and moderator variables.
Thus, the conventional fixed modeling formulation may not
be applicable to the MMR with continuous regressor
variables, because ittends to give insufficient sample sizes
and inevitably leads to poor statistical performance.

Notably, there is a considerable recent literature pertain-
ing to the illuminating applications of precise interval
estimation in multiple linear regression (see Kelley 2008;
Krishnamoorthy & Xia 2008; Kelley & Maxwell 2008; and
the references therein). Instead of a direct accept-or-reject
conclusion in a simple hypothesis test, it is arguable that

confidence intervals generally provide more information
about the interested parameter value with a quantitative
bound and assurance level. Accordingly, researchers should
become methodologically conscious that the mere statistical
significance of a targeted parameter is inadequate to
warrant the conclusion that the effect is substantial and
practically important. In view of the relatively scarce
description of interval estimation in MMR, it is prudent to
contribute to the documentation and examination of
confidence intervals in different perspectives. The precision
considerations in Shieh (2010) may not be the only criteria
of practical importance. Just as in the instance of Kelley
and Maxwell, two other useful principles related to the
statistical properties of a confidence interval deal with the
control of expected width and tolerance probability of
interval width within a designated value. However, the
explication of Kelley and Maxwell is confined to the case
of a fixed regressor modeling framework, so that the
corresponding sample size procedures may not be appro-
priate for the interval estimation of interaction effects
between continuous predictor and moderator variables.
Moreover, it is also noted in Kelley and Maxwell that the
sampling distribution of an estimated regression coefficient
depends on whether the regressors are of fixed or random
nature. Thus, the difference should be properly recognized
in sample size planning for the simple interaction models
described above. The aim of this article is to contribute to
the design of MMR study by illustrating how the
specification of inherent features associated with continuous
predictor and moderator variables in sample size calculations
influences the resulting precision of confidence intervals for
the prescribed two interval width appraisals in the inference of
an interactive effect. Consequently, the presentation here
complements the work of Shieh (2010) with distinct precision
criteria in sample size determinations.

Due to the complexity within the random regression
framework, there appears to be a lack of applicable sample
size procedures in the literature that accommodate the
considerations of expected confidence interval width and
tolerance probability of interval width within a designated
value. Therefore, it is essential to extend the development
and exposition of sample size methodology for precise
interval estimation of interaction effects in two distinct
aspects. One method gives the minimum sample size, such
that the expected confidence interval width is within the
designated bound. The other provides the sample size
needed to guarantee, with a given tolerance probability, that
the width of a confidence interval will not exceed the
planned range. It is important to realize that the simplicity
of a fixed setup may be appealing for inducing computa-
tional shortcuts, but it does not involve all of the key factors
in sample size calculation and, thus, is generally error
prone. Accordingly, theoretical implications and numerical
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examinations are presented to demonstrate that the sample
size procedures for fixed regression, although they share
many similarities with those for random regression, have
some distinct disadvantages in MMR applications.

Confidence intervals of interaction effects

Consider the simple interaction model or MMR model
within the fixed modeling framework:

Yi ¼ bI þ XibX þ ZibZ þ XiZibXZ þ "i; ð1Þ

where Yi is the value of the response variable Y; Xi and Zi are
the values of the continuous predictor X and moderator Z; εi
are iidN(0, σ2) random errors for i = 1,…, N; and βI, βX, βZ,
and βXZ are unknown parameters. To examine the existence
and magnitude of a moderating effect, we are concerned with
the distributional property for the least squares estimatorbbXZ� Nðb ;V bbXZÞ� �

of βXZ, where V ðbbXZÞ is the variance ofbbXZ and one useful expression is V ðbbXZÞ ¼ s2=SSEXZ where
SSEXZ ¼ 1� R2

XZ

� �
S2XZ is the residual sum of squares for the

regression of the product term XZ on the X and Z variables,
R2
XZ is the corresponding coefficient of determination,

S2XZ ¼ NP
i¼1 Ui � U
� �2

, Ui = XiZi, i = 1, …, N, and

U ¼ NP
i ¼ 1

Ui=N . Moreover, the natural estimator bV ðbbXZÞ
o f bV ðbbXZÞ i s bV ðbbXZÞ ¼ bs2=SSEXZ , w h e r e bs2 ¼
1� R2ð ÞS2Y= N � 4ð Þ is the usual unbiased estimator of σ2,
R2 is the coefficient of determination of the model in Eq. 1,

S2Y ¼ NP
i ¼ 1

Yi � Y
� �2

,and Y ¼ NP
i ¼ 1

Yi=N . For inferential purpo-
ses, we focus on the interval estimation procedure of βXZ
here. According to the standard results (Rencher, 2000,
Section 8.6), a 100(1 − α)% confidence interval of βXZ is

bbXZ � tN�4; a=2 bs2=SSEXZ

n o1=2
; bbXZ þ tN�4; a=2 bs2=SSEXZ

n o1=2
� �

;

where tN − 4, α/2 is the 100(1 − α/2)th percentile of the t
distribution with N - 4 degrees of freedom. The half-width of
the 100(1 − α)% confidence interval is denoted by

H ¼ tN�4; a=2 bs 2=SSEXZ

� 	1=2
: ð2Þ

Thus, the actual half-width H depends on the sample size
N, confidence coefficient 1 - α, variance estimate bs2, and
observed values of predictor and moderator variables
through the quantity of SSEXZ.

Due to the nature of continuous measurements encountered
in practical research, the regressor variables typically cannot
be controlled and are available only after observation. Hence,

in order to extend this concept and applicability to MMR, the
continuous predictor and moderator variables {(Xi, Zi), i = 1,
…, N} in Eq. 1 are assumed to have a joint probability
functiong (Xi, Zi) with finite moments. Moreover, the form of
g(Xi, Zi) does not depend on any of the unknown parameters
(βI, βX, βZ, βXZ)or σ

2. Consequently, both bs2 and SSEXZ are
realized values of random variables. It readily follows from
Eq. 2 that the statistical properties of bs2 and SSEXZ jointly
determine the underlying distributional feature for the half-
width H of a confidence interval.

When planning a study, researchers wish to ensure that the
confidence interval is narrow enough to produce meaningful
findings despite the stochastic nature of an interval width. In
order to obtain an informative interval, it is necessary to
specify not only the required confidence level and desired
precision, but also the appropriate sample size. The most
common approach is to determine the required sample size
such that the expected half-width of a 100(1 −α)% confidence
interval is within the designated bound

E H½ � ¼ d; ð3Þ

where the expectation E[H] is taken with respect to the joint
distribution of bs2 and SSEXZ, and δ(>0) is a constant.
Alternatively, one may compute the sample size needed to
guarantee with a given tolerance probability that the width of
a 100(1 − α)% confidence interval will not exceed the
planned range

PfH < wg ¼ 1� g; ð4Þ
where 1 − γ is the specified tolerance level and ω (> 0) is a
constant. Note that these two concerns of expected magni-
tude and tolerance probability of half-width have been
discussed in Kupper and Hafner (1989) for simpler situations
of one- and two-sample problems and in Kelley and
Maxwell (2008) for multiple linear regression. Although
the notion of expected width is widely covered in standard
texts for sample size determination, the assurance of
tolerance probability approach is recommended by Kupper
and Hafner. However, it is noteworthy that the two principles
are closely related to the two distinct criteria of unbiasedness
and consistency in statistical point estimation. Therefore,
each measure is of theoretical importance and practical
interest in its own right. Furthermore, although the results are
not completely comparable, it typically requires a larger
sample size to meet the necessary assurance of tolerance
probability than the control of a designated expected width.

Sample size procedures for precise interval estimation

It was mentioned above that Kelley and Maxwell (2008,
p. 173) focused on the situation in which regressor

Behav Res (2011) 43:1075–1084 1077



variables are fixed.The particular conditional design
assumes that the same set of regressor values would be
examined for repeated studies. Since bs2 is an unbiased
estimator of σ2, the use of population notation in the
expression of V ðbbXZÞ in Kelley and Maxwell (2008,
Equation 34) implicitly assumes that SSEXZ ¼: N � 4ð Þ 1�ð
r2XZÞs2

XZ or E SSEXZ½ �¼: N � 4ð Þ 1� r2XZ
� �

s2
XZ , where r2XZ is

the coefficient of determination for the regression of
product term XZ on the X and Z variables and s2

XZ is the
variance of the product term XZ. Although the form of
V ðbbXZÞ involves some unstated clarifications, the formulation
suggests a simplified approximation for E½bV ðbbXZÞ
¼:
s2= N � 4ð Þ 1� r2XZ

� �
s2
XZ

� 	
under a random regression

setup. Hence, the corresponding approximate expected
half-width is

E H½ � ¼: tN�4; a=2 s2= N � 4ð Þ 1� r2XZ
� �

s2
XZ

� 	� 
1=2
: ð5Þ

Accordingly, the sample size NEHS needed for the
expected half-width of a 100(1 − α)% confidence interval
to fall within the designated bound δ is the minimum
integer N, such that

tN�4; a=2 s2= N � 4ð Þ 1� r2XZ
� �

s2
XZ

� 	� 
1=2 � d: ð6Þ
A similar expression is presented in Kelley and Maxwell

(Equation 35). On the other hand, an analogous argument
applies for the tolerance probability consideration given in
Eq. 4. Thus, P H < wf g ¼: P tN � 4; a=2 bs2= N � 4ð Þ 1�ðf

hn
r2XZÞs2

XZg�1=2 < wg, or equivalently,

P H<wf g ¼: P K< w=tN� 4; a=2

� �2
N � 4ð Þ2 1� r2XZ

� �
s2
XZ=s

2
n o

;

ð7Þ
where K ¼ N � 4ð Þbs2=s2 � x2 N � 4ð Þ and χ

2
(υ) is a chi-

square distribution with υ degrees of freedom. The sample
size NPHS required to guarantee with a given tolerance
probability (1 − γ) that the width of a 100(1 − α)%
confidence interval will not exceed the planned range ω is
the smallest integer N such that

X 2 N � 4; gð Þ � w=tN � 4; a=2

� �2
N � 4ð Þ2 1� r2XZ

� �
s2
XZ=s

2

ð8Þ
where χ2(N − 4, γ) is the 100(1 − γ)th percentile of a χ2(N − 4)
distribution. The formula in Kelley and Maxwell (Equation 35)
basically provides the same inequality, although the degrees of
freedom of the chi-square distribution there was incorrectly
expressed as N − 1 instead of N − 4. To compute the
necessary sample sizes, a standard iterative search can be
conducted to find NEHS and NPHS with the inequalities given
in Eqs. 6 and 8, respectively. As noted above, these two
simplified procedures rely primarily on the straightforward
approximation of E SSEXZ½ � ¼: ðN � 4Þ 1� r2XZ

� �
s2
XZ , and

they can alternatively be viewed as the exact methods under

the fixed regressor setting as in Kelley andMaxwell. However,
their usage in the random regression scenario raises natural
concerns about the resulting accuracy, for the obvious reason
that the underlying variability of the residual sum of squares
SSEXZ is ignored. The potential deficiency of the sample sizes
NEHS and NPHS for precise interval estimation of interaction
effects will be examined later in the numerical investigations.

The prescribed discussion emphasizes that the underly-
ing statistical properties of a confidence interval half-width
are uniquely defined by the joint distribution of the
regressors. Accordingly, the underlying property of predic-
tor and moderator variables should be incorporated into the
sample size procedures as much as possible. In order to
provide a unified and feasible technique, we adopt the
large-sample approach to avoid reliance on anyspecific
distributional assumption of the predictor and moderator
variables. To this end, the theoretical properties of the
suggested asymptotic approximation to the distribution of
W» ¼ SSEXZ= N � 1ð Þ is presented in Eq. 11 in the
Appendix. The results facilitate the proposed sample size
procedures for constructing precise confidence intervals
under the two precision criteria described in Eqs. 3 and 4.

With the approximate expected half-width presented in
Eq. 12, the sample size NEHP needed for the expected half-
width of a 100(1 − α)% confidence interval to fall within the
designated bound δ is the minimum integer N, such that

tN � 4; a=2 N � 1ð Þ�1=2E bs½ � � E W»� 1=2
h i

� d: ð9Þ

In contrast, the approximate probability in Eq. 13 suggests
another useful approach to sample size determination.
Consequently, the sample size NPHP required to guarantee,
with a given tolerance probability (1 − γ), that the width of a
100(1 − α)% confidence interval will not exceed the planned
range ω is the smallest integer N, such that

E Φ w»W»ð Þ½ � � 1� g: ð10Þ

Clearly, the two inequalities in Eqs. 9 and 10 are more
involved than the corresponding formulas in Eqs. 6 and 8.
Instead of substituting the term SSEXZ with a constant
estimate, as in the simplified procedures, the extra
complexity in the suggested formulations is employed to
reflect the embedded stochastic characteristic of SSEXZ. The
usefulness of the sophisticated inequalities is shown next in
the numerical example.

Numerical example

To illustrate a typical sample size problemmost frequently
encounteredin the planning stage of an MMR study, we
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consider the hypothetical research framework presented in
Shieh (2010) for assessing interaction effects between the
length of time in the position (X) and managerial ability (Z)
on the self-assurance of managers (Y). Due to the
prospective nature of advanced research planning, the
general guideline suggests that a successful pilot study
can offer plausible and reasonable planning values of the
vital characteristics for calculating the necessary sample
size. On the basis of the pilot data in Table 5 in Shieh
(2010), the empirical distribution of the 60 observed config-
urations of predictor and moderator variables may be utilized
to reconstruct or approximate the actual distributional feature
of the two variables. However, the prescribed sample size
procedures differ in their use of the pilot information and lead
to substantially distinct results. The key difference is that the
simplified method treats the regressor variables as constants,
but it is more reasonable to regard them as random variables,
and so the suggested procedures assume they were drawn
from a multivariate population.

For the 60 observed values of Xi = (Xi, Zi, XiZi)
T and

empirical probability 1/60 for i = 1, . . . , 60, the moment
matrices for the quantities in the Appendix can be obtained by

2 ¼: XX60
i¼1

Xi=60;@ ¼:
XX60
i¼ 1

Xi � 2ð Þ Xi � 2ð ÞT=60;

and

= ¼: XX60
i¼ 1

Xi � 2ð Þ Xi � 2ð ÞT � Xi � 2ð Þ Xi � 2ð ÞT
h i

=60:

Moreover, it follows that mW» ¼ 1� r2XZ
� �

s2
XZ ¼: 1:2348

and s2
W» ¼: 22:6511= N � 1ð Þ, as shown in Shieh (2010). In

planning a research study with these prior inputs, the
minimum sample size needed to control the expected half-
width of a 95% confidence interval of interaction effects
within the designated bound 0.15 can be computed with the
inequalities in Eqs. 6 and 9. The resulting sample sizes are

NEHS = 145 and NEHP = 156, and the corresponding
approximate expected half-widths given in Eq. 12 are
0.1560 and 0.1497, respectively. Hence, the sample size NEHS

determined by the simplified method is too small to satisfy
the desired precision bound. This phenomenon should
continue to exist in other settings. Moreover, the smallest
sample sizes required to guarantee with a given tolerance
probability of .90 that the width of a 95% confidence interval
will not exceed the planned range 0.15 are NPHS = 165 and
NPHP = 216, based on the inequalities in Eqs. 8 and 10,
respectively. Notably, the approximate tolerance probabilities
obtained with Eq. 13 are .6762 and .9019. The sizable
difference between NPHP − NPHS = 216 − 165 = 51 yields the
major deficit of .9019 − .6762 = .2257 in tolerance
probability.

This numerical investigation exemplifies the fundamen-
tal deficiency that overlooking the stochastic nature in
regressor variables may lead to a serious underestimation of
the sample size required to obtain a designated expected
half-width or to ensure the adequate probability of
achieving the desired half-width for the confidence inter-
vals. To facilitate the application of the proposed
approaches, the SAS/IML (SAS Institute, 2008) programs
employed to perform the sample size calculations are
available as supplemental materials from brm.psycho-
nomic-journals.org/content/supplemental. Users can easily
identify the statements containing the key values in this
exposition and then modify the program to accommodate
their own specifications.

Simulation study

To further evaluate the performance of the sample size
formulas with respect to the prescribed precision criteria in
Eqs. 3 and 4 under various parameter specifications, the
MMR model defined in Eq. 1 with bivariate normal
predictor, and moderator variables is used as the base for a

Table 1 Computed sample size, approximate expected half-width,
andsimulatedexpected half-widthfor the half-width of a 90% two-
sided interval of bbXZ at specified half-width δ = 0.15with bivariate

normal predictor and moderator variables (βXZ = 1, σ2 = 1, μX = μZ =
0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NEHS Approximate Expected
Half-Width

Simulated Expected
Half-Width

Error NEHP Approximate Expected
Half-Width

Simulated Expected
Half-Width

Error

.1 125 0.1499 0.1551 −0.0052 129 0.1497 0.1525 −0.0028

.3 117 0.1494 0.1555 −0.0061 122 0.1497 0.1520 −0.0023

.5 103 0.1493 0.1570 −0.0078 111 0.1492 0.1508 −0.0015

.7 87 0.1496 0.1598 −0.0102 97 0.1498 0.1496 0.0002

.9 73 0.1492 0.1623 −0.0131 83 0.1492 0.1494 −0.0002
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Monte Carlo exposition. A similar bivariate normal assump-
tion was made for related MMR treatments in McClelland
and Judd (1993), O’Connor (2006), and Shieh (2009, 2010).
Specifically, the coefficient parameters and variance of the
simple interaction model are set as βI = βX = βZ = βXZ = 1
and σ2 = 1, respectively.Moreover, the predictor andmoderator
(X, Z) variables are jointly normally distributed with mean
(0, 0), variance (1, 1), and correlation ρ. The correlation
parameter ρ between the predictor variable and moderator
variable is set at the five levels of .1–.9 in increments of .2.

With the specifications described above, the simulation
study is conducted in two steps. First, under the selected
values of coefficient parameters, error, distribution config-
urations of the bivariate predictor, and moderator distribution,
the estimates of sample sizes required for precise interval
estimation are computed with confidence levels (1 − α) = .90
and .95, δ =ω = 0.15 and 0.20, and tolerance probability (1 −
γ) = .90. These levels were selected to represent reasonably
the range of specifications and sample sizes used in typical
research settings.The sample sizes NEHS and NEHP required
for controlling the expected half-width are presented in
Tables 1, 2, 3 and 4, while those sample sizes, NPHS and
NPHP, ensuring the probability of a bounded confidence

interval are summarized in Tables 5, 6, 7 and 8. It can be
readily seen that the computed sample sizes NEHP are
generally larger than NEHS for controlling the expected half-
width in Tables 1, 2, 3 and 4, although the difference is more
pronounced between the sample size estimates NPHS and
NPHP for the assurance of tolerance probability in Tables 5, 6,
7 and 8. With the reported sample sizes NEHS and NPHS, the
actual values of the approximate expected half-width and
approximate tolerance probability given in Eqs. 5 and 7,
respectively, are also calculated. Similarly, the approximated
expected half-width and approximated tolerance probability
associated with computed sample sizes NEHP and NPHP are
calculated on the basis of Eqs. 12 and 13, respectively. As
was expected, the resulting approximate expected half-width
is slightly less than the designated expected half-width,
whereas the approximate tolerance probability is marginally
greater than the chosen tolerance probability.

In the second step, the accuracy of the sample size
procedures is examined through a Monte Carlo simulation
study. Estimates of the true expected half-width and
tolerance probability associated with a given sample size
N and various parameter configurations are computed
through a Monte Carlo simulation of 10,000 independent

Table 2 Computed sample size, approximate expected half-width,
andsimulatedexpected half-widthfor the half-width of a 90% two-
sided interval of bbXZ at specified half-width δ = 0.20with bivariate

normal predictor and moderator variables (βXZ = 1, σ2 = 1, μX = μZ =
0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NEHS Approximate Expected
Half-width

Simulated expected
Half-width

Error NEHP Approximate Expected
Half-Width

Simulated Expected
Half-Width

Error

.1 73 0.1997 0.2111 −0.0114 78 0.1991 0.2029 −0.0038

.3 68 0.1998 0.2128 −0.0130 75 0.1986 0.2011 −0.0025

.5 60 0.1999 0.2174 −0.0175 68 0.1997 0.2019 −0.0022

.7 52 0.1983 0.2203 −0.0220 60 0.1982 0.2014 −0.0031

.9 44 0.1979 0.2258 −0.0279 52 0.1954 0.2009 −0.0055

Table 3 Computed sample size, approximate expected half-width,
and simulated expected half-width for the half-width of a 95% two-
sided interval of bbXZ at specified half-width δ = 0.15with bivariate

normal predictor and moderator variables (βXZ = 1, σ2 = 1, μX = μZ =
0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NEHS Approximate Expected
Half-Width

Simulated Expected
Half-Width

Error NEHP Approximate Expected
Half-Width

Simulated Expected
Half-Width

Error

.1 176 0.1498 0.1531 −0.0033 179 0.1499 0.1518 −0.0019

.3 164 0.1495 0.1536 −0.0041 168 0.1499 0.1520 −0.0020

.5 143 0.1500 0.1560 −0.0060 151 0.1496 0.1514 −0.0019

.7 121 0.1500 0.1575 −0.0075 131 0.1495 0.1504 −0.0008

.9 101 0.1498 0.1593 −0.0095 111 0.1500 0.1506 −0.0006
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data sets. For each replicate, N sets of predictor and
moderator values are generated from the designated
bivariate normal distribution. These values of predictor
and moderator, in turn, determine the mean responses for
generating N normal outcomes with the simple interaction
model. Next, the half-width estimate H is computed, and
the simulated expected half-width is the mean of the
10,000 replicates of H. Alternatively, the simulated
tolerance probability is the proportion of the 10,000
replicates whose values of H are less than or equal to
the specified bound ω. The adequacy of the sample
size procedure for precise interval estimation is deter-
mined by the following formula: error ¼ approximated
expected half ‐ width� simulated expected half ‐ width,
or error ¼ approximated tolerance probability� simulated
tolerance probability. The simulated expected half-width,
simulated tolerance probability, and associated error are
also summarized in Tables 1, 2, 3, 4, 5, 6, 7 and 8.

Examination of the sample sizes in these tables reveals
the general pattern that when all other factors remain
constant, the sample size increases with increasing confi-
dence level (1 − α), with decreasing half-width bound δ or
ω and with decreasing correlation ρ. Therefore, for both
simplified and proposed methods, the largest sample size

NEHS = 176 and NEHP = 179 for (1 − α) = .95, δ = 0.15 and
ρ = .1 in Table 3, whereas the smallest sample sizes NEHS =
44 and NEHS = 52 for (1 − α) = .90, δ = 0.20 and ρ = .9 in
Table 2. Accordingly, the largest and smallest sample sizes
NPHS are 198 and 54, and NPHP are 232 and 84 in Tables 7
and 6, respectively.

Furthermore, as can be seen from the errors in Tables 1,
2, 3 and 4 concerning the precision of expected half-width,
the inequality in Eq. 6 for computing the sample size NEHS

produces accurate expected half-width for the cases of δ =
0.15 in Tables 1 and 3. Most of the resulting absolute errors
are less than 0.01, with only two exceptions (0.0102 and
0.0131) in Table 1. In contrast, the performance associated
with the situations of δ = 0.20 in Tables 2 and 4 degrade
slightly but are still reasonable, with the absolute errors
between 0.0073 and 0.0279. In short, the simplified
approach tends to give reliable yet marginally smaller than
required sample sizes. However, the accuracy improves
with larger sample sizes, because large errors occur with
smaller sample sizes. Comparatively, the errors of the
expected half-width associated with sample sizes NEHP in
Tables 1, 2, 3 and 4 clearly show that the inequality of
Eq. 9 performs extremely well because all absolute errors
are less than or equal to 0.0055 for the 20 cases examined

Table 4 Computed sample size, approximate expected half-width,
and simulated expected half-width for the half-width of a 95% two-
sided interval of bbXZ at specified half-width δ = 0.20 with bivariate

normal predictor and moderator variables (βXZ = 1, σ2 = 1, μX = μZ =
0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NEHS Approximate Expected
Half-Width

Simulated Expected
Half-Width

Error NEHP Approximate Expected
Half-Width

Simulated Expected
Half-Width

Error

.1 102 0.1995 0.2068 −0.0073 106 0.1994 0.2034 −0.0040

.3 95 0.1994 0.2091 −0.0096 101 0.1992 0.2027 −0.0034

.5 84 0.1990 0.2116 −0.0125 92 0.1996 0.2003 −0.0008

.7 71 0.1998 0.2164 −0.0166 81 0.1994 0.2000 −0.0007

.9 60 0.1990 0.2188 −0.0198 69 0.1989 0.2007 −0.0018

Table 5 Computed sample size, approximate tolerance probability,
and simulated tolerance probability for the half-width of a 90% two-
sided interval of bbXZ at specified half-width ω = 0.15 and tolerance

probability 0.90 with bivariate normal predictor and moderator
variables (βXZ = 1, σ2 = 1, μX = μZ = 0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NPHS Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error NPHP Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error

.1 144 .9059 .6650 0.2409 173 .9023 .8990 0.0033

.3 135 .9116 .6456 0.2660 167 .9012 .9099 −0.0087

.5 119 .9047 .6120 0.2927 155 .9001 .9115 −0.0114

.7 102 .9049 .6075 0.2974 140 .9025 .9198 −0.0173

.9 86 .9019 .5884 0.3135 123 .9020 .9232 −0.0212
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here. Although the simplified inequality of Eq. 6 is accurate
enough for practical use, it is consistently outperformed by
the improved formula in Eq. 9.

On the other hand, the performance of the simplified
method is extremely poor and disturbing for the consideration
of tolerance probability of bounded interval half-width. The
discrepancies between the approximate tolerance probabilities
and simulated tolerance probabilities in Tables 5, 6, 7, and
8 range from 0.2409 to 0.3321. Hence, the inequality in
Eq. 8 severely overestimates the attained tolerance probabil-
ity, and thus it underestimates the necessary sample size to
meet the selected criterion. Similar findings were reported in
Kupper and Hafner (1989) for interval estimation of one- and
two-sample problems. In the present case, the parameter
value of N � 4ð Þ 1� r2XZ

� �
s2
XZ is used in place of SSEXZ, so

the variability in SSEXZ has been neglected in sample size
calculations. The repercussionsof ignoring the random
feature of predictor and moderator variables on sample size
calculation are detrimental and substantial. Hence, the
simplified procedure should not be used in such a random
regression setting, because it can lead to under allocation of
sample size or overconfidence in the interval precision.
Regarding the behavior of the proposed method, an

inspection of Tables 5, 6, 7 and 8 shows that the
corresponding differences between the approximated and
simulated tolerance probabilities are fairly small. Since the
considered approach useslarge sample approximation, the
accuracy is affected, to some extent, for those situations with
small sample sizes. The largest two deviations of −0.0258
and −0.0287 occur with the sample sizes 94 and 84 in
Table 6 for ρ = .7 and .9, respectively. Obviously, the
advantage of the proposed procedure over the simplified
method persists in the case of ensuring the required tolerance
level. Due to the behavior of the simplified method, the
accurate performance of the suggested inequality outweighs
the extra computational requirement. In light of these
detailed empirical comparisons, the proposed methods are
clearly superior to the simplified procedures in sample size
calculations for precise interval estimation.

Concluding remarks

The purpose of the present article was to discuss the
sample size issues surrounding the use of confidence
intervals for the inference of interaction effects in MMR

Table 6 Computed sample size, approximate tolerance probability,
and simulated tolerance probabilityfor the half-width of a 90% two-
sided interval of bbXZ at specified half-width ω = 0.20and tolerance

probability .90 with bivariate normal predictor and moderator
variables (βXZ = 1, σ2 = 1, μX = μZ = 0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NPHS Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error NPHP Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error

.1 87 .9082 .6508 0.2574 110 .9033 .9050 −0.0017

.3 82 .9157 .6348 0.2809 108 .9040 .9144 −0.0104

.5 73 .9150 .5991 0.3159 102 .9019 .9208 −0.0189

.7 63 .9134 .5930 0.3204 94 .9035 .9293 −0.0258

.9 54 .9178 .5857 0.3321 84 .9024 .9311 −0.0287

Table 7 Computed sample size, approximate tolerance probability,
and simulated tolerance probability for the half-width of a 95% two-
sided interval of bbXZ at specified half-width ω = 0.15 and tolerance

probability .90 with bivariate normal predictor and moderator
variables (βXZ = 1, σ2 = 1, μX = μZ = 0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NPHS Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error NPHP Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error

.1 198 .9020 .6598 0.2422 232 .9021 .8984 0.0037

.3 185 .9050 .6453 0.2597 223 .9025 .9022 0.0003

.5 163 .9004 .6271 0.2733 205 .9011 .9040 −0.0029

.7 140 .9097 .6096 0.3001 182 .9000 .9163 −0.0163

.9 118 .9114 .6074 0.3040 159 .9016 .9179 −0.0163
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studies. The focus is on the information contained in the
joint probability function of continuous predictor and
moderator variables in a simple interaction model.
During the planning stage for MMR research with
limited resources, it is important to consider all possible
features. We demonstrate that sample size estimates for
precise interval estimation of interaction effects will
generally be inadequate and misleading if they are based
solely on the anticipated characteristics of the regressor
variables. Thus, the simplified procedure based on a
fixed modeling setup should not be applied indiscrimi-
nately. With increased computing power and the general
availability of statistical software, computational simplic-
ity is no longer an adequate criterion. An appropriate
approach should involve all of the critical factors in
sample size determination. Therefore, a more prudent
strategy is to account for the stochastic behavior in
regressor variables. This article gives explicit formulas
for calculating the necessary sample size with respect to
the considerations of expected confidence interval half-
width and tolerance probability of interval half-width
within a designated value. The proposed approaches have
clear advantages in the flexibility of the joint distribution
of predictor and moderator variables and the unification
of a normal approximation for ease of computation.
More important, the performance of the suggested
methods appears to be remarkably good for the range
of model specifications considered in the present article.
The proposed methodology not only facilitates the
advocated practice of interval procedures, but also
further reinforces the potential usefulness of MMR
analysis.

Author Note The author thanks the editor, Gregory Francis, and the
two anonymous reviewers for their valuable comments on earlier
drafts of the article.

Appendix

The properties of the confidence interval half-width It follows
from the standard assumption in Eq. 1 for the simple
interaction model that the half-width of the 100(1 – α)%

confidence interval is H ¼ tN � 4; s=2 bs2=SSEXZ

n o1=2
. Hence,

the statistical property of H is determined by the joint
distribution of bs2 and SSEXZ. Since the distribution of bs2 �
s2= N � 4ð Þ� 	

x2 N � 4ð Þ does not depend on the predictor
and moderator variables, bs2 and SSEXZ are independent. The
remaining issue in describing the feature of H is to attain the
distribution of SSEXZ. Note that the distribution of SSEXZ is
somewhat more complex, and an explicit expression
generally does not exist. However, much of the complexity
is considerably simplified if we consider the asymptotic
phenomenon.

For ease of discussion, the moments of the explanatory
vectors Xi = (Xi, Zi, XiZi)

T are defined as

2 ¼ E Xi½ �;XX¼ E Xi � 2ð Þ Xi � 2ð ÞT
h i

and

= ¼ E Xi � 2ð Þ Xi � 2ð ÞT � Xi � 2ð Þ Xi � 2ð ÞT
h i

;

where the expectationsare taken with respect to the joint
probability density function g(Xi, Zi) of (Xi, Zi), and ⊗
represents the Kronecker product. Analogous to the
practical standpoint of Shieh (2009) for providing a
generally useful and versatile solution without being
specifically confined to any particular joint probability
function g(Xi, Zi), we consider the large-sample distribution
of W» ¼ SSEXZ= N � 1ð Þ,

W» ��NðmW»; s2
W»

�
; ð11Þ

where mW» ¼ 1= cTΣ � 1cÞ; s2
W» ¼ v2W»= N � 1ð Þ; v2W» ¼

�
m4
W» cTΣ � 1 � cTΣ � 1Þ< Σ � 1c�Σ � 1cÞ � m�2

W»g
���

, c =

Table 8 Computed sample size, approximate tolerance probability,
and simulated tolerance probability for the half-width of a 95% two-
sided interval of bbXZ at specified half-width ω = 0.20 and tolerance

probability .90 with bivariate normal predictor and moderator
variables (βXZ = 1, σ2 = 1, μX = μZ = 0, s2

X = s2
Z = 1, correlation ρ)

ρ Simplified Method Proposed Method

NPHS Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error NPHP Approximate Tolerance
Probability

Simulated Tolerance
Probability

Error

.1 118 .9006 .6522 0.2484 145 .9033 .8973 0.0060

.3 111 .9093 .6320 0.2773 141 .9036 .9160 −0.0124

.5 98 .9014 .6049 0.2965 132 .9029 .9218 −0.0189

.7 85 .9127 .6043 0.3084 119 .9008 .9212 –0.0204

.9 72 .9097 .5940 0.3157 106 .9030 .9294 −0.0264
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(0, 0, 1)T is a 3 × 1 row vector, and Σ and Ψ are defined
above. It is noted in Shieh (2009) that the mean value μW*

is equivalent to the extra variance of the product XZ after
controlling for X and Z. Therefore, it is more informative to
express it as mW» ¼ 1� r2XZ

� �
s2
XZ here. As SSEXZ ¼

N � 1ð ÞW» is the residual sum of squares for the regression
of product term XZ on the X and Z variables, the values of
both SSEXZ and W* are presumably nonnegative. It appears
that the probability of negative W*, P(W* < 0), is often small
enough so that the large sample normal approximation ofW* is
nearly adequate for practical purposes. Thus, the evaluations
with respect to g(Xi, Zi) are transformed to and approximated
by the corresponding assessments with respect to W*.

According to the aforementioned theoretical results, the
expected half-width can be simplified as

E H½ �¼: tN � 4; a=2 N � 1ð Þ�1=2E½bs�E W»� 1=2
h i

ð12Þ

It follows from the fact that bs2 has a multiple of a chi-square
distribution that

E bs½ � ¼ s 2= N � 4ð Þf g1=2Γ N � 4ð Þ=2f g:
Since there is no analytic expression for E[W* − 1/2], the

actual quantity needs to be evaluated with numerical
integration with respect to the normal distribution in
Eq. 11. In addition, the probability P{H < ω} for ω > 0
can be rewritten as

P H < wf g¼: P K < w»W»f g;

Wher e K ¼ N � 4ð Þbs2=s2 � x2 N � 4ð Þ and w» ¼
N � 1ð Þ N � 4ð Þw2

� 	
=t2N � 4; a=2s

2g. To permit computatio-
nal simplifications, the approximation is alternatively
expressed as

P H < wf g¼: E Φ w»W»ð Þ½ �; ð13Þ

where Φ(c) = P{K < c}, c > 0, is the cumulative density
function of χ2(N − 4). Since all related functions of normal
and chi-square distributions are readily embedded in con-
temporary statistical packages, the expressions for approxi-
mate values of E[H] and P{H < ω} given in Eqs. 12) and
13), respectively,can be readily implemented.
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