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We calculated, using the time-dependent Ginzburg-Landau equation with thermal noise, the transverse
thermoelectric conductivity �xy and the Nernst signal eN, describing the Nernst effect, in type-II supercon-
ductor in the vortex-liquid regime. The Gaussian method used is an elaboration of the Hartree-Fock utilized by
Ullah and Dorsey �Phys. Rev. Lett. 65, 2066 �1990��. An additional assumption often made in analytical
calculations that only the lowest Landau level significantly contributes to physical quantities of interest in the
high-field limit is lifted by including all the Landau levels. The resulting values in two dimensions are
significantly lower than the numerical simulation data of the same model but are in reasonably good quanti-
tative agreement with experimental data on La2SrCuO4 above the irreversibility line �below the irreversibility
line at which �xy diverges and theory should be modified by including pinning effects�. The values of eN

calculated in three dimensions are also in good quantitative agreement with experimental data for temperature
close to Tc on YBa2Cu3O7. For each of the materials we consider, the melting and the irreversibility lines are
also fitted with the same set of parameters using a recent quantitative Ginzburg-Landau theory.
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I. INTRODUCTION

The electric field is induced in a metal under magnetic
field by the temperature gradient �T perpendicular to the
magnetic field H, which is a phenomenon known as Nernst
effect1 �direction of the electric field being perpendicular to
both �T and H�. Recently the Nernst effect in high-Tc super-
conductors attracted attention both theoretically1–6 and
experimentally.7–15 In these materials, effect of thermal fluc-
tuations is very strong leading to depinning of Abrikosov
vortices created by the magnetic field in type-II supercon-
ductor below second critical field Hc2�T�. In the mixed state
the Nernst effect is large due to vortex motion while in the
normal state and in the vortex lattice or glass states, it is
typically smaller. The Nernst effect therefore is a probe of
thermal fluctuations phenomena in the vortex matter but in
principle could shed some light on the underlying micro-
scopic mechanism of superconductivity in cuprates.

The appearance of a fluctuation tail above the critical tem-
perature in the Nernst signal was observed in strongly type-II
superconductors, both with low Tc such as NbSe2 and
Nb0.15Si0.85 films,15 and several different high-temperature
materials.8–11,14 The related Ettingshausen effect was de-
tected as well.7 In particular, the Nernst effect was observed
well above Tc2�H� and even above Tc in Bi2Sr2CaCu2O8+�

�Ref. 14� �BiSCCO�, strongly underdoped YBa2Cu3Oy �Refs.
11, 12, and 14� �YBCO�, and La2−xSrxCuO4 �Refs. 10, 11,
13, and 14� �LaSCO�. These layered materials are highly
anisotropic and can be described by a quasi-two-dimensional
�2D� model. Due to reduced dimensionality the effect of
thermal fluctuations is greatly enhanced. However even in
less anisotropic materials such as the hole-doped cuprate
Nd2−xCexCuO4 �Ref. 14� �NCCO�, and weakly anisotropic
and overdoped or fully oxidized YBCO6.99,

14 the effect per-
sists. Fluctuations in these materials cannot be described by a
2D model and generalization to anisotropic three-
dimensional �3D� models is required. Measurements of eN in
fields H up to 45 T �Ref. 14� reveal that the vortex-Nernst

signal eN has a characteristic “tilted-hill” profile, which is
qualitatively distinct from that of quasiparticles. The hill pro-
file, which is observed above and below Tc, underscores the
continuity between the vortex-liquid state below Tc and the
Nernst region above Tc.

Recently, the study of the Nernst effect in NbSe2 reveals a
large quasiparticle contribution with a magnitude comparable
and a sign opposite to the vortex signal.15 A large negative
Nernst coefficient, persisting at temperatures well above Tc
=7.2 K, was found in this metal. The quasiparticle contribu-
tion to the Nernst signal attains a magnitude comparable to
the vortex signal in the superconducting state. More recently,
in experiment on amorphous thin films of the conventional
superconductor Nb0.15Si0.85,

15 a Nernst signal was generated
by short-lived Cooper pairs in the normal state. In these
amorphous films, the contribution of free electrons to the
Nernst signal is negligible. The extremely short mean-free
path of electrons in amorphous Nb0.15Si0.85 damps the
normal-state Nernst effect and allows a direct comparison of
the data with theory. In the zero-field limit and close to Tc,
the magnitude of the Nernst coefficient was found to be in
quantitative agreement with a theoretical prediction by
Ussishkin et al.,3 invoking the superconducting correlation
length as its single parameter. At high temperature and finite
magnetic field, the data were found to deviate from the the-
oretical expression. In electron-doped cuprate �NCCO� the
quasiparticle contribution to the Nernst signal is large.14 The
quasiparticle contribution actually dominates the Nernst sig-
nal far below Tc. Nevertheless, the vortex signal retains its
characteristic tilted-hill profile which is easily distinguished
from the monotonic quasiparticle contribution.

We will concentrate on the vortex-Nernst effect in type-II
superconductor of the overdoped LaSCO,12 and underdoped
and overdoped YBCO,12 where eN is intrinsically strongly
nonlinear in H and generally much larger than that in non-
magnetic normal metal. The observation of the Nernst effect
above Tc along with other strong fluctuation effects was in-
terpreted as a support for the preformed pair scenario for the
mechanism of the transition to the superconducting state. At
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the same time thermal fluctuations in high-Tc materials lead
to many other remarkable phenomena, most notably vortex
lattice melting and thermal depinning that are well studied
both experimentally and theoretically over the last two de-
cades, so that the theory of the Nernst effect should be con-
sistent with the theory of these phenomena. Most impor-
tantly, the material parameters determining the fluctuation
strengths can be determined from these better studied effects
since in many recent experiments at least the melting line
was measured on the same samples.

Theory of the electronic and the heat transport �including
the Nernst effect� based on the phenomenological time-
dependent Ginzburg-Landau �TDGL� equations with thermal
noise describing strongly fluctuating superconductors was
developed long time ago.1,2 More recently within the same
framework Ussishkin et al.3 calculated perturbatively the
low-field Nernst effect for T�Tc due to contribution of
Gaussian fluctuations and obtained results in agreement with
a microscopic Aslamazov-Larkin1 calculation. Mukerjee and
Huse5 numerically simulated the two-dimensional TDGL
equation with Langevin thermal noise for T�Tc and ob-
tained results in reasonable agreement with experimental
data on LaSCO �Ref. 12� at lower temperature but the trans-
verse thermoelectric conductivity became independent of
magnetic field at higher temperatures in contrast to experi-
ment. The simulation of this system, even in 2D, is difficult
and it was one of our goals to supplement it with a reliable
analytical expression in the region of the vortex liquid,
namely, in the region above the melting line �see Fig. 1� at
which the vortex matter becomes homogeneous on a scale of
several lattice spacings and the crystalline symmetry is lost.
In this phase the pinning is ineffective and, unlike in the
vortex glass phase, vortices actively promote the Nernst ef-
fect. Recent understanding of the vortex matter phase dia-
gram is summarized in Fig. 1. There are four phases sepa-
rated by two transition lines:16 the first-order melting line
�sometimes called the order-disorder line at lower tempera-
tures, dashed line in Fig. 1� and the irreversibility �or glass�
continuous transition. The melting line separates crystalline
phases from homogeneous phases while the glass line �dot-
ted line in Fig. 1� separates pinned phases from the unpinned
ones. The mean-field Hc2�T� line �solid line in Fig. 1� in
strongly fluctuating superconductors becomes a crossover.
Both pinning and crystalline order lead to a strong reduction
in the Nernst signal and therefore these phases will not be
considered here. We concentrate on the vortex-liquid phase

�dashed area in Fig. 1�, and discuss the melting line and
disorder only as limits of applicability of the theory and for
determining the material parameters. The quantitative
Ginzburg-Landau �GL� theory of the vortex liquid has been
developed recently and it was established that the Hartree-
Fock approach for the thermodynamics is close to the con-
vergent Borel-Pade one in the wide region of the vortex-
liquid phase.17

In this paper we revisit the Hartree-Fock calculation in
TDGL originally performed in Ref. 2 to obtain explicit ex-
pressions for the transverse thermoelectric conductivity �xy
and the Nernst signal eN in both 2D and 3D. Typically only
the lowest Landau level �LLL� contribution was
investigated.18 We extend it to higher Landau levels neces-
sary for exploring the experimentally accessible parameter
region and find a range of applicability of the results due to
approximations made, disorder, and crystallization. In this
theory the strength of the thermal fluctuations is described by
just one dimensionless adjustable parameter � �closely re-
lated to the Ginzburg number Gi�. This parameter determines
simultaneously the location of the melting line measured on
the same samples in recent experiments on Nernst effect. The
expression of Ref. 17 for the melting line is in good agree-
ment with many experiments in very wide range of materials
�as was established recently in Ref. 19� and Monte Carlo
�MC� simulation. Then fitting of the transverse thermoelec-
tric conductivity and related quantities practically has no free
parameters �of course there is a certain freedom in determin-
ing mean-field parameters such as Hc2 and Tc but the range is
limited by experimental values�. The value fitted from the
Nernst effect turns out to be consistent with that derived
from the melting line calculated in Ref. 17. We will present
the fitting of the melting line for the overdoped LaSCO,12

and underdoped and overdoped YBCO.12

The paper is organized as follows. The model is defined in
Sec. II. The transverse thermoelectric conductivity in the
vortex-liquid phase and extension to anisotropic 3D model
are described in Sec. III. The comparison with experiment
and MC simulation data is described in Sec. IV. We conclude
in Sec. V. The Appendix calculates magnetization in the vor-
tex liquid within the Gaussian approximation.

II. GINZBURG–LANDAU MODEL IN 2D

A. Relaxation dynamics and thermal fluctuations

To describe fluctuation of order parameter in thin films or
layered superconductors, one can start with the Ginzburg-
Landau free energy:

F = s� d2x
�2

2m� �D��2 + a���2 +
b�

2
���4, �1�

where A= �−By ,0� describes a constant and practically ho-
mogeneous magnetic field �we generally neglect small fluc-
tuations of the magnetic field due to magnetization which are
of order 1 /	2
1 in the region of interest� in Landau gauge
and the covariant derivative is defined by D��
−i�2� /�0�A, with �0=hc /e�, e�=−2e�0. For simplicity
we assume linear dependence a�T�=��T−T� although the

FIG. 1. The thermodynamic phase diagram.
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temperature dependence can be easily modified to better de-
scribe the experimental coherence length. The “mean-field”
critical temperature T depends on the ultraviolet �UV� cut-
off  specified later. It is higher than measured critical tem-
perature due to strong thermal fluctuations on the
mesoscopic scale. The thickness of a layer, s, is assumed to
be small enough so that order parameter does not vary con-
siderably inside the layer �namely, does not exceed the co-
herence length �z�T� along the field direction�, and layers are
nearly independent. We apply this model to describe experi-
ments not just in BiSCCO and other highly anisotropic ma-
terials but also in overdoped LaSCO �Ref. 12� and strongly
underdoped YBCO.12 For more isotropic optimally doped or
fully doped YBCO �Ref. 12�, an anisotropic 3D GL model
�neglecting the layered structure� would be more appropriate.
For materials between the two extremes, a more complicated
model such as the Lawrence-Doniach one should be used.

Since we are interested in transport phenomena, it is nec-
essary to introduce some kind of dynamics for the order pa-
rameter. The simplest is a gauge-invariant version of the
“type A” relaxational dynamics,

�� �

�t
+ i

e�

�
�	� = −

�F

���
+ � , �2�

called in the present context TDGL equation. Explicitly the
TDGL equation for the superconducting order parameter is

�� �

�t
+ i

e�

�
�	� =

�2

2m�
D2� − a� − b����2� + � , �3�

where ��x� is the scalar potential describing electric field. To
incorporate the thermal fluctuations via Langevin method,
the noise term ��x , t� having Gaussian correlations,

s
���x,t���x�,t��� = 2T���x − x����t − t�� , �4�

is introduced. Here ��x−x�� is the two-dimensional � func-
tion of the in-plane coordinates, and the relaxation-time rate
� in the TDGL equation is given by20

� =
��3

16m��2T
. �5�

B. Heat and the electric transport

The total heat current density in GL model reads

jh = −
�2

2m��� �

�t
− i

e�

�
�	����− i

2�

�0
A	� + c.c., �6�

while the total electric current is

je = − i
e��

2m������− i
2�

�0
A	� + c.c. �7�

An important aspect of the calculation of the electrothermal
conductivity, discussed in detail,21 is the need to account for
the magnetization currents. In the presence of magnetic field,
a system has the magnetization current in equilibrium. The
total heat current defined in Eq. �6� is thus a sum of the
transport and the magnetization parts,

jh = jtr
h + jmag

h . �8�

In the presence of an applied electric field, it was shown in
Ref. 21 that the magnetization current is given by

jmag
h = cM � E , �9�

where M is the equilibrium magnetization.
Generally, to define the transport coefficients, the electric

and heat transport current densities, j�e� and j�h�, in metal are
related to the applied �sufficiently weak� electric field and the
temperature gradient by

jtr
�e�i = �ijEj − �ij� jT , �10�

jtr
�h�i = �̃ijEj − 	ij� jT , �11�

where �, �, �̃, and 	 are the electrical, the thermoelectric,
the electrothermal, and the thermal-conductivity components
of the conductivity tensor �i , j=x ,y�. The Onsager relation
implies �̃=T�. The Nernst coefficient �N, under the condi-
tion jtr

�e�=0, is expressed in terms of the above coefficients as

�N =
Ey

�− �T�xB
=

1

B

�xy�xx − �xx�xy

�xx
2 + �xy

2 . �12�

If the system shows no significant Hall effect �only such
systems will be considered�, then �xy =0 and the expression
simplifies:

�N =
�xy

B�xx
. �13�

The Nernst signal is defined

eN =
Ey

�− �T�x
= B�N. �14�

For comparison with experiment, the fluctuation contribu-
tion, �xx and eN, should be added to the normal-state contri-
bution, �n and eN

n . However, in the normal state the Nernst
signal eN

n is very small in these materials3,14 and will be
largely ignored in what follows.

It then follows that the electrothermal conductivity is
given by

�̃xy �
j�tr�x
h

Ey
=

jx
h

Ey
+ cMz. �15�

Both terms contribute as will be shown in the following sec-
tions.

III. TRANSVERSE THERMOELECTRIC CONDUCTIVITY
IN THE VORTEX-LIQUID PHASE

A. Melting of the vortex solid, vortex glass, and the range of
validity of the Gaussian approximation

At low temperatures vortex matter organizes itself into a
�usually, but not always� hexagonal vortex lattice. When dis-
order can be effectively neglected �either in very clean ma-
terials or when thermal depinning occurs�, one can consider
transport of the vortex lattice as a whole. Expressions for the
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electric and the thermal conductivities near Hc2�T� that ne-
glect thermal fluctuations were obtained in Ref. 2, and ac-
cording to results the Nernst effect is generally very small
compared to one in the vortex liquid. This can be qualita-
tively understood as a result of rigidity of the lattice. Below
the melting line the situation in this respect does not change
much. Moreover due to unavoidable presence of disorder, the
vortex lattice is pinned forming a Bragg glass in most of its
domain.16 However in high-Tc superconductors thermal fluc-
tuations are strong enough �especially for high anisotropy
and high magnetic fields� to destroy the expectation value of
the condensate 
��=0. We always assume that thermal fluc-
tuations melted away and in addition temperature is high
enough to thermally depin the vortex liquid �avoiding the
“vortex glass”�. As a consequence impurities in the vortex
liquid are neutralized. To determine the range of validity of
the above assumptions, one has to estimate the location of
the melting and the irreversibility lines. Within the LLL ap-
proximation �which is valid near melting in wide range of
parameters17�, the line separating the crystalline and the ho-
mogeneous phases is given in 2D by

aT
2D � − �2Gi2D�−1/4��bt�−1/2�1 − t − b� = − 13.6, �16�

where aT is the dimensionless “LLL scaled” temperature
with

Gi2D �
1

2
�8e2	2�2Tc

�c2�2s
	2

, �17�

being a 2D analog of the Ginzburg parameter characterizing
the strength of thermal fluctuations on the mesoscopic scale.
Scaled magnetic field is b=B /Hc2�0� with Hc2�0�
=�0 /2��2 being the zero-temperature critical field �extrapo-
lated by the linear formula from Tc, actual Hc2�T� at T=0 is
lower�, �= ��2 /2m��Tc�1/2 being the zero-temperature corre-
lation length, and t=T /Tc. Equation �16� determines the
melting line in Fig. 1 and in turn the melting line fixes the Gi
in all the fits to experimental data below. This expression
was obtained from the comparison of the calculated free en-
ergies of the vortex lattice �expansion to two loop order� and
of the vortex liquid within the Borel-Pade approach. The
corresponding value and definition for 3D are

aT
3D = − 21/3�Gi3D�−1/3��bt�−2/3�1 − t − b� = − 9.5, �18�

where

Gi3D �
1

2
�8e2	2�Tc�

�c2�2 	2

, �19�

and ���mc /m� is an anisotropy parameter.
In the presence of disorder, vortex matter can be pinned. It

leads to several phenomena. On the one hand the vortex
lattice is destroyed effectively at large fields but on the other
hand vortices are pinned and cannot take advantage of ther-
mal fluctuations. The irreversibility or the vortex glass line
determining the region in which thermal fluctuations over-
power the quench by disorder is given in 2D by16,22

aT
g � 4

2r − 1
�2r

, �20�

where

r =
Gi2D

−1/2

4t
�1 − t�2n , �21�

and dimensionless parameter n characterizes the disorder
strength.17 This determines the dotted line in Fig. 1.

B. Vortex liquid within the Gaussian approximation

Due to thermal fluctuations the expectation value of the
order parameter in vortex liquid is zero 
��x , t��=0. There-
fore contribution to the expectation values of physical quan-
tities such as the electric and the heat currents come exclu-
sively from the correlations. The most important is the
quadratic one,

C�x,t;x�,t�� = 
��x,t����x�,t��� , �22�

called the correlation function of the order parameter. In par-
ticular the superfluid density is


���x,t��2� = C�x,t;x,t� . �23�

A simple approximation which captures the most interesting
fluctuation effects in the Gaussian approximation �see Ref.
23 for details�, in which the cubic term in the GL equation
Eq. �3� b����2� is replaced by a linear one 2b�
���2��:

�
�

�t
��x,t� = � �2

2m�
D2 − ã	��x,t� + ��x,t� , �24�

leading the “renormalized” value of the coefficient:

ã = a + 2b�
���2� . �25�

The formal solution of this equation is

��x,t� =� dx�� dt�G0�x,t;x�,t����x�,t�� , �26�

where G0 is the equilibrium Green’s function.
In the Landau gauge, one has

G0�x,t;x�,t�� =
1

4�2�m��B

�
	1/2�

�,ỹ0

G0�ỹ, ỹ�,�, ỹ0�

�e−i�m��B/��1/2ỹ0�x−x��ei��t−t��, �27�

where ỹ= �m��B /��1/2y with �B=e�B /m�c, and ỹ0=
−�� /m��B�1/2kx, with kx as the x component of the vector
momentum and

G0�ỹ, ỹ�,�, ỹ0� = �m��B

��
	1/2

exp�− �ỹ − ỹ0�2/2 − �ỹ�

− ỹ0�2/2��
n

1

2nn!

Hn�ỹ − ỹ0�Hn�ỹ� − ỹ0�
�i�� + En�

,

�28�

with the energy eigenvalues,
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En = �n +
1

2
	��B + ã , �29�

�Hn are the Hermite polynomials�. Averaging over the noise,
Eqs. �4� and �26�, the equilibrium correlation function �Eq.
�22�� is

C0�x,t;x�,t�� =
2�T

s
�

x1,t1

G0�x,t;x1,t1�G0
��x�,t�;x1,t1�

= −
T

2�2s
�m��B

�
	1/2�

�,ỹ0

ImG0�ỹ, ỹ�,�, ỹ0�
�

�e−i�m��B/��1/2ỹ0�x−x��ei��t−t��, �30�

which enters the self-consistent equation �sometimes called
gap equation� �Eq. �25��, determining ã. In equilibrium,

���x , t��2� is


���x,t��2� =
T

2�s

m��B

�
�

n

1

En
. �31�

Thus Eq. �25� becomes

�b = �̃b −
b�T

�s

m��B

���T�2 �
n=0

Nf 1

�̃b + 2nb
, �32�

where the reduced temperature is defined as �=a /�T, �b
=�+b �with similar expression for �̃ and �̃b�. The UV cutoff
 was introduced. It effectively limits the number of Landau
levels to Nf =



b −1. The “bubble” sum, which diverges loga-
rithmically, can be performed as

b

�
�
n=0

Nf 1

2nb + �̃b

=
1

2�
log  + u�, �33�

where the function u� is related by

u���̃b,b� =
1

2�
�fs���̃b/2b� − log�2b�� , �34�

to the polygamma function fs�:

fs��x� = �
n=1

� � 1

n + x
− �

n−1/2

n+1/2 1

�y + x�
dy� + �1

x
− log�x + 1/2�� .

�35�

Thus the critical temperature Tc is significantly renormalized:

�b
r = �b +

b�T

2�s

m��B

���T�2 log  = �̃b − �u���̃b,b� , �36�

where � is a dimensionless fluctuation parameter

� =
b�Tc

�2��Tc�2s
, �37�

introduced in Ref. 5. The relation between � used to describe
thermal transport and the more often used two-dimensional
Ginzburg number1,17 Gi2D, see Eq. �17�, is

� = 4�2Gi2D�2. �38�

C. Expectation value of the heat current in linear response to
electric field

Let us assume that the weak electric field E is along the y
axis, generated by the scalar potential �=−Eyy. The heat and
the electric currents in the vortex-liquid phase can be written
as

jh = −
�2

2m��D�x�� �

�t�
− i

e�

�
��x��	 + D��x��� �

�t

+ i
e�

�
��x�	�C�x,t;x�,t���x=x�;t=t�, �39�

je = � �e�

2m�i
��− ��� −

e�2

2m�c
A�x��C�x,t;x�,t���x=x�;t=t�,

�40�

where

C�x,t;x�,t�� =
2�T

s
�

x1,t1

G�x,t;x1,t1�G��x�,t�;x1,t1� ,

�41�

with G as the Green’s function of the linearized TDGL equa-
tion in the presence of the scalar potential. One finds correc-
tion to the Green’s function to linear order in the electric
field

G�x,t;x�,t�� = G0�x,t;x�,t�� − i
e��

�
�

x1,t1

��x1�

�G0�x,t;x1,t1�G0�x1,t1;x�,t�� . �42�

The transverse thermoelectric conductivity is obtained by ex-
panding the correlation function to linear order in the electric
field. The correlation function C in terms of the Green’s
function G0 using Eqs. �30�, �41�, and �42� takes the form

C�x,t;x�,t�� = C0�x,t;x�,t�� + C1�x,t;x�,t�� , �43�

where

C1�x,t;x�,t�� = i
e��

�
�

x1,t1

��x1��G0
��x�,t�;x1,t1�C0�x,t;x1,t1�

− G0�x,t;x1,t1�C0
��x�,t�;x1,t1��

= i
e��TEy

2�2�s
� �

m��B
	1/2� d�

�

��
ỹ0,ỹ1

ỹ1�G0
��ỹ�, ỹ1,�, ỹ0�

�ImG0�ỹ, ỹ1,�, ỹ0� − G0�ỹ, ỹ1,�, ỹ0�

�ImG0�ỹ�, ỹ1,�, ỹ0��

�e−i�m��B/��1/2ỹ0�x−x��ei��t−t��. �44�

In order to determine the transverse thermoelectric conduc-
tivity, we need to compute the x component of the heat cur-
rent to the first order in the electric field. In the chosen
gauge, the heat current along the x direction under condition
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jtr
e�x�=0 also contains two terms. The term coming from C0

vanishes,

j0
�h�x =

�T�B

2�2s
�

�,ỹ0

�ỹ − ỹ0�ImG0�ỹ,�, ỹ0� = 0, �45�

because ImG0�ỹ ,� , ỹ0� is an odd function of �. It is possible
to interpret easily that C0 is the equilibrium correlation func-
tion which does not contribute to the current. Considering
C1,

j1
�h�x =

2e�2Ey�
3BT

�2m�cs
�
nm

1

2nn!

1

2mm!
�

−�

+� d�
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�2

�
1

�En
2 + �2�2�

1

�Em
2 + �2�2�

�
−�

+�

dỹ0�
−�

+�

dỹ1ỹ1�ỹ0 − ỹ�

�exp�− �ỹ − ỹ0�2 − �ỹ1 − ỹ0�2�Hn�ỹ − ỹ0�Hn�ỹ1

− ỹ0�Hm�ỹ − ỹ0�Hm�ỹ1 − ỹ0�

=
e�EyT�b − �̃b�

2�bs
�u���̃b,b� − u���̃b + b,b�� . �46�

In order to calculate the transport coefficient �xy using the
Onsager relation �Eq. �15��, we need the equilibrium magne-
tization. This is calculated in the Appendix with the result
given in Eq. �A10�. Together with Eq. �46� one obtains the
transverse thermoelectric conductivity

�xy �
�̃xy

T
=

e�

2��bs
���b − �̃b�u���̃b,b� − ��b − �̃b�u���̃b

+ b,b� − �bu��̃b,b� + �tu��bu�� . �47�

Analogous calculation of the electrical conductivity �yy =
jy
e

Ey

�averaged over x� results in

�yy =
e�2

16s�
�

n

�n + 1�� 1

2nb + �̃b

+
1

2�n + 1�b + �̃b

−
2

2�n + 1/2�b + �̃b
	

=
�e�2

32s�b2 ��2b − �̃b�u���̃b,b� − �̃bu���̃b + 2b,b�

− 2�b − �̃b�u���̃b + b,b�� . �48�

D. Extension to anisotropic 3D model

For 3D materials with asymmetry along the z axis, the GL
model takes the form

F =� d3x
�2

2m� �D��2 +
�2

2mc
��z��2 + a���2 +

b�

2
���4. �49�

The TDGL equation for the superconducting order parameter
in the Gaussian approximation is now

�� �

�t
+ i

e�

�
�	� = � �2

2m�
D2 +

�2

2mc
�z

2 − ã	� + � . �50�

The gap equation can be written as

�b
r = �̃b − �3Dtu3D� , �51�

where u3D� =�u3D /��̃b. The function u3D can be written in the
following form:

u3D��̃b,b� =
1

�2�
b3/2v� �̃b

2b
	 , �52�

with

v�x� = �
n=0

� ��n + x −
2

3
�x + n +

1

2
	3/2

+
2

3
�x + n −

1

2
	3/2�

−
2

3
�x −

1

2
	3/2

. �53�

The dimensionless fluctuation parameter �3D is

�3D =
b�Tc

�2��Tc�2�z
, �54�

with �z= ��2 /2mc�Tc�1/2 as the zero-temperature correlation
length along the field direction.

The relation between �3D used to describe thermal trans-
port in this case and three-dimensional Ginzburg number1,17

Gi3D, see Eq. �19�, is

�3D = 4�2Gi3D�2. �55�

The transverse thermoelectric conductivity is

�xy =
e�

2���zb
��u3D��̃b,b� − �u3D��̃b + b,b�

+ ��b − �̃b�u3D� ��̃b,b� − ��b − �̃b�u3D� ��̃b + b,b�

− �bu3D + �3Dtu3D� �bu3D� � , �56�

while the electrical conductivity

�yy =
�e�2

32�z�b2 �u3D��̃b,b� + u3D��̃b + b,b�

− 2u3D��̃b + b,b� + 2�b − �̃b�u3D� ��̃b,b�

− 2�̃bu3D� ��̃b + b,b� − 2�b − �̃b�u3D� ��̃b + b,b�� .

�57�

IV. COMPARISON WITH EXPERIMENT AND MC
SIMULATION

Here we compare the results to 2D simulation results of
Mukerjee and Huse5 and several recent experiments on
high-Tc cuprates.

A. Two-dimensional thermal fluctuations: LaSCO

The experiment results of Wang et al.12 were obtained
from the Nernst effect and resistivity measurements on an
overdoped LaSCO sample with x=0.2 and Tc=28 K. The
comparison is presented in Fig. 2 �low temperatures in �a�
and close to Tc in �b��. The parameters used in the calculation
are �see definitions above� Hc2�0�=45 T �thus �=27 Å� and
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layer spacing s=12 Å. The fluctuation parameter is �
=0.18 and provides a reasonable quantitative agreement be-
tween theory and experiment. Below the irreversibility line,
where the theory should be modified, both pinning and crys-
talline phase are included in Fig. 2�a�. The deviation devel-
ops roughly at the location of the irreversibility line. How-
ever, our results are in good quantitative agreement with
experimental data for temperature close to Tc in Fig. 2�b�,
where the numerical simulation gives a nearly constant �xy,
while the experiment shows more variation.

In Fig. 3 the melting line of overdoped LaSCO of Ref. 12
is fitted using Gi2D=1.41�10−5, corresponding to ��0.21
which is consistent with the adjusted value of � when we fit
the transverse thermoelectric conductivity. The glass �irre-
versibility� line is estimated from Fig. 2�a�, where values of
�xy are lower than simulation and experiment data.

B. Two-dimensional thermal fluctuations: underdoped YBCO

We also compared the results to the experiment on an
underdoped YBCO sample with y=6.5 and Tc=50 K in Ref.
12. The parameters used in the calculation are Hc2�0�
=72 T �thus �=22.51 Å�, s=9 Å, and the normal-state con-

ductivity �n=7.14�105 ��m�−1 in Ref. 24. The fluctuation
parameter in this case is fitted to be �=0.51. Our values are
in good quantitative agreement with experimental data for
temperature close to Tc in Fig. 4. We find that the theoretical
value of eN has a characteristic “tilted-hill” profile observed
in experiment.11,12,14 In Fig. 5 we present the fitting of the
melting line for underdoped YBCO in Ref. 12 that gives
Gi2D=1.15�10−4 and ��0.59, which is consistent with the
adjusted value of � when we fit the Nernst signal eN.

C. Three-dimensional thermal fluctuations: overdoped YBCO

We also used the results calculated in three dimensions to
compare to the experiment on an overdoped YBCO sample
with y=6.99 and Tc=93 K in Ref. 12. The parameters used
in the calculation are Hc2�0�=350 T �thus �=9.70 Å�, �z
=1.4 Å, and the normal-state conductivity �n=9.45
�105 ��m�−1 in Ref. 24. The fluctuation parameter in this
case is fitted to be �3D=1.79. Our values are also in good
quantitative agreement with experimental data for tempera-
ture close to Tc in Fig. 6. In Fig. 7 we also present the fitting

FIG. 2. Points are �xy for different temperatures of LaSCO in
Ref. 12, with x=0.2 �overdoped, Tc=28 K�. The dashed line is the
simulation value of �xy in Ref. 5. The solid line is the theoretical
value of �xy, using Hc2�0�=45 T, s=12 Å, and �=0.18.

FIG. 3. Comparison of the experimental melting line for over-
doped LaSCO in Ref. 12 with our fitting.

FIG. 4. Points are eN for different temperatures of YBCO in Ref.
12, with y=6.5 �underdoped, Tc=50 K�. The solid line is the the-
oretical value of eN, using Hc2�0�=72 T, s=9 Å, �n=7.14
�105 ��m�−1, and �=0.51.
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of the melting line for overdoped YBCO in Ref. 12 that gives
Gi3D=0.001 and �3D�2.09, which is also consistent with
the adjusted value of �3D when we fit the Nernst signal eN.

V. CONCLUSION

Time-dependent Ginzburg-Landau equations with thermal
noise describing strong thermal fluctuations on the
mesoscopic scale are used to describe strongly type-II super-
conductor in the vortex-liquid regime both in 2D �describing
strongly layered high-Tc superconductors� and 3D �less lay-
ered superconductors such as optimally doped YBaCuO�.
Using GL theory developed earlier, we estimated the region
in the parameter space in which, on one hand, vortex crystal
is effectively destroyed by thermal fluctuations and, on the
other hand, disorder �significantly “weakened” by thermal
fluctuations� is not strong enough to significantly affect the
transport. Under these conditions we obtained explicit ex-
pressions for the transverse thermoelectric conductivity �xy
and the Nernst signal eN including all Landau levels were
obtained using a Gaussian approximation. It is very similar

to the Hartree-Fock approximation utilized in Ref. 2 but has
a virtue of being a variational principle.

The results are presented using both the strength of the
thermal fluctuation �, and the more often used Ginzburg
number Gi in the 2D and 3D. The applicability region con-
sidered coincides with domain on the phase diagram in
which the signal is large. We compared the results to the
available 2D numerical simulations of the same model and
the experiments on high-Tc materials. Our results in 2D are
significantly lower than the available numerical simulation in
Ref. 5 below the irreversibility line at which theory should
be modified by including both pinning and crystalline corre-
lation effects. However within the applicability region theory
is in good qualitative and even quantitative agreement with
experimental data on both La2SrCuO4 and underdoped
YBa2Cu3O6.5 for temperatures close to Tc.

We also compared the values of eN calculated in three
dimensions with experiment data for temperature close to Tc
on YBa2Cu3O7, and this comparison is also in good quanti-
tative agreement. The Ginzburg numbers Gi were taken out
from the fitting of melting lines of La2SrCuO4, YBa2Cu3O6.5,
and YBa2Cu3O7 on the same samples. The Ginzburg num-
bers Gi are consistent with the adjusted values of � when we
fit the transverse thermoelectric conductivity and the Nernst
signal. The irreversibility line of La2SrCuO4 was fitted as
well with the same set of parameters.
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APPENDIX: MAGNETIZATION IN THE VORTEX LIQUID
WITHIN THE GAUSSIAN APPROXIMATION

In order to calculate magnetization, it is simpler to use the
statistical mechanics rather than the �equivalent� time-

FIG. 5. Comparison of the experimental melting line for under-
doped YBCO in Ref. 12 with our fitting.

FIG. 6. Points are eN for different temperatures of YBCO in Ref.
12, with y=6.99 �overdoped, Tc=93 K�. The solid line is the the-
oretical value of eN, using Hc2�0�=350 T, �z=1.4 Å, �n=9.45
�105 ��m�−1, and �3D=1.79.

FIG. 7. Comparison of the experimental melting line for over-
doped YBCO in Ref. 12 with our fitting.
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dependent Langevin approach. We use the coherence length,
�, as a unit of length, and Hc2=�0 /2��2 as a unit of mag-
netic field. After the order-parameter field is rescaled as �2

→ �2�Tc /b���2, the Boltzmann factor can be written as

f =
F

T
=

2

�t
� d2x��D��2 + ��b − b����2 + ���4� , �A1�

where the dimensionless covariant derivatives are D=�−iA.
In the framework of the variational Gaussian approximation,
the free energy �Eq. �A1�� is divided into an optimized qua-
dratic part K, and a “small” part V. Then K is chosen in such
a way that the energy of a Gaussian state is minimal.17 In
liquid phase with an arbitrary homogeneous U�1� symmetric
state, just one variational parameter �̃b is sufficient. Thus

K =
2

�t
� d2x����− D2 − b + �̃b��� , �A2�

and the small perturbation becomes

V =
2

�t
� d2x���b − �̃b����2 +

1

2
���4� . �A3�

The Gaussian energy which will be minimized therefore is

fgauss � − log�� D�D�̄ exp�− K�� + 
V�K

=
b

�
�
n=0

�

log�2nb + �̃b� + ��b − �̃b�
b

�
�
n=0

�
1

2nb + �̃b

+
�t

2
� b

�
�
n=0

�
1

2nb + �̃b
	2

, �A4�

where n is the Landau-level index. Both terms are ultraviolet
divergent, namely, at large n the sums diverge. An UV mo-
mentum cutoff was introduced for regularization as within
the Langevin approach in Sec. II. To extract the divergent
part, one can divide fgauss into an infinite part with  and a
finite part, u:

fgauss =
1

2�
��log  − 1� + ��̃b − b�log � + u��̃b,b� .

�A5�

The finite part u can be simplified as

u��̃b,b� =
b

�
fs��̃b/2b� +

b

�
�1/2 − �̃b/2b�log�2b� , �A6�

where the function fs is defined as

fs�x� = log x − �x + 1/2��log�x + 1/2� − 1� + �
n=1

� �log�n + x�

− �
n−1/2

n+1/2

log�y + x�dy� , �A7�

which is basically −ln ��x� plus a constant. The total free
energy within Gaussian variational approximation for all
Landau levels is therefore,

fgauss��̃b� =
1

2�
�log  − 1� −

�t

2
� 1

2�
log 	2

+ ��b
r − b�

�� 1

2�
log 	 + ��b

r − b�u� + u +
�t

2
�u��2. �A8�

Minimizing the energy, we get the gap equation

�b
r = �̃b − �tu���̃b,b� , �A9�

consistent with the time-dependent approach �Eq. �36��.
Magnetization 2D can be obtained by taking the first de-

rivative of Gibbs energy with respect to magnetic field b:

M2D = −
Hc2

8�	2�t�bfgauss = −
e�T

2��cs
��bu − �tu��bu�� .

�A10�

Similar calculation in 3D results in

M3D = −
e�T

2��c�z
��bu3D − �3Dtu3D� �bu3D� � . �A11�
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