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We theoretically investigate the nonequilibrium current through a quantum dot coupled to one-dimensional
electron leads, utilizing a controlled frequency-dependent renormalization group approach. We compute the
nonequilibrium conductance for large bias voltages and address the interplay between decoherence, Kondo
entanglement, and Luttinger physics. The combined effect of large bias voltage and strong interactions in the
leads, known to stabilize two-channel Kondo physics, results in nontrivial modifications in the conductance.
Interestingly, these unusual changes in the conductance persist in the presence of a finite channel asymmetry.
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I. INTRODUCTION

Understanding strongly correlated quantum systems far
from equilibrium is an outstanding challenge in condensed-
matter physics. Many of the theoretical approaches that have
been proven successful in treating strong correlations are in-
adequate once the system is driven out of equilibrium. Quan-
tum dot devices provide an ideal setting to study transport
under nonequilibrium conditions, as they constitute compara-
tively simple model systems with high tunability.1–7 Kondo
physics plays a crucial role in understanding their transport
properties.8,9 It has been shown that several effects in these
devices will suppress or modify the Kondo screening, such
as dissipation and the electron-electron interaction in
Luttinger-liquid quantum wires that couple to the dot.10–16 In
this paper, we study nonequilibrium currents across quantum
dots in nanosettings involving Kondo entanglement and Lut-
tinger physics.17

We consider a quantum dot in the Kondo regime coupled
to one-dimensional �1D� reservoir leads described by the
Luttinger theory. This model exhibits either a one-channel
Kondo �1CK� or a two-channel Kondo �2CK� ground
state,14,16 as the Luttinger parameter K is decreased; the con-
trol parameter corresponds to the interaction strength in the
1D leads.17 The nonequilibrium properties of this system
were addressed only in an exactly solvable limit18 or in the
linear �low-bias� region.19 The full crossover in the nonequi-
librium conductance between the 1CK and 2CK fixed
points,14 with much relevance to experiments, has not yet
been addressed. In particular, interactions in 1D wires are
expected to result in a peculiar nonequilibrium transport.20,21

Here, we apply a nonequilibrium renormalization group
�RG� method2,22 to tackle these issues. We calculate the con-
ductance for bias voltages large compared to the relevant
Kondo scales. We identify signatures of intermediate 2CK
behavior in the RG flow for all K�1 which strongly modify
the conductance profile. The low-temperature conductance is
nonuniversal in the sense that it does not depend on V /T2CK

only, where T2CK is the relevant 2CK scale.

II. MODEL HAMILTONIAN AND EQUILIBRIUM
PROPERTIES

In our setup, the Kondo Hamiltonian is given by

H = Hlead + HK,

HK = �
�,��,k,k�,�,��

J�,��S · c��,k�,��
† ����c�,k,�, �1�

where � ,��=L,R denote the left/right lead, Hleads describes
two—left �L� and right �R�—Luttinger liquid leads with Lut-
tinger parameter 0�K�1 �Refs. 14 and 16� and Fermi en-
ergies �chemical potentials� �L/R= �V /2, c�,k,�

† is the elec-
tron creation operator for the lead �, S is the spin-1/2
operator on the dot, and � are Pauli matrices. In terms of the
pseudofermion operators f�, S= 1

2����f�
†����f��. In the Kondo

regime, the number operator of the pseudofermions satisfy
the constraint: Q=��f�

† f�=1. Here, we denote by gLR
=N0JLR and gLL=gRR=N0JLL=N0JRR the dimensionless in-
terlead and intralead Kondo couplings, respectively,8,9 where
N0= 1

2D0
and D0 is an ultraviolet cutoff �approximately few

kelvins�.
In equilibrium �or zero-bias voltage, V=0�, the RG analy-

sis results in two infrared fixed points:14,16 the 1CK and 2CK
fixed points. In the former case, all Kondo couplings, gLR
and gLL, are relevant under RG transformation and flow to-
ward strong coupling, such that the two leads can be com-
bined into a single effective lead. In contrast, the 2CK fixed
point is reached when gLR remains small under RG while gLL
grows �and flows to intermediate coupling�. Here, the two
leads provide independent screening channels. This 2CK
fixed point is infrared stable for K�1 /2 �assuming gLL
=gRR�.14,16

For K=1 �free electron leads�, where 1CK physics is
realized,8,9 the differential conductance G�T�
�dI�T� /dV �V→0 �with I�T� being the equilibrium current at
finite temperature and V being the source-drain bias voltage�
reaches the unitary limit at low temperatures, G�T�=2G0�1
−O��T /TK�2�	, where G0=e2 /h is the conductance quantum.

Here, TK�D0e−1/�gLR
0 +gLL

0 � is the Kondo temperature; whereas
gLR

0 and gLL
0 are the bare values of the coupling constants.
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For T	TK, from G�T�
gLR�T�2, one finds G�T�

1 / ln2�T /TK�.

For all K�1, gLR grows slower under RG than gLL�RR�.
For K�1, one can solve the RG equations analytically for
large T. We may neglect gLR in the RG equation for gLL/RR to
obtain the approximate solution gLL/RR�T��1 / ln�T /TK

� � with

the shorthand TK
� �D0e−1/gLL

0
. The coupling gLR�T� is found

by substituting the approximate solution for gLL/RR�T� in the
RG equation for the coupling gLR. We evaluate

gLR�T� �
�T/D��1/2�1/K−1�

ln2�T/TK
� �

, �2�

where D�=
D0

�gLR
0 ln2�D0/TK

� ��s with 1 /s= �1 /K−1� /2. We deduce
that, for T	TK

� , the conductance G�T�
gLR
2 �T� follows

T1/K−1 / ln4�T /TK
� �. Here, the power-law behavior is reminis-

cent of Luttinger physics whereas the logarithmic contribu-
tion is typical of Kondo correlations. The same power law
�without logarithmic corrections� has been found in Ref. 15.
Importantly, the conductance is not a universal function of
�T /TK

� � because transport arises from the subleading coupling
gLR.

For 1 /2�K�1, the low-temperature physics is governed
by two scales, T1CK�T2CK with 1CK behavior for T�T1CK
and 2CK behavior for T1CK�T�T2CK. In the limits K→1
and K→0, we have T1CK=TK and T2CK=TK

� , respectively,
with TK and TK

� defined above. In general, T1CK�TK due to
interactions in the leads; also, T2CK�TK

� . In the presence of
particle-hole symmetry, the conductance for 1 /2�K�1
reaches the unitary limit as T→0. However, potential scat-
tering is a relevant perturbation with a scaling dimension
�1+K� /2�1 and causes the conductance to decrease as
T1/K−1 as T→0; the leading irrelevant operator corresponds
to the hopping �gLR� term between the two leads with scaling
dimension �1 /K+1� /2. Similarly, near the 2CK fixed point
reached for K�1 /2 and gLL=gRR, the leading irrelevant op-
erator �gLR term� has dimension 1 /2K,16 and therefore one
expects G�T�
T1/K−2 as T→0.

III. NONEQUILIBRIUM PROPERTIES

We study the low-temperature conductance in the high-
bias regime V	TK, TK

� where the nonequilibrium RG
method can be applied.2 �In the opposite limit, V�TK

� , we
expect the equilibrium results quoted above to be valid after
replacing T→V.� After bosonization and refermionization,
we can rewrite the Kondo model coupled to Luttinger leads
as an effective noisy Kondo Hamiltonian involving free-
electron leads.12 This mapping is useful to write down the
nonequilibrium RG equations in the ultraviolet limit. The
effective Kondo model reads: H=Hlead+HK+H
b

, where
Hlead=�k,�=L,R,�=↑,↓��k−���ck��

† ck�� corresponds to the non-
interacting Fermi-liquid leads with bias voltages �L/R
= �V /2 and HK=�k,�,�=L,RJ��ei
��S���

e ·S�d contains the
phase-dependent Kondo coupling terms, S���

e =ck��
† �� ���ck���

and S�d=d��
† �� ���d��� being the spin operators of the electrons

for the effective noninteracting leads and of the dot, respec-
tively. Here, 
��=0, 
LR=−
RL=
b, and H
b

describes an

effective Ohmic boson bath with the Green’s function
G
b

�i��= �
b�i��
b�−i��
=��1 /K−1� 1
��� .

12 Following Refs.
2 and 12, we generalize the RG equations for the JLL/RR/LR
terms to the nonequilibrium situation. These take the form

�gLL���
� ln D

= − �
�=−1,1

�gL���V

2
��2

��+�V/2,

�gLR���
� ln D

= − �
�=−1,1

1

4
�1 −

1

K
�gLR��V

2
���+�V/2

− gL���V

2
�g�R��V

2
���+�V/2, �3�

where the dimensionless frequency-dependent Kondo cou-
plings are given by g������J������0 with �0 being the con-
stant density of states of free-electron baths, g�����
�J������0� D

D0
�1/2�1/K−1���−��

, ��=��D− ��+ i���, and �=
−1�+1� labels leads L�R�. Here, we set �=kB=e=1. Note
that within our one-loop RG scheme, the power-law tunnel-
ing density of states resulting from Luttinger liquid leads has
been taken into account leading to the first term �linear in
gLR���� in the RG equation for gLR��� �see Eq. �3��. The
symmetry of the RG equations gives gLR���=gRL���. Fur-
ther, � is the decoherence �dephasing� rate at finite bias
which cuts off the RG flow:2

� = ��
���
� d�f�

��1 − f�
����g�������2, �4�

where the Fermi function obeys f����=1 / �1+e��−���/T�. We
note that there exists an additional contribution to � from
electron dephasing caused by a finite potential drop in the
Luttinger-liquid leads,20 which will affect the subleading
terms in � �given by gLR�V /2��. However, in the low-
conductance regime of interest, this voltage drop is small and
will be neglected henceforth. In general, the perturbative RG
approach is valid for V	T1CK, T2CK. In the limit of V→0,
Eq. �3� reduces to the equilibrium RG equations �with the
flow cut off by temperature�, and we recover Eq. �2�.

The renormalized couplings are obtained by self-
consistently solving Eqs. �3� and �4�.2 As shown in Fig. 1,
gLL�RR���� exhibit peaks for all values of K�1, indicating
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FIG. 1. �Color online� gLL��� and gLR��� for various Luttinger
parameters K. The bare couplings are g���

0 =g��
0 =0.025, resulting in

TK
� 
4.2�10−18 and TK
2�10−9 �in units of D0=1�. The bias

voltage is V=0.6	TK, TK
� .
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that they grow under RG. For a given bias voltage, the
Kondo coupling gLR��� shows a crossover from peak to dip
structure as K decreases, traducing the fact that for a fixed
bias voltage, gLR��� is either enhanced or decreased com-
pared to its bare value gLR

0 . Let us emphasize that for suffi-
ciently large bias voltages, as soon as K�1 the coupling
gLR��� exhibits a dip close to �= �V /2, signaling 2CK be-
havior for symmetric Kondo channels. The singular behavior
at the peaks or dips is cut off by the decoherence rate �see
Eq. �7�� while outside that regime the voltage serves to cut
off the RG flow.

From the Keldysh calculation up to second order in the
tunneling amplitudes, the current reads

I =
3�

4
� d���

�

gLR���2f�
L�1 − f�

R�� − �L ↔ R� . �5�

For small bare couplings g���
0 =g��

0 this perturbative calcula-
tion remains valid for V�TK

� , implying at high bias voltage,
V	T, contributions to the current from a frequency window
−V /2���V /2. For TK

� �V�D0 with decreasing V we find
that the differential conductance G�V��dI /dV approaches
the equilibrium form of the conductance G�T→V�

V1/K−1 / ln4�V /TK

� � with G�T�
gLR�T�2 �see Eq. �2� and Fig.
2�.

In the remainder, we analyze G�V� for larger bias volt-
ages. For K=1, we checked that the nonlinear conductance
satisfies G�V�
1 / ln2�V /TK� for V	TK.23 Here, one can re-
place gLR��� by gLR��=0��gLR�T→V�. When decreasing
K, the double peak structure in gLR��� at �= �V /2 turns
progressively into dips which acquire a complex shape as a
result of the decoherence rate � and the electron-electron
interaction which hinders the interlead electron tunneling.
The effect becomes more pronounced for small K values
associated with the 2CK fixed point, rendering the “flat” ap-
proximation gLR����gLR��=0� not justified; see Fig. 2.

To gain an analytical understanding of the small-K non-
equilibrium regime, we may treat gRL��� within the interval
−V /2���V /2 as a semiellipse.22 The current I reads

I �
3�

4
��

4
gLR�� = 0�2 + �1 −

�

4
�gLR�� = V/2�2� . �6�

For K�1, we manage to obtain an approximate analytical
form for the couplings gLR��=V /2� and gLR��=0�. Solving
Eq. �3� in the limit D→0, we find

gLR�� = 0� � gLR�T → V�F�K�

gLR�V

2
� �

4� �V

D�2�1/4�1/K−1�

ln2� �V

�TK
� �2� , �7�

where gLR�T→V� is the equilibrium form of gLR in Eq. �2�
with T replaced by V, and we have defined F�K�
=21+1/4�1−1/K�−1 with F�K=1�=1. Using Eqs. �6� and �7� and
G=dI /dV, we obtain a closed expression for the conductance

G�V� �
3�2

16
� V

D��1/K−1

R�V� + 12��1 −
�

4
�W��V� , �8�

where W��V�=dW /dV and

R�V� = F�K�2� 1/K

ln4� V

TK
� � −

4

ln5� V

TK
� �� ,

W�V� =
V��V/D�2�1/2�1/K−1�

ln4��V/�TK
� �2�

. �9�

For completeness, we have kept the less dominant contribu-
tion 
1 / ln5�V /TK

� � in R�V�. To rigorously define the func-
tion W�V�, we need to provide an analytical expression for
the decoherence rate in Eq. �4�. Using an analogous reason-
ing as for the nonequilibrium current I ��= 4

3 I at T=0 via
Eqs. �4� and �5��, to second order in gLR

0 , we extract �see Eqs.
�6� and �7��

� �
�2

4
F�K�2

V� V

D��1/K−1

ln4� V

TK
� � . �10�

Close to K=1 /2, we can safely neglect contributions in
�gLR

0 �2+�1/K−1� and therefore to second order in gLR
0 , we find

����2 /4��gLR��=0��2. We have checked our analytical ex-
pression of � against a numerical treatment of Eqs. �3� and
�4�; see inset in Fig. 2. Notably, the decoherence rate con-
tributes to a “distinct” power law 
V1/2�1/K2−1� in the non-
equilibrium conductance G�V�, where �1 /K2−1� /2�1 /K
−1 for K�1, rendering the second term in Eq. �8� to be
subleading. The conductance becomes smaller than its equi-
librium counterpart since gLR��=V /2��gLR��=0�. A com-
parison between the analytical formula in Eq. �8� and the
numerical integration of Eqs. �3�–�5� are shown in Fig. 2. As
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FIG. 2. �Color online� G�V� normalized to Ḡ=3��gLR
0 �2 /4 for

various K and Kondo couplings as in Fig. 1. Here, “equilibrium
form” refers to the expression G�V�=3�gLR��=0�2 /4. For K=0.5
we also show the analytical result from Eqs. �8� and �9� �stars�.
Inset: ���=0,V� for various K. The dashed lines are obtained from
the analytical expression in Eq. �10�. Here, D0=1.
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our results are based on one-loop RG, we may expect both
corrections to the power-law prefactors and further sublead-
ing terms upon including higher-loop contributions.

Our results also show that G�V� for voltages T2CK�V
�D0 is not an universal function of V /T2CK �even for fixed
K�. Figure 3 displays G versus V /T2CK for various initial
Kondo couplings with T2CK extracted from the RG flow.
Note that due to the logarithmic scale for V /T2CK shown in
Fig. 3�left�, the difference in equilibrium and nonequilibrium
conductances is barely noticeable for K=0.6 though the dis-
tinction between them is clearly seen in the linear plot of
G�V� �see Fig. 2�. This difference becomes noticeable for a
smaller value of K=0.3 �Fig. 3�right��. As it becomes also
clear from Eqs. �8� and �9�, the nonequilibrium conductance
for V	T2CK is a function of both V /D0 and V /TK

� and hence
is nonuniversal. This is again related to the fact that transport
arises from the subleading term gLR.

Finally, we have extended our results in the presence of a
finite channel asymmetry gLL

0 �gRR
0 . We find that the non-

equilibrium conductance follows the same deviation from its
equilibrium counterpart �see Fig. 4�. Results are perfectly
consistent with the fact that the elliptic dip of gLR��� is char-
acteristic of large interactions in the leads. As shown in Fig.
4, for K=1 /2 the analytical results for the nonequilibrium
G�V� �stars� which involves two distinct Kondo energy
scales �associated with the two leads� agree well with the
numerics �blue solid line�.

IV. CONCLUSIONS

In conclusion, we have studied nonequilibrium transport
through a Kondo dot coupled to Luttinger-liquid leads and
calculated the conductance profile at bias voltages larger than
the Kondo scales of the system. In particular, for symmetric
couplings with the leads, the RG flow at large bias shows
signatures of intermediate 2CK physics for all Luttinger pa-
rameters K�1. On the other hand, as the conductance G
arises from the coupling gLR which is subleading, G�T→0�
is not a universal function of V /T2CK as it also depends on
V /D0. Our results push forward the knowledge of correlation
effects in nanosystems far from equilibrium and should
stimulate further experimental works on transport through
dots coupled to quantum wires and carbon nanotubes.
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