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As the wafer size increases, the clustering phenomenon of defects becomes significant. In addition to clus-
tered defects, various clustering patterns also influence the wafer yield. In fact, the recognition of clustering
pattern usually exists fuzziness. However, the wafer yield models in previous studies did not consider the
fuzziness of clustering pattern belonging to which shape in recognition. Therefore, the objective of this
study is to develop a new fuzzy variable of clustering pattern (FVCP) by using fuzzy logic control, and predict
the wafer yield by using back-propagation neural network (BPNN) incorporating ant colony optimization
(ACO). The proposed method utilizes defect counts, cluster index (CI), and FVCP as inputs for ACO-BPNN.
A simulated study is utilized to demonstrate the effectiveness of the proposed model.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The integrated circuits (IC) manufacture has become the major
industry worldwide, and all electrical appliances are closely linked
with the IC. Wafer yield is a key index for evaluating the process
capability of IC manufacturers, and it can also reflect the problem
of process. An accurate yield prediction model is very useful to pre-
dict manufacturing costs for products still under development (Ku-
mar et al., 2006), which can offer a reasonable and acceptable price
to customers. Therefore, it is a very important task to manage the
wafer yield.

When the clustering phenomenon of defects is not significant
and chip size is small (Cunningham, 1990), the Poisson yield model
can estimate the wafer yield reasonably. As the wafer size in-
creases and the clustering phenomenon of defects is significant,
the Poisson yield model becomes inappropriate (Stapper, 1985).

The Negative Binomial yield model (Stapper, 1973) includes a
clustering index (a), but the value of a can be very scattered and
negative that leads to unhandy analysis (Cunningham, 1990).
Many mathematical models have been developed to predict wafer
yield in the last 40 years (Cunningham, 1990; Stapper, 1991;
Stapper & Rosner, 1995), but these models are very complicated
in practice. Neural networks are also utilized to construct the wafer
yield models, but these models have certain problems such as set-
ting parameters (e.g., the number of neurons in the hidden layers,
the momentum, and the learning rate) and local optimal solution
(Tong & Chao, 2008).

When these defects cluster, the size and shape of clustered
defect pattern can indicate the specific cause (e.g., diffusion
ll rights reserved.
problems, photo spin anomalies, etch discordance, and handling
damage such as scratches) of process problems (Neyer & Hafner,
2004). For this reason, it is very important for managers to recog-
nize the clustering pattern in order to monitor and control the wa-
fer yield. In fact, the recognition of clustering pattern belonging to
which shape usually exists fuzziness. However, the wafer yield
models in previous studies did not consider the fuzziness of clus-
tering pattern belonging to which shape in recognition.

In order to improve the above drawbacks, this study develops a
new fuzzy variable of clustering pattern (FVCP), which considers
the fuzziness of clustering pattern belonging to which shape in rec-
ognition by using fuzzy logic control, and predict the wafer yield by
using back-propagation neural network (BPNN) incorporating ant
colony optimization (ACO). In this study, ACO (Dorigo & Stutzle,
2004) algorithm is adopted to determine the Neural Network’s
parameters (e.g., the number of neurons in the hidden layers, the
momentum, and the learning rate), and ACO algorithm can over-
come the drawbacks (e.g., setting parameters, overtraining, unti-
mely convergence, and local optimal solution) in BPNN
(Rumelhart, Hinton, & Williams, 1986). The proposed method uti-
lizes defect counts, cluster index (CI) (Jun, Hong, Kim, Park, & Park,
1999), and FVCP as the inputs for ACO-BPNN (Liu, Wu, & Qian,
2006; Wei, 2007). A simulated study is utilized to demonstrate
the effectiveness of the proposed model.
2. Related literature

This section reviews literature related to the wafer yield model,
clustering index, ACO-BPNN model scheme, and fuzzy logic
inference.

http://dx.doi.org/10.1016/j.eswa.2011.08.144
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Fig. 1. The architecture of BPNN (Chen et al., 2010).
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2.1. Wafer yield model

The Poisson yield model assumes that the defects on a chip fol-
low a Poisson probability distribution. Under this assumption, the
probability that a chip has k number of defects is

PðkÞ ¼ e�k0 kk
0

k!
; k ¼ 0;1;2 . . . ð1Þ

where k0 is the average number of defects per chip, and k is the
number of defects per chip. The Poisson yield model can be ob-
tained as

Y ¼ Pðk ¼ 0Þ ¼ e�k0 ð2Þ

Cunningham (1990) indicated that, when the chip size is less than
0.25 cm2, the Poisson yield model is appropriate. However, as the
chip size increases, the conventional Poisson yield model will fre-
quently underestimate the actual wafer yield.

The Negative Binomial yield model proposed by Stapper (1973)
is a widely applied yield model, which employs a gamma function
for the distribution of defect density. The Negative Binomial yield
model can be expressed as

Y ¼ 1
ð1þ D0A=aÞa

ð3Þ

where D0 is the average number of defects per unit area, A is the
chip area, and a is the cluster parameter. The value of a is calculated
by the following equation:

a ¼ k2=ðr2 � kÞ ð4Þ

where k is the mean number of defects per chip, and r2 is the var-
iance. Cunningham (1990) indicated that, the value of a can be
quite scattered and sometimes negative when the Negative Bino-
mial yield model is used to predict yield.

Other yield models are summarized in Stapper and Rosner
(1995). Tong, Lee, and Su (1997) proposed a neural network-based
approach to predict the wafer yield. Langford, Liou, and Raghavan
(2001) presented a simple robust windowing method for the Poisson
yield model to extract the systematic and random components of
yield from wafer probe bin map data. Liou et al. (2002) presented a
statistical modeling of MOS devices for parametric yield prediction.
Meyer and Park (2003) presented a center-satellite model to predict
defect-tolerant yield in the embedded core context. Dupret and Kiel-
basa (2004) presented the partial least square (PLS) regression mod-
el to predict the yield from measurements obtained during the
production. Kim and Baldwin (2005) presented a theoretical yield
model for assembly processes of area array solders inter connect
process. Tong and Chao (2008) proposed a general regression neural
network (GRNN) to predict the wafer yield with clustered defects.

2.2. Defect cluster index

In this study, I use the clustering index (CI) proposed by Jun
et al. (1999) to measure the clustering phenomenon of defects.
Suppose that CI is the clustering parameter, shown in Eq. (5).

CI ¼min
S2

v

V2
;

S2
W

W2

( )
ð5Þ

where

V ¼
X

Vi=n ð6Þ

S2
v ¼

X
ðVi � VÞ2=ðn� 1Þ ð7Þ

W ¼
X

Wi=n ð8Þ

S2
w ¼

X
ðWi �WÞ2=ðn� 1Þ ð9Þ
where Vi and Wi are a sequence of defect intervals on the X-axis and
Y-axis defined as

Vi ¼ XðiÞ � Xði�1Þ i ¼ 1;2; . . . ;n; ð10Þ
Wi ¼ Y ðiÞ � Y ði�1Þ i ¼ 1;2; . . . ;n; ð11Þ

where X(i) and Y(i) denote the ith smallest defect coordinates on the
X-axis and Y-axis respectively, X(0) = Y(0) = 0, and n is the number of
defects on a wafer. The value of CI is close to 1 if the defects are ran-
domly scattered, and the value of CI is expected to be greater than 1
if clustering of defects appears.

2.3. ACO-BPNN model scheme

The architecture of BPNN includes the input layer, output layer,
and hidden layer. The number of process element (PE) within the
input layer and the output layer depend on the analyzed problem,
but the number of hidden layer and the number of PE within the
hidden layer are uncertain. The learning process of BPNN adopts
the gradient steepest descent method to adjust the connection
weights and reduce the inaccuracy of neural networks. The BPNN
has been successfully applied to many research fields, such as engi-
neering management, climatology, and economics. Fig. 1 (Chen,
Chen, & Kuo, 2010) shows the architecture of the BPNN.

ACO (Dorigo & Stutzle, 2004) algorithm draws its inspiration
from the behavior of real ants as they move from their nest to-
wards a food source (Colorni, Dorigo, & Maniezzo, 1991). ACO
has been successfully applied to solve some complex combinatorial
optimization problems with NP-hard characteristic, such as travel-
ing salesman problems (TSP) (Dorigo & Gambardella, 1997), qua-
dratic assignment problems (Maniezzo & Colorni, 1999), and
scheduling problems (Blum & Sampels, 2004). ACO is based on
the observation of the behavior of real ant colonies searching for
food sources. Real ants deposit an aromatic essence, called phero-
mone, on the path that they walk. Other ants searching for food
sense that pheromone and use this information in selecting their
path. The quantity of pheromone deposited on a path is based on
the length of the path and the quality of the food source. As more
ants follow a path the level of pheromone on that path will in-
crease, increasing its selection probability by other ants. In ACO,
artificial ants are used for searching the optimal solutions to an
optimization problem.

The scheme of ACO-BP (Liu et al., 2006; Wei, 2007) neural net-
work can be depicted as follows. After the architecture of a neural
network is selected, it needs to be trained before being used. Given
D parameters in the network, which consist of all the weights and
biases, the evolution of network parameters can be regarded as the
process of searching for the optimal combination of the D param-
eters in their solution spaces. Several candidacy groups of combi-
nation of network parameters can be provided by the ACO
scheme. The BP algorithm initializes the weights of the network
with these values and begins to train the network. Since ACO pro-
vides the BP with several groups of good initial values, the risk of
being trapped in the local optima sharply decreases. Consequently,
both the training effectiveness and evolving speed can be en-
hanced. In other words, the basic idea of the hybrid algorithm of
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ACO and BP is to use ACO to search the optimal combination of all
the network parameters, and then use the BP algorithm to train the
data through the optimal combination of network parameters.

2.4. Fuzzy logic inference

Fuzzy theory (Zadeh, 1965) is a special method to handle the
problem of blurred uncertainty phenomenon. Because the concept
of uncertainty can not be described by crisp set, it is usually repre-
sented by fuzzy set (Zadeh, 1965). Fuzzy logic control (Mamdani &
Assilian, 1981) is an important application of fuzzy logic inference.
The following two sub sections introduce the brief concept of fuzzy
set and fuzzy logic control.

2.4.1. Fuzzy set
In crisp set, the value of characteristic function is either 0 or 1,

but the dichotomy is usually inadequate in human mind. In a real
world, it is full of blurred uncertainty. Therefore, an appropriate
value is taken between 0 and 1 to represent the degree of one ele-
ment belonging to a set. The membership function is denoted by
lA(x), and it can be expressed as lA : X! ½0;1� ði:e:;0 � lAðxÞ �
1; x 2 XÞ, where A is fuzzy set, x is element, X is universal set.
When the value of lA (x) is closer to 1, the degree of x belonging
to A is larger.

2.4.2. Fuzzy logic control
In fuzzy logic control, some fuzzy rules (e.g., IF. . .,THEN. . .) are

employed to establish the inference mechanism. The input value
of fuzzy logic controller is often a crisp value, and then fuzzificate
the input value into the inference mechanism. Finally, the output
value of fuzzy logic controller is defuzzificated to infer the actual
situation. Fig. 2 shows the architecture of fuzzy logic controller.

3. Proposed approach

The constructing procedure of the proposed wafer yield model
can be described as following sections:

3.1. Develop a new FVCP

In fact, the recognition of clustering pattern belonging to which
shape usually exists fuzziness. Fig. 3 illustrates what is the fuzzi-
ness of clustering pattern belonging to which shape in recognition.
For example, Fig. 3(a) is a typical bottom pattern, Fig. 3(c) is a typ-
ical crescent moon pattern, and Fig. 3(b) is a real clustering pattern.
When the managers want to recognize the clustering pattern, the
Fig. 3(b) should belong to bottom pattern or crescent moon pat-
tern? In order to consider the fuzziness of clustering pattern recog-
nition, this study develops a new numerical FVCP by using fuzzy
Fig. 2. The architecture of fuzzy logic controller.
logic control to recognize the clustering pattern. The variation
interval of an included angle between each defect coordinate and
the first quadrant on X-axis per wafer, the distance interval varia-
tion between each defect coordinate and the origin per wafer are
both used to infer the degree of clustering pattern belonging to
which shape.

In this study, one random pattern and four clustering patterns
(i.e., bull eye pattern, edge pattern, bottom pattern, and crescent
moon pattern) (Friedman, Hansen, Nair, & James, 1997) are consid-
ered. The five clustering patterns are shown in Fig. 4. Therefore, the
range of FVCP is from 0 to 5. The value 1 represents random pat-
tern, 2 represents bull eye pattern, 3 represents edge pattern, 4
represents bottom pattern, and 5 represents crescent moon pat-
tern. Because the value of FVCP is a fuzzy inference number, it
can be a decimal. For example, the output value 4.7 (FVCP = 4.7)
of fuzzy logic controller implies that the recognized clustering pat-
tern has 70% degree belonging to crescent moon pattern and 30%
degree belonging to bottom pattern. The detailed descriptions of
the proposed FVCP developing procedure in this study are listed
as the following six steps:

Step 1: To calculate the positive included angle (hi) between
each defect coordinate and the first quadrant on X-axis per
wafer, where i = 1,2, . . . ,n, hi =tan�1 Yi=Xið Þ;Xi is the X-axis coor-
dinate of the ith defect point, Yi is the Y-axis coordinate of the
ith defect point, and n is the number of defects. After that, to
arrange the positive included angle (hi) in order, where h(i) is
the ith smallest included angle in order. Then the interval of
the positive included angle (hi) is denoted as Ai, where
Ai = h(i) � h(i�1), i = 1,2, . . . ,n, and h(0)=0. Fig. 5 shows the angle
of each defect coordinate on a wafer.
Step 2: To calculate the distance (Li) between each defect coor-

dinate and the origin per wafer, where Li =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

i þ Y2
i

q
;

i = 1,2, . . . ,n, Xi is the X-axis coordinate of the ith defect point,
Yi is the Y-axis coordinate of the ith defect point, and n is the
number of defects. After that, to arrange the distance (Li)
between each defect coordinate and the origin in order, where
L(i) is the ith smallest distance (Li) between each defect coordi-
nate and the origin in order. Then the interval of the distance
(Li) between each defect coordinate and the origin is denoted
as Di, where Di = L(i) � L(i�1), i = 1,2, . . . ,n, and L(0) = 0. Fig. 6
shows the distance of each defect coordinate on a wafer.

Step 3: To calculate S2
A

A2 ;
S2

D

D2

n o
per wafer, where A ¼

P
Ai=n,

D ¼
P

Di=n, S2
A ¼

P
ðAi � AÞ2=ðn� 1Þ; and S2

D ¼
P
ðDi � DÞ2=

ðn� 1Þ. This study utilizes S2
A

A2
and S2

D

D2 as input1 and input2 for

fuzzy logic controller respectively, and then the output of
fuzzy logic controller is the FVCP.
Step 4: The computer software, fuzzy TECH 4.22, is used to per-
form fuzzy inference. The input1 (S2

A

A2) and input2 (S2
D

D2) are respec-
tively divided into four levels as ‘‘low’’, ‘‘medium_low’’,
‘‘medium_high’’, and ‘‘high’’. The output is divided into five lev-
els as ‘‘term1’’, ‘‘term2’’, ‘‘term3’’, ‘‘term4’’, and ‘‘term5’’. The
membership functions of input1, input2, and output are respec-
tively shown from Figs. 7–9.
Step 5: Write the rules of fuzzy logic controller. Fig. 10 shows
the architecture of the fuzzy pattern variable controller.
Fig. 11 shows the rules of fuzzy logic controller.
Step 6: Perform the fuzzy logic controller to obtain the output
(FVCP). For example, we let (input1, input2) = (20.12,18.09)
into the fuzzy logic controller, and then the output defuzzifi-
cation value by Center-of-Maximum (CoM) is 1.67
(FVCP = 1.67). Fig. 12 shows the outcome of fuzzy logic con-
troller. Fig. 13 shows the 3-D plot among input1, input2,
and output.



Fig. 3. The fuzziness of clustering pattern recognition.

Fig. 4. The five clustering patterns.

Fig. 5. Angle of each defect coordinate on a wafer. Fig. 6. Distance of each defect coordinate on a wafer.
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Fig. 7. The membership function of input1.

Fig. 8. The membership function of input2.

Fig. 9. The membership function of output.
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Fig. 10. The architecture of fuzzy pattern variable controller.

Fig. 12. The outcome of fuzzy logical inference.

J.-S. Lin / Expert Systems with Applications 39 (2012) 2856–2864 2861
3.2. Prepare the relative data per wafer

In this study, defect counts per wafer, the value of CI per wafer,
and the value of FVCP per wafer are utilized as the input variables
for ACO-BPNN. The value of actual yield per wafer is the output
variable for ACO-BPNN. Follows are brief descriptions for the
obtainment of CI, FVCP, and the actual wafer yield.

(1) Calculate the value of CI.
The clustering phenomenon of defects on a wafer influences
the accuracy of a wafer yield model, and the CI can effec-
tively measure the clustering phenomenon on a wafer. The
CI can be obtained by the calculating manner introduced in
Section 2.2.
Fig. 11. The rules of fuz
(2) Obtain the value of FVCP.
In order to consider the fuzziness of clustering pattern rec-
ognition, this study utilizes the new FVCP to recognize the
clustering pattern per wafer. The FVCP can be obtained by
the developing procedure of six steps introduced in
Section 3.1.

(3) Calculate the value of actual wafer yield.
The actual yield value can be obtained by the number of
non-defective chips divided by the total number of chips
on a wafer.

3.3. Construct the ACO-BPNN model

In this study, ACO is adopted to determine the parameters of
BPNN (e.g., the number of neurons in the hidden layers, the
momentum, and the learning rate). Because ACO can intelligently
find out the optimal parameters of BPNN by pheromone principle,
it can make BPNN model to avoid local optimum and has high
accuracy.

First, the optimal parameters of BPNN are determined by ACO,
and then construct the proposed wafer yield model using BPNN
zy logic controller.



Fig. 13. The 3-D plot among input1, input2, and output.
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to train and test the samples simulated by Matlab 7.0 program-
ming language.

3.4. Verify the proposed model

The accuracy of neural networks can be measured by a root-
mean squared error (RMSE). When the value of RMSE is smaller,
the accuracy of neural networks is higher. The RMSE can be calcu-
lated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðAi � OiÞ2

n

s
ð12Þ

where n represents the number of data, Ai represents the actual va-
lue of output, and Oi represents the predicted value. The general
indicator for measuring the strength of the relationship between
the actual and predicted outputs is the Pearson’s linear correlation
coefficient r. In this study, RMSE and r are both used to evaluate the
performance of wafer yield model.
4. Implementation

In this study, Matlab 7.0 programming language is used to sim-
ulate the coordinates of defect points and the five clustering pat-
terns (i.e., bull eye pattern, edge pattern, bottom pattern,
crescent moon pattern, and random pattern) on 8-in. wafer are
generated. The proposed wafer yield model is constructed by using
the procedure introduced from Sections 3.1–3.4.

Comparisons are also made among the Negative Binomial yield
model, the BPNN (without FVCP) yield model, and the proposed
ACO-BPNN (with FVCP) yield model to demonstrate that the pro-
posed model is superior.
4.1. Simulation study

This section presents a simulation study to demonstrate the
effectiveness of the proposed approach. The followings are brief
descriptions of these four design factors for this simulation study:

(1) The four kinds of clustering patterns (i.e., bull eye pattern,
edge pattern, bottom pattern, and crescent moon pattern)
are designed to have three levels (50%, 70%, and 90%) of clus-
tering degree respectively. Therefore, 12 (4 � 3 = 12) kinds
of the simulated clustering patterns are generated.

(2) The defect counts of one random and four kinds of clustering
patterns are all designed to have five levels (50, 100, 150,
200, and 250), thus 65 ((1 � 5) + (12 � 5) = 65) kinds of sim-
ulated wafer data are generated.

(3) Each kind of simulated wafer data is simulated by ten times
repeatedly, so it generates 650 (65 � 10 = 650) simulated
wafer data totally. The defect counts, CI, FVCP, and the actual
wafer yield value are obtained on each simulated wafer data
respectively.

(4) Five hundred and twenty simulated wafer data are randomly
selected as training samples, and the rest 130 simulated
wafer data are the testing samples.

4.2. The results of simulation study

Assumes that each wafer is divided into 400 chips, and there
are 650 simulated wafer data generated by Matlab 7.0 program-
ming language totally. These simulated wafer data are listed in
Table 1.

Five hundred and twenty simulated wafer data are randomly
selected as training samples, and the rest 130 simulated wafer



Table 1
The 650 simulated wafer data in this simulation study.

No. Defect counts CI FVCP Actual wafer yield Degree of clustering pattern

1 48 1.12 1.59 0.9002 Bull eye pattern (50%)
2 102 1.27 1.81 0.9112 Bull eye pattern (70%)
3 137 2.51 2.12 0.9265 Bull eye pattern (90%)
4 95 1.23 2.64 0.8523 Edge pattern (50%)
5 203 1.29 2.88 0.8017 Edge pattern (70%)
6 234 2.39 3.13 0.7996 Edge pattern (90%)
. . . . . . . . . . . . . . . . . .

648 140 0.79 0.91 0.7231 Random pattern
649 171 0.85 0.96 0.7004 Random pattern
650 266 0.73 1.14 0.6605 Random pattern

Fig. 14. The scatter plot in the Negative Binomial yield model.

Fig. 15. The scatter plot in the BPNN (without FVCP) yield model.

Fig. 16. The scatter plot in the proposed ACO-BPNN (with FVCP) yield model.

Table 2
Comparisons of RMSE and r between predictive and actual yield value.

Yield model RMSE r

Negative Binomial yield model 0.0437 0.9159
BPNN (without FVCP) yield model 0.0259 0.9332
Proposed ACO-BPNN (with FVCP) yield model 0.0106 0.9538
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data are the testing samples. The RMSE is fitness function in
ACO. The network architecture determined by ACO is 3-2-2-1
(i.e., the number of neurons in the input layer is 3, the number
of neurons in the first hidden layer is 2, the number of neurons
in the second hidden layer is 2, and the number of neurons in
the output layer is 1). The network parameters determined by
ACO are given: learning rate is 0.25, momentum is 0.88, and
train the data through 2500 times.

The scatter plots in the Negative Binomial yield model, the
BPNN (without FVCP) yield model, and the proposed ACO-BPNN
(with FVCP) yield model are shown from Figs. 14–16.

Finally, comparisons made among the Negative Binomial yield
model, the BPNN (without FVCP) yield model, and the proposed
ACO-BPNN (with FVCP) yield model are listed in Table 2. From Ta-
ble 2, we can see that the proposed model in this study has the
smallest value of RMSE and the largest value of correlation coeffi-
cient. Therefore, the predictive accuracy of the proposed model in
this study is indeed superior.

5. Conclusions

In fact, the recognition of clustering pattern usually exists
fuzziness. However, the wafer yield models in previous studies
did not consider the fuzziness of clustering pattern belonging to
which shape in recognition. Therefore, this study develops a
new FVCP to recognize the clustering pattern, and construct a wa-
fer yield model based on FVCP. The proposed FVCP considers the
fuzziness of clustering pattern recognition, and it can make the
clustering pattern recognition to match the actual situation
closely.

The proposed model is an intelligent kind of neural networks
combining evolutionary computation and neural networks theory.
Because in the proposed model, the auto-adaptability of evolution-
ary computation and learning capability of neural networks can be
combined effectively, it has become the inevitable tendency of
neural networks.

The merits of the proposed approach are summarized as
follows:

(1) The proposed FVCP is helpful in improving the accuracy of
the wafer yield prediction model.

(2) ACO can intelligently find out the optimal parameters of
neural networks using pheromone principle. Furthermore,
it can make the neural network model to avoid achieving
convergence untimely leading to local optimum and thus
the neural network model can has high accuracy stably.
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(3) The proposed model can help the IC manufacturers to man-
age the wafer yield and evaluate their process capability in
relation to profit and loss.
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