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The r-component connectivity κr(G) of the non-complete graph G is the minimum number of vertices
whose deletion results in a graph with at least r components. So, κ2 is the usual connectivity. In this paper,
we determine the r-component connectivity of the hypercube Qn for r = 2, 3, . . . , n + 1, and we classify
all the corresponding optimal solutions.
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1. Introduction

Let G be a non-complete graph. An r-component cut of G is a set of vertices whose deletion results
in a graph with at least r components. The r-component connectivity or simply r-connectivity
κr(G) of G is the size of the smallest r-component cut of G (if there is no r-component cut of G, then
we define κr(G) to be ∞). So, κ2(G) is the usual connectivity of G. It is clear that κm(G) ≤ κm+1(G)

for every positive integer m. In this paper, we determine the r-component connectivity of the
hypercube Qn for r = 2, 3, . . . , n + 1. This measure was introduced independently in a number
of papers [2,6], and it is a good measure of robustness of interconnection networks.

The hypercube is one of the fundamental interconnection networks. The hypercube Qn (with
n ≥ 2) is defined as having the vertex set of binary strings of length n. Two vertices are adjacent
if their strings differ in exactly 1 bit, that is, their Hamming distance1 is 1. So, Qn is an n-regular
graph with 2n vertices.

Component connectivity is an extension of standard connectivity. It can also be viewed as an
understanding of the fault resiliency of networks. There are a number of other related concepts in
studying how intact the graph is when faults are present. Some of these concepts are related; in
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138 L.-H. Hsu et al.

this paper, we relate some of these results to component connectivity. The most comprehensive
results regarding fault resiliency of the hypercube are those presented in a series of papers [7–9],
specifically, Theorem 2.2 and Theorem 2.4(1). The results presented in this paper can be viewed
as the augmentation and extension of those results. We refer the reader to [7–9] for details and
the importance of the hypercubes. (For such fault resiliency treatment for other classes of graphs,
see [3,4].) In this paper, we determine κr(Qn) for r = 2, 3, . . . , n + 1, and we classify all the
optimal solutions.

2. Determining κr(Qn)

The first goal of this paper is to determine κr(Qn) for r = 2, 3, . . . , n + 1.

Theorem 2.1 Let n ≥ 2 and 1 ≤ k ≤ n. Then, κk+1(Qn) = kn − k(k + 1)/2 + 1.

We prove here that κk+1(Qn) ≤ kn − k(k + 1)/2 + 1; the other direction will follow from the
results that come later in this section. Let u be an arbitrary vertex in Qn. Then, u has n neighbours,
say, u1, u2, . . . , un. (Note that they are mutually non-adjacent as Qn is bipartite.) Given a set
of vertices T , we use N(T) to denote the set of vertices that are not in T but incident to at
least one vertex in T . (If T = {t}, we write N(t) instead of N({t}).) Let 1 ≤ k ≤ n and S =
N({u1, u2, . . . , uk}). Clearly, u ∈ S. Now, each ui has n − 1 additional neighbours, but every pair
of ui and uj shares exactly one neighbour other than u in Qn. In addition, u is the only common
neighbour of any three ui’s. Hence, |S| = k(n − 1) − (k

2

) + 1 = kn − k(k + 1)/2 + 1. It is clear
that Qn − S has at least k + 1 components where at least k of them are singletons. This finishes
the proof of κk+1(Qn) ≤ kn − k(k + 1)/2 + 1. The difficulty is in proving that κk+1(Qn) ≥ kn −
k(k + 1)/2 + 1.

There are many different results on faulty hypercubes and some of them are related to
Theorem 2.1. One such result is the following.

Theorem 2.2 ([8]) Let n ≥ 4. Let 1 ≤ k ≤ n − 2 and S be a set of vertices in Qn such that |S| ≤
kn − k(k + 1)/2. Then, Qn − S is either connected or has one large component plus a number of
small components with at most k − 1 vertices in total.

We can observe that the special case k = 1 implies that Qn has connectivity n. We note that
Theorem 2.1 follows directly from Theorem 2.2 for n ≥ 4 and 1 ≤ k ≤ n − 2. If Qn − S has
one large component plus a number of small components with k − 1 vertices in total, then the
number of components is maximized when the small components are k − 1 singletons. Hence,
κk+1(Qn) ≥ kn − k(k + 1)/2 + 1 for k ≤ n − 2. Obviously, one can easily check the validity of
Theorem 2.1 for n = 2 and n = 3. Thus, the missing cases are k = n − 1 and k = n for n ≥ 4.
One may wonder why only extend the range by two more cases for each n. The reason is that the
formula kn − k(k + 1)/2 + 1 does not hold for k = n + 2 as proved in the next result.

Proposition 2.3 Let n ≥ 4. Then, κn+2(Qn) > (n + 1)n − (n + 1)(n + 2)/2 + 1.

Proof Suppose that κn+2(Qn) ≤ (n + 1)n − (n + 1)(n + 2)/2 + 1. Since (n + 1)n − (n + 1)

(n + 2)/2 + 1 < (n − 1)n − (n − 1)n/2 + 1≤κn(Qn), this implies κn+2(Qn) < κn(Qn), which is
a contradiction. �

We now point out that the formula kn − k(k + 1)/2 + 1 gives the same value for k = n − 1
and k = n. Hence, if the formula holds for k = n − 1, then this implies that the formula holds for
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International Journal of Computer Mathematics 139

k = n as well, since n2 − n(n + 1)/2 + 1 ≥ κn+1(Qn) ≥ κn(Qn) = (n − 1)n − (n − 1)(n)/2 + 1.
So, the only missing case is when n ≥ 4 and k = n − 1. We note that Theorem 2.2 does not hold
for k = n − 1 as shown by the following example: Let u be an arbitrary vertex with n neighbours
u1, u2, . . . , un. Let S be the set of vertices that are adjacent to at least one of u1, u2, . . . , un excluding
u. Then, |S| = n(n − 1) − n(n − 1)/2 = n(n − 1)/2, and we have a component having n + 1
vertices in Qn − S, thus violating the conclusion of Theorem 2.2. We call a set S given as above
an exceptional set. Fortunately, this is the only exceptional case.

Theorem 2.4 Let n ≥ 4. Let S be a set of vertices of size at most n(n − 1)/2.

(1) If |S| ≤ n(n − 1)/2 − 1, then Qn − S is either connected or has one large component plus
a number of small components with at most n − 2 vertices in total.

(2) If |S| = n(n − 1)/2 and S is not exceptional, then Qn − S is either connected or has one
large component plus a number of small components with at most n − 2 vertices in total. If
|S| = n(n − 1)/2 and S is exceptional, then Qn − S has exactly two components, one of which
is K1,n.

Theorem 2.4(1) was proved in [8], so we only need to prove Theorem 2.4(2).

Proof of Theorem 2.4(2) We apply induction on n. We first note that the statement is true for
n = 4, since Q4 has 16 vertices and the graph is symmetrical, so the claim can be checked by
brute force.

Let H0 (H1, respectively) be the subgraph of Qn induced by vertices with 0 (1, respectively) in
the last position. Then, H0 and H1 are isomorphic to Qn−1. Let S0 and S1 be the set of elements of
S that are vertices in H0 and H1, respectively. We have two cases.

Case 1. Either |S0| or |S1| is at least (n − 1)(n − 2)/2. Without loss of generality, assume that
|S1| ≥ (n − 1)(n − 2)/2.

Case 1a. |S1| ≥ (n − 1)(n − 2)/2 + 1. Then, |S0| ≤ n(n − 1)/2 − (n − 1)(n − 2)/2 − 1 =
n − 2, thus H0 − S0 is connected. Let Y be the component of Qn − S containing H0 − S0. Suppose
v is a vertex of H1 − S1. Then, v is part of Y if v’s unique neighbour in H0 is not in S0. Since
|S0| ≤ n − 2, there are at most n − 2 vertices of H1 − S1 that are not part of Y and we are done.

Case 1b. |S1| = (n − 1)(n − 2)/2. Hence, |S0| = n − 1.
Subcase 1b(i). H0 − S0 is connected. We define Y to be the same as before. We apply the

induction hypothesis. The first case is that H1 − S1 has one large component and a number of
small components with at most n − 3 vertices in total. In other words, S1 is not exceptional.
Now, the large component in H1 − S1 has at least 2n−1 − (n − 1)(n − 2)/2 − (n − 3) vertices
and |S0| = n − 1. So, if 2n−1 − (n − 1)(n − 2)/2 − (n − 3) > n − 1, then the large component
is part of Y . This inequality holds for n ≥ 5, and hence Qn − S has one large component and
a number of small components with at most n − 3 vertices in total.

The second case from the induction hypothesis is that H1 − S1 has two components, one of
which is K1,n−1. So, S1 is exceptional. So, each component has at least n vertices as n ≥ 5.
(One component has n vertices and the other has 2n−1 − n − (n − 1)(n − 2)/2 vertices.) But
|S0| = n − 1; therefore, each of these components in H1 − S1 is part of Y , and hence Qn − S is
connected.

Subcase 1b(ii). H0 − S0 is disconnected. Then, H0 − S0 consists of two components, one of
which is a singleton, say, w. (Apply Theorem 2.2 with k = 2.) Let Y be the component in Qn − S
containing the larger component, X , of H0 − S0. Now, we apply the induction hypothesis on
H1 − S1. The first case is that H1 − S1 has one large component and a number of small components
with at most n − 3 vertices in total. So, S1 is not exceptional. Now, the large component in H1 − S1

has at least 2n−1 − (n − 1)(n − 2)/2 − (n − 3) vertices, |S0| = n − 1, and there is exactly one
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140 L.-H. Hsu et al.

vertex in H0 − S0 that is not in X . So, if 2n−1 − (n − 1)(n − 2)/2 − (n − 3) > n − 1 + 1, then
this large component is part of Y . The inequality holds for n ≥ 5; hence, Qn − S has one large
component and a number of small components with at most n − 2 vertices in total. (Up to n − 3
vertices from the small components in H1 − S1 and possibly w.)

The second case from the induction hypothesis is that H1 − S1 has two components, one of
which is K1,n−1 with, say, y as the centre. This corresponds to the case when S1 is exceptional. Recall
that H0 − S0 has exactly two components, one of which is a singleton w. The large component
Z in H1 − S1 has 2n−1 − (n − 1)(n − 2)/2 − n vertices, |S0| = n − 1, and there is exactly one
vertex in H0 − S0 that is not in X . So, if 2n−1 − (n − 1)(n − 2)/2 − n > n − 1 + 1, then this large
component is part of Y . The inequality holds for n ≥ 6, so both X and Z are part of Y if n ≥ 6.
Suppose n = 5. We know that S0 is exactly the set of neighbours of w and S1 = N(N(y)) − {y}.
Since the hypercube is vertex transitive, we may fix the choice for y and there are 16 choices
for w. Hence, there are 16 cases, and in each case, it can be easily verified that Q5 − S satisfies
Theorem 2.4(2). Henceforth, we may assume that n ≥ 6. If w is adjacent to y, then we are done
as Qn − S will either be connected or has two components, one of which is K1,n. The latter
implies that S is exceptional. Let z1, z2, . . . , zn−1 be the neighbours of y in H1. Suppose that
w is adjacent to z1. Then, it is clear that z2 is adjacent to a vertex in the large component of
H0 − S0, and hence Qn − S is connected. (To see this, suppose that z2 is not adjacent to a vertex
in the large component of H0 − S0. Then z2 is adjacent to a vertex in S0. But S0 are precisely the
vertices in H0 that are adjacent to w. Let this vertex be w′. Now, we have found a 5-cycle, namely,
y − z1 − w − w′ − z2 − y, which is a contradiction as Qn is bipartite.) So, we may assume that w is
not adjacent to any vertex of K1,n−1 in H1 − S1. We now claim that at least one of z1, z2, . . . , zn−1

is adjacent to a vertex in the large component of H0 − S0. Otherwise, they are adjacent to the
neighbours of w in H0, which implies that w and y are adjacent, which is a contradiction as w is
not adjacent to any vertex of this K1,n−1 whose centre is y. Hence, Qn − S satisfies Theorem 2.4(2).

Case 2. |S0|, |S1| ≤ (n − 1)(n − 2)/2 − 1. So, |S0|, |S1| ≥ n. Now, (n − 1)(n − 2)/2 − 1 =
(n − 3)(n − 1) − (n − 3)(n − 2)/2, so we may apply Theorem 2.2 on S0 and S1 since n ≥ 5.
We choose a to be the smallest integer such that |S0| ≤ a(n − 1) − a(a + 1)/2 and b to be the
smallest integer such that |S1| ≤ b(n − 1) − b(b + 1)/2. Since |S0|, |S1| ≥ n, we get a, b ≥ 2.
By the choice of a, we get |S0| ≥ (a − 1)(n − 1) − (a − 1)a/2 + 1, and hence |S1| ≤ n(n −
1)/2 − (a − 1)(n − 1) + (a − 1)a/2 − 1. Now, by Theorem 2.2, H0 − S0 is either connected
or has a large component and a number of small components with at most a − 1 vertices
in total. It suffices to show that H1 − S1 is either connected or has a large component and
a number of small components with at most n − a − 1 vertices in total. This can be accom-
plished by using Theorem 2.2 and showing that |S1| ≤ (n − a)(n − 1) − (n − a)(n − a + 1)/2.
Observe that (n − a)(n − 1) − (n − a)(n − a + 1)/2 − (n(n − 1)/2 − (a − 1)(n − 1) + (a − 1)

a/2 − 1) = an + a + 2 − 2n − a2 = (a − 2)(n − a − 1) ≥ 0 since 2 ≤ a ≤ n − 3. This com-
pletes the proof. �

Now, the claim κk+1(Qn) ≥ kn − k(k + 1)/2 + 1 for k = n follows directly from Theorem 2.4.
This finishes the proof of Theorem 2.1.

3. Classification of optimal solutions

In the previous section, we have shown that κr+1(Qn) = rn − r(r + 1)/2 + 1 for n ≥ 2 and 1 ≤
r ≤ n. It will be interesting to determine all the optimal solutions, that is, find all the optimal
(r + 1)-component cuts of size rn − r(r + 1)/2 + 1 in Qn. For 1 ≤ r ≤ n, we can pick X to be
a set of r neighbours of an arbitrary vertex u. We have already seen that N(X) is an optimal
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International Journal of Computer Mathematics 141

solution for every such set X . These are called the trivial solutions. We now show the following
result (of which, the case r = 1 has been known already).

Theorem 3.1 Let n ≥ 2 and 1 ≤ r ≤ n − 2. Then, every optimal (r + 1)-component cut of Qn

is trivial.

Proof Let X be an optimal (r + 1)-component cut. Then,|X| = rn − r(r + 1)/2 + 1. We will
establish this result in three steps.

The first step is to show that Qn − X has a large component and r singletons. Suppose r ≤
n − 3. Let k = r + 1 in Theorem 2.2. Since rn − r(r + 1)/2 + 1 ≤ (r + 1)n − (r + 1)(r + 2)/2
as r + 1 ≤ n − 2, we can conclude that Qn − X has a large component plus a number of small
components with r vertices in total. But |X| is an (r + 1)-component cut. So, Qn − X consists
of a large component and r singletons. Now, suppose r = n − 2. We note that |X| = (n − 2)n −
(n − 2)(n − 1)/2 + 1 = n(n − 1)/2. So, we apply Theorem 2.4(2). Since X is not exceptional as
X is an (r + 1)-component cut, Qn − X has a large component plus a number of small components
with n − 2 vertices in total. But |X| is an (n − 1)-component cut, so Qn − X consists of a large
component and n − 2 singletons.

The first step is complete, that is, we have shown that Qn − X has a large component and r
singletons. Let A be the set of these r vertices.

The second step is to prove that every pair of these r vertices has distance 2 in Qn. Suppose
not. Then, there are two vertices x and y whose distance is at least 3. Since x and y differ in
at least one position, we may assume, without loss of generality, that x is in H0 and y is in H1

(using the usual definition of Hi’s). Let X0 = X ∩ V(H0) and X1 = X ∩ V(H1). Clearly, if z is
in H0 (H1, respectively) and z is an isolated vertex in Qn − X, then z is an isolated vertex in
H0 − X0 (H1 − X1, respectively). Let a0 = |A ∩ V(H0)| and a1 = |A ∩ V(H1)|, so a0 + a1 = r.
Then, H0 − X0 has at least a0 + 1 components and H1 − X1 has at least a1 + 1 components. Thus,
by Theorem 2.1, |X0| ≥ a0(n − 1) − a0(a0 + 1)/2 + 1 and |X1| ≥ a1(n − 1) − a1(a1 + 1)/2 +
1. We have two cases.

Case 1. a0, a1 ≥ 2. We first note that (a0(n − 1) − a0(a0 + 1)/2 + 1) + (a1(n − 1) − a1(a1 +
1)/2 + 1) > rn − r(r + 1)/2 + 1 is equivalent to (a0 − 1)(a1 − 1) > 0, which is clearly true for
a0, a1 ≥ 2. Using the definition of X , X0, X1 and the bounds on |X0| and |X1|, we get a contradiction
as follows:

|X| = |X0| + |X1| ≥
(

a0(n − 1) − a0(a0 + 1)

2
+ 1

)
+

(
a1(n − 1) − a1(a1 + 1)

2
+ 1

)

> rn − r(r + 1)

2
+ 1 = |X|.

Case 2. a0 = 1 and a1 = r − 1. Clearly, |X0| ≥ n − 1 since x is isolated in H0 − X0. But y is
also isolated in Qn − X and the distance of x and y is at least 3. Therefore, the unique neighbour of
y in H0 is not a member of NH0(x), implying that |X0| ≥ n. By Theorem 2.1, |X1| ≥ (r − 1)(n −
1) − (r − 1)r/2 + 1, hence

|X| = |X0| + |X1| =
(

(r − 1)(n − 1) − (r − 1)r

2
+ 1

)
+ n > rn − r(r + 1)

2
+ 1 = |X|,

which is a contradiction.
The third step is to show that X is trivial, that is, the vertices in A = {v1, v2, . . . , vr} have

a common neighbour. Without loss of generality, we may assume that v1 = 00 . . . 0. Now, since
v2 is of distance 2 from v1, v2 has exactly two 1’s and we may assume that v2 = 110 . . . 0. Similarly,
v3 has exactly two 1’s. But v3 is also of distance 2 from v2. So, we may assume that v3 = 1010 . . . 0.
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142 L.-H. Hsu et al.

Repeat the argument for v4, and we get two choices for v4. It is either 0110 . . . 0 or 10010 . . . 0.
We have two cases.

Case 1. v4 = 0110 . . . 0. If r ≥ 5, then it is impossible to find another vertex that is
of distance 2 to each of v1, v2, v3 and v4. So, we only need to consider r = 4. But
|N(A)| = 4n − 8 > 4n − 9 = |X|.

Case 2. v4 = 10010 . . . 0. Then, in order for v5 to be of distance 2 to each of v1, v2, v3 and v4,
we may assume v5 = 100010 . . . 0. Indeed, v6, . . . , vr must be of a similar form. Hence, they have
a common neighbour 100 . . . 0. The proof is complete. �

The remaining task is to classify optimal n-component cuts and optimal (n + 1)-component
cuts. Let u be a vertex in Qn and u1, u2, . . . , un be its neighbours. Pick any n − 1 of them, say,
u1, u2, . . . , un−1, then N({u1, u2, . . . , un−1}) is a trivial n-component cut. However, every neighbour
of un is in N({u1, u2, . . . , un−1}), that is, N({u1, u2, . . . , un−1}) = N({u1, u2, . . . , un}). So, if X is
a trivial n-component cut, then Qn − X has n singletons, not n − 1 singletons. In fact, Qn − X has
a large component and n singletons, giving n + 1 components in total. This is not surprising as
κn(Qn) = κn+1(Qn). Suppose we have proved that all n-component cuts are trivial. Then, since
they are also (n + 1)-component cuts and every optimal (n + 1)-component cut is also an optimal
n-component cut, every optimal (n + 1)-component cut is trivial. Hence, it remains to be proven
that every n-component cut is trivial. The following result establishes this.

Theorem 3.2 Let n ≥ 4 and let S be a set of vertices of size at most n(n − 1)/2 + 1. Then, the
following are the only possibilities.

(1) Qn − S has one large component plus a number of small components with at most n − 2
vertices in total. (This includes the case that Qn − S is connected.)

(2) Qn − S has exactly two components, one of which is K1,n.
(3) Qn − S has exactly two components, one of which is K1,n−1.
(4) Qn − S has exactly two components, one of which is K1,n−2.
(5) S is a trivial (n + 1)-component cut, and Qn − S has one large component plus n singletons.

Proof We apply induction on n. We first note that the statement is true for n = 4, since Q4 has
16 vertices and it is symmetrical, so the claim can be checked by brute force. (Note also that
Theorem 2.2 for k = 2 is useful here.) Now, assume that n ≥ 5 and the claim is true for n − 1. As
before, let H0 (H1, respectively) be the subgraph of Qn induced by vertices with 0 (1, respectively)
in the last position. Then, H0 and H1 are isomorphic to Qn−1. Let S0 and S1 be the set of elements
of S that are vertices in H0 and H1, respectively. We have two cases.

Case 1. Either |S0| or |S1| is at least |S| = (n − 1)(n − 2)/2 + 1. Without loss of generality, we
may assume that |S1| ≥ (n − 1)(n − 2)/2 + 1.

Case 1a. |S1| ≥ (n − 1)(n − 2)/2 + 2. Then, |S0| ≤ n(n − 1)/2 + 1 − (n − 1)(n − 2)/2 −
2 = n − 2, thus H0 − S0 is connected. Let Y be the component of Qn − S containing H0 − S0.
Suppose v is a vertex of H1 − S1. Then, v is part of Y if v’s unique neighbour in H0 is not in S0.
Since |S0| ≤ n − 2, there are at most n − 2 vertices in H1 − S1 that are not part of Y and we are
done.

Case 1b. |S1| = (n − 1)(n − 2)/2 + 1. Hence, |S0| = n − 1.
Subcase 1b(i). H0 − S0 is connected. We define Y as before. We apply the induction hypothesis.

The first case is that H1 − S1 has one large component and a number of small components with at
most n − 3 vertices in total. Now, the large component in H1 − S1 has at least 2n−1 − (n − 1)(n −
2)/2 − 1 − (n − 3) vertices, and |S0| = n − 1. So, if 2n−1 − (n − 1)(n − 2)/2 − 1 − (n − 3) >

n − 1, then the large component is part of Y . This inequality holds for n ≥ 5, and hence Qn − S
has one large component and a number of small components with at most n − 3 vertices in total.
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The second case from the induction hypothesis is that H1 − S1 has two components, one of
which is K1,n−1. So, each component has at least n vertices if n ≥ 6. So, we may assume that n ≥ 6.
But |S0| = n − 1. Therefore, each of these components in H1 − S1 is part of Y and hence Qn − S is
connected. If n = 5, then H1 has 16 vertices, |S1| = 7, and the two components of H1 − S1 are K1,4

and K1,3. The K1,4 is part of Y . Regardless of whether K1,3 is part of Y , Q5 − S satisfies the claim.
The third case from the induction hypothesis is that H1 − S1 has two components, one of which

is K1,n−2. So, it has n − 1 vertices. However, the other component has at least n vertices as n ≥ 5.
But |S0| = n − 1. Therefore, Qn − S is connected or has two components, one of which is K1,n−2.

The fourth case from the induction hypothesis is that H1 − S1 has two components, one of
which is K1,n−3. So, it has n − 2 vertices. However, the other component has at least n vertices as
n ≥ 5. But |S0| = n − 1. Therefore, Qn − S is connected or has two components, one of which is
K1,n−3. So, Qn − S has a large component and small components with at most n − 2 vertices.

The fifth case from the induction hypothesis is that S1 is a trivial n-component cut of H1, so
H1 − S1 has a large component and n − 1 singletons. It is easy to see that the large component
has at least n vertices, so it is part of Y . If at least one of these singletons is part of Y , then
Qn − S has small components with at most n − 2 vertices, and we are done. So, assume none of
these singletons are part of Y . Since S1 is a trivial n-component cut in H1, there exists a vertex
u in H1 with neighbours u1, u2, . . . , un−1 such that S1 = N({u1, u2, . . . , un−1}). We will use v′ to
denote the vertex in H0 adjacent to v in H1. If u1, u2, . . . , un−1 remain singletons in Qn − S, then
u′

1, u′
2, . . . , u′

n−1 ∈ S0. But |S0| = n − 1, so we have identified S0. But this means that H0 − S0 is
disconnected, which is a contradiction as H0 − S0 is connected.

Subcase 1b(ii). H0 − S0 is disconnected. Then, H0 − S0 consists of two components, one of
which is a singleton, say, w. (Apply Theorem 2.2 with k = 2.) Let Y be the component in Qn − S
containing the larger component, X , of H0 − S0. Now, we apply the induction hypothesis on
H1 − S1.

The first case is that H1 − S1 has one large component and a number of small compo-
nents with at most n − 3 vertices in total. Now, the large component in H1 − S1 has at least
2n−1 − (n − 1)(n − 2)/2 − 1 − (n − 3) vertices, |S0| = n − 1, and there is exactly one vertex in
H0 − S0 that is not in X . So, if 2n−1 − (n − 1)(n − 2)/2 − 1 − (n − 3) > n − 1 + 1, then this
large component is part of Y . The inequality holds for n ≥ 5, and hence Qn − S has one large
component and a number of small components with at most n − 2 vertices in total. (There are up
to n − 3 vertices from the small components in H1 − S1 and possibly w.)

The second case from the induction hypothesis is that H1 − S1 has two components, one of
which is K1,n−1 with y as the centre. Recall that H0 − S0 has exactly two components, one of
which is a singleton w. The large component Z in H1 − S1 has 2n−1 − (n − 1)(n − 2)/2 − 1 − n
vertices, |S0| = n − 1, and there is exactly one vertex in H0 − S0 that is not in X. So, if
2n−1 − (n − 1)(n − 2)/2 − 1 − n > n − 1 + 1, then this large component is part of Y . The
inequality holds for n ≥ 6, so both X and Z are part of Y if n ≥ 6. The case n = 5 can be han-
dled separately either by brute force or by an ad hoc argument. (A brute force approach includes
observing that S0 is the set of neighbours of w and S1 = (N(N(y)) − {y}) ∪ {t} for some vertex t.
Since the hypercube is vertex transitive, we may fix the choice for y, and then there are 16 choices
for w and five choices for t.) Henceforth, we may assume that n ≥ 6. Since |S0| = n − 1, the
K1,n−1 in H1 − S1 will be part of Y unless for every v of this K1,n−1, its unique neighbour in H0 is
either w or the deleted neighbours of w in H0. But this can only happen if y and w are adjacent,
so Qn − S will either be connected, or have two components, one of which is K1,n.

The third case from the induction hypothesis is that H1 − S1 has two components, one of which
is K1,n−2, which has n − 1 vertices. The other component has at least n + 1 vertices if n ≥ 6, so
it is part of Y . If w is also part of Y , then we are done. As in the second case, one can check that
if neither K1,n−2 nor w is part of Y , then they form K1,n−1 in Qn − S, so the statement is verified.
For n = 5, the other component in H1 − S1 is K1,n−1, so this reduces to the second case.
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The fourth case from the induction hypothesis is that H1 − S1 has two components, one of
which is K1,n−3, which has n − 2 vertices. The other component has at least n + 1 vertices as
n ≥ 5, so it must be part of Y , and then the claim follows in the usual way.

The fifth case from the induction hypothesis is that S1 is a trivial n-component cut of H1, so
H1 − S1 has a large component and n − 1 singletons. It is easy to see that the large component is
part of Y for n ≥ 6, and for n = 5, the large component is K1,4, so the case can be easily checked
just as the second case. Since S is a trivial n-component cut, there exists a vertex u in H1 with
neighbours u1, u2, . . . , un−1 such that S1 = N({u1, u2, . . . , un−1}). We will use v′ to denote the
vertex in H0 adjacent to v in H1. We consider three possibilities.

The first possibility is when none of u1, u2, . . . , un−1 are part of Y in Qn − S. Then, there are
two additional scenarios. The first scenario is when u′

1, u′
2, . . . , u′

n−1 ∈ S0. But |S0| = n − 1, so we
have identified S0. Indeed, w = u′, so S is a trivial (n + 1)-component cut and Qn − S has a large
component and n singletons. The second scenario is when u′

1, u′
2, . . . , u′

n−2 ∈ S0 and un−1 and w
are adjacent. But S0 = N(w), so this is not a possible configuration in Qn when n ≥ 5.

The second possibility is when at most n − 3 of u1, u2, . . . , un−1 are not part of Y in Qn − S.
Now, even if w does not belong to Y , we get that Qn − S has one large component and a number
of small components with at most n − 2 vertices in total.

The third possibility is when u1, u2, . . . , un−2 are not part of Y in Qn − S, but un−1 is part of Y in
Qn. If w is also part of Y , then Qn − S has one large component and a number of small components
with at most n − 2 vertices in total. If w is not part of Y , then w′ ∈ {u1, u2, . . . , un−2} ∪ S1, so we
may assume that u′

1, u′
2, . . . , u′

n−3 ∈ S0. But S0 = N(w), so this is not a possible configuration in
Qn when n ≥ 5.

Case 2. |S1| = (n − 1)(n − 2)/2. Hence, |S0| = n. We apply Theorem 2.4(2) to S1. So, we have
to consider two possibilities.

The first possibility is when H1 − S1 has a large component together with small components of
at most n − 3 vertices in total. Now, H0 − S0 is either connected or has two components, one of
which is a singleton. It is easy to see that the largest component in H1 − S1 and the larger component
in H0 − S0 (or H0 − S0 itself if it is connected) are part of the same component in Qn − S. Hence,
Qn − S has a large component and small components with at most n − 2 vertices in total.

The second possibility is when H1 − S1 has two components, one of which is K1,n−1. Call the
other component X. Suppose H0 − S0 is connected, and let Y be the component in Qn − S con-
taining it. It is easy to see that X is part of Y . If the K1,n−1 component of H1 − S1 is also part of
Y , then we are done as Qn − S will be connected. Otherwise, the vertices in S0 must correspond
to the neighbours of the K1,n−1 component of H1 − S1, and hence Qn − S has two components,
one of which is K1,n−1.

Case 3. |S0|, |S1| ≤ (n − 1)(n − 2)/2 − 1. So, |S0|, |S1| ≥ n + 1. Now, (n − 1)(n − 2)/2 −
1 = (n − 3)(n − 1) − (n − 3)(n − 2)/2, so we may apply Theorem 2.2 on S0 and S1. We
choose a to be the smallest integer such that |S0| ≤ a(n − 1) − a(a + 1)/2 and b to be
the smallest integer such that |S1| ≤ b(n − 1) − b(b + 1)/2. Since |S0|, |S1| ≥ n, a, b ≥ 2. By
the choice of a, |S0| ≥ (a − 1)(n − 1) − (a − 1)a/2 + 1. Hence, |S1| ≤ n(n − 1)/2 + 1 − (a −
1)(n − 1) + (a − 1)a/2 − 1. Now, by Theorem 2.2, H0 − S0 is either connected or has a large
component and a number of small components with at most a − 1 vertices in total. It suf-
fices to show that H1 − S1 is either connected or has a large component and a number
of small components with at most n − a − 1 vertices in total. This can be accomplished
by using Theorem 2.2 and showing that |S1| ≤ (n − a)(n − 1) − (n − a)(n − a + 1)/2. Note
that (n − a)(n − 1) − (n − a)(n − a + 1)/2 − (n(n − 1)/2 − (a − 1)(n − 1) + (a − 1)a/2) =
an + a + 2 − 2n − a2 + 1 = n(a − 2) − (a − 2)(a + 1) − 1 = (a − 2)(n − a − 1) − 1 ≥ 0 in
the given range 2 ≤ a ≤ n − 3 unless a = 2. We repeat the argument from b. Hence, the
only exceptional case is a = b = 2. But then |S0|, |S1| ≤ 2(n − 1) − 3 = 2n − 5. Hence, |S| ≤
4n − 10. Now, by Theorem 2.4 (with k = 4), Qn − S is either connected or has a large components

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 1

5:
35

 2
8 

A
pr

il 
20

14
 



International Journal of Computer Mathematics 145

and a number of small components with at most three vertices in total. Since n ≥ 5, 3 ≤ n − 2,
it satisfies the statement. This completes the proof. �

To summarize the results of this section, we proved the following.

Theorem 3.3 Let n ≥ 2 and 1 ≤ r ≤ n. Then, every optimal (r + 1)-component cut of Qn is
trivial.

4. Conclusion

In this paper, we studied the component connectivity of the hypercube which can be viewed as
results that complement the results given in [7–9]. Open problems in this area include finding
component connectivity of other interconnection networks such as the star graph [1] and the
alternating group graph [5]. However, unlike the hypercube, no corresponding results to those
given in [7–9] are known. The closest results for the star graph and the alternating group graph
were given in [3,4], but these are asymptotic results.
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Note

1. The Hamming distance of two binary strings of the same length is the number of bits that they differ.
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