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Abstract 

This paper studies the following variation of the gossiping problem. Suppose there are n 
persons, each of whom knows a message. A pair of persons can pass all messages they have by 
making a telephone call. The partial gossiping problem is to determine the minimum number of 
calls needed for each person to know at least k messages. This paper gives a complete solution 
to this problem. 

1. In troduc t ion  

Gossiping and broadcasting problems have been extensively studied for several dec- 

ades; see [9] for a survey. In these problems, there are n persons, each of whom knows 

a unique message and is ignorant of the messages of  the other people at the beginning. 
These messages are then spread by telephone calls. In each call, two persons exchange 

all information they have so far. The gossipin 9 problem is to find the minimum number 
of calls that need to be made for all the people to know all the messages. It has been 

proved that the solution to the problem is 2n - 4  for n t>4. For proofs and related 
topics, see [1-8,10,11,13]. 

Many variations of the gossiping problem have been studied. Examples include re- 

stricting the calls to certain pairs of people, allowing conference calls, allowing only 

one-way calls, partial gossiping, and set-to-set broadcasting. This paper studies the par- 
tial gossiping problem introduced by Richards and Liestman [12]. The problem is to 
determine the minimum number P(n, k) of calls required for each person to know at 
least k messages. For the case of k = n, the well-known result is 

P ( n , n ) = 2 n - 4  for n~>4. 
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Richards and Liestman [12] determined P(n,k) for k~<3 and gave upper bounds for 

k >14. This paper gives a complete solution to the problem. 

2. Partial gossiping 

We represent the n persons by the set V = {1, 2 . . . . .  n}. To any sequence o f  calls 

c(1) ,c(2)  . . . . .  c(t) 

between these n persons, there corresponds a multigraph Gc whose vertex set is V and 

edge set contains these t calls. From now on, persons and vertices (resp. calls and 

edges) will be treated as interchangeable. 

To establish the solution to P(n, k), we first consider the following upper bounds. 

2 k-I 1 Lemma 1. P(n,k)< r ~ n ]  f o r  2 k-I <~n. 

Proof.  Write n = 2k-lnl  + n2, where 1 ~<nl and 0<~n2<~2 k-1 - 1. Partition V into 

nl + 1  disjoint sets V~ = {vi, l,vi,2 . . . . .  vi,2~-,}, l<~i<~nl, and V ' =  v-Ul<~i<~n ' vi. 
For each i, make the following calls in k - 1 iterations. In iteration r, O<~r<~k - 2 ,  
vi~ calls vi~+2 r for 1 ~<s~<2 r. 2 r calls are made in iteration r, and upon the completion 

o f  iteration r the first 2 r+~ persons in Vi all know exactly r + 1 messages. So, at the 

completion of  these k -  1 iterations, a total o f  2 k-  l _ 1 calls have been made and all 

persons in Vi know exactly k messages. Finally, each person in V' calls Vl,1 to learn k 

messages. Thus, 

[2 k - l -  1 ] 
P(n,k)<.(2 k - l -  1)h i  + n 2  = / ~ n [ .  [] 

Lemma 2. P(n,k)<~n + i i f  O<~i<~k - 4  and i + 2k-i-2 <~n. 

Proof. Choose two disjoint subsets X and Y of  V as follows: 

X -- {Xl, x2 , . . . ,  x,} and Y -- {yl, Y2 . . . . .  Y2k-,-2}. 

Since i<~k-  4, [YI~>4. Make the following calls in k -  2 -  i iterations. In the Oth 

iteration, each person in X calls Yl. In this iteration i calls are made and upon the 

completion o f  this iteration Yl knows i + l messages. In iteration 1, Yl calls Y2, Y3 

calls Y4, Yl calls Y3, and Y2 calls y4. Four calls are made in this iteration and at 
the completion of  this iteration the first four persons of  Y all know i + 4 messages. 

In iteration r, 2<~r<~k - i - 3, Ys calls Ys+2r for 1 <~S<~2 r. In this iteration 2" calls 

are made and at the completion of  this iteration the first 2 r+l persons o f  Y all know 
exactly i + r + 3 messages. So, at the completion o f  these k - i - 2 iterations, a total 

o f  i + 2 k- i -2  calls have been made and all persons in Y know exactly k messages. 

Finally, each person in V -  Y calls Yl to learn k messages. Thus, 

P ( n , k ) < . i + 2 k - i - 2 + ( n - - 2 k - ~ - 2 ) = n + i .  [] 
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Next, we shall establish lower bounds for P(n,k). 

L e m m a  3. Suppose c is a call sequence on V and T is a component of  Gc that 
is a tree. I f  every vertex in T (respectively, except possibly one) knows at least k 
messages, then T has at least 2 k-1 (respectively, 2 k-l  - 1) vertices. 

P r o o f .  The lemma is trivial for k = 1. Suppose it is true for k' = k - 1. Let (x, y )  be 

the first call of  c that is in T. Let c' be the call sequence that results from removing 

(x, y )  from c. T - (x, y )  has exactly two components, Tx and Ty, such that x is in Tx 
and y is in Ty. Tx and Ty are the only two components of  Gc,. 

Suppose every vertex in T knows at least k messages. Since every vertex in Tx 
learns messages only from y or vertices in Tx through edges in Tx, every vertex in Tx 
under the call sequence c '  knows at least k -  1 messages. By the induction hypothesis, 

Tx has at least 2 k-2 vertices. Similarly, Ty has at least 2 k-2 vertices and so T has at 
least 2 k-1 vertices. 

Suppose every vertex of  T, except possibly one, knows at least k messages. Similar 

to the above arguments, either T~ has at least 2 k-2 vertices and Ty has at least 2 k-2 - 1 

vertices, or vice versa. So, T has at least 2 k-1 - 1 vertices. [] 

2 k - I  1 - Lemma 4. P(n,k)>~[e-T~-~n| for k >>.l. 

Proof.  Suppose c is an optimal call sequence for P(n,k). If  Gc has ni components 

of  i vertices for i >~ 1, then 

• ini = n. 

i 

Note that each component of  i vertices has at least i - 1 edges. By Lemma 3, each 

component o f  i < 2 k-l  vertices is not a tree and so has at least i edges. Thus, 

P(n,k)>~ ~ ini+ ~ (i-1)ni. 
i < 2 , ~ - I  i>~2k-I 

Since i -  1>i((2 k-l  - 1)/2k-l)i for i>~2 k- l ,  we have 

2 k-I - 1 ~-~ini 2 k - I  - 1 
P (n , k )~  ~T-i - ~ -~  n. 

i 

Thus, the lemma holds. [] 

A vertex that knows k messages is called a k-vertex. The following interchange 
rule was introduced by Hajnal et al. [7] to prove P(n,n) = 2 n -  4 when n>~4. It 

is also useful in the next lemma. Suppose c is a call sequence in which the a calls 

c(i + 1) . . . . .  c(i + a) are vertex disjoint from the succeeding b calls c(i + a + 1) . . . .  , 

c(i + a + b). Then we can interchange the order of  these two blocks o f  a and b calls; 
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i.e., if we make the same calls as in c but in the order 

c(1), . . . ,  c ( i ) , c ( i + a +  1) . . . . .  c ( i + a + b ) ,  

c ( i+  1) . . . . .  c ( i + a ) , c ( i + a + b +  1) . . . . .  c(t), 

then the total information conveyed is exactly the same as for the sequence c. I f  c '  is a 

sequence o f  calls obtained from c by a number o f  interchanges like that just described, 

we say c '  is equivalent to c and write c '  ,,~ c. 

Lemma 5. Suppose O<~i<~k - 4 and n<~i - 2 + 2 k-i-l .  I f  c(1),c(2) . . . . .  c(i + j )  is 
a sequence of i + j calls, then there are at most j k-vertices after these i + j calls. 
Further, i f  there are exactly j k-vertices, then there is an equivalent call sequence 
c' ,,~ c in which the last j calls 

c'(i + 1 ),c'(i + 2), . . . ,  c'(i + j )  

are all between k-vertices. Consequently, P(n,k)>~n + i for O<<.i<~k - 4 and n<~ 
i - 2 + 2 k- i - l .  

Proof.  We shall prove the lemma by induction on j .  The lemma is true for 1 ~<j ~< 

k - i - 2, since each component o f  Gc has at most k - 2 edges and then no vertex can 

receive k messages. We now assume j />  k - i - 1 and the lemma holds for j '  = j - 1. 

Suppose there are j + 1 k-vertices after the i + j calls. Since the last call c(i + j )  
can produce at most two k-vertices, it follows from the induction hypothesis that there 

must be exactly j - 1 k-vertices xl, x2 . . . . .  xy-1 after the first i + j  - 1 calls and the 

last call c(i + j )  is between two additional k-vertices xj and Xj+l. By the second part 

o f  the lemma, we can assume that the j -  1 calls c(i+ 1), c ( i + 2 )  . . . . .  c ( i + j -  I)  are 

between the k-vertices Xl, x2 . . . . .  xj-1. By the interchange rule, the last call c(i + j )  
could be made before c(i+ 1), c ( i + 2 )  . . . . .  c ( i + j -  1). It follows that after the i +  1 

calls 

c(1) ,c(2)  . . . . .  c(i),c(i + j )  

there would be two k-vertices xj and Xj+l, which contradicts the fact that i +  1 ~<k - 3 .  

This proves that there are at most j k-vertices. 

Next, suppose there are exactly j k-vertices but the last j calls of  the given sequence 

c are not all between k-vertices. Choose the maximum index p, 1 ~< p<~j, such that 

c( i -r p)  is adjacent to at most one k-vertex. Note that c( i + p + 1 ) . . . . .  c( i + j ) are all 

between k-vertices. I f  c(i + p)  is not adjacent to any k-vertex, then by the interchange 

rule, this call could be made last and there would be j k-vertices after only i + j - 1 

calls 

c(1) . . . . .  c(i + p - 1),c(i + p + 1) . . . . .  c(i + j ) .  

This contradicts the induction hypothesis and so we can assume that c( i+p)  is adjacent 
to exactly one k-vertex. 
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Consider the subgraph G' of  Gc induced by the j - p +  1 edges c ( i+  p)  . . . . .  c ( i + j ) .  

Let C be the component of  G ~ containing the edge c(i + p) .  Let ct(1) = 

c(i + p) ,  ct(2) . . . . .  c'(r)  be the edges of  C in the order in which these calls are 

made and ctt(1), c"(2)  . . . . .  c"(s)  be the remaining edges of  G t in order. There are 

two cases. 

Case 1: p = 1 and G t has only one component, which is C. In this case s = 0 and 

r = j .  Since the first i calls of  c do not produce any k-vertices, all k-vertices must be 

in G t, i.e., G t is a connected graph with exactly j edges and exactly j + 1 vertices, 

all of  which except one are k-vertices. Then G t is a tree. Consider the component 

C t of  Gc that contains G t. I f  there are i t vertices of  C t not in G t, then there are at 

least i t edges of  C t not in G t. However, Gc has only i edges not in G t, so i>...i t. 

Delete these edges from c to get a new call sequence c t. G t is a component of  Gc, in 

which each vertex except one knows at least k - i t messages under c t. By Lemma 3, 

j + 1>12 k - i ' - I  - 1. Therefore, 

i - 2 + 2  k - i - l  >/n>li t + j + l >t{ - 1 + 2  k - i ' - l  ~> i -  I + 2  k - i - I ,  

a contradiction. Note that the last inequality follows from the fact that for 0 ~< i ~< k -  4, 

i -  1 + 2 k - i - I  is decreasing in i. 

Case 2: p > 1 or G t has at least two components. In this case p > 1 o r s ~ > l ,  

and then r < j .  By the interchange rule, c " ( l )  can be made before all calls in C and 

similarly for c"(2)  . . . . .  ct'(s). Thus, the original call sequence is equivalent to the call 

sequence 

c(1) ,c(2)  . . . . .  c(i + p - 1),c"(1)  . . . . .  c"(s ) ,c ' (1 )  . . . . .  ct(r). 

Since c ' (1)  is adjacent to only one k-vertex, the component C contains at most r 

k-vertices (C has r edges and at most r + 1 vertices). It follows that after the first 

i + j - r  calls in the above sequence, there are at least j - r  k-vertices. Therefore, by the 

induction hypothesis there must be exactly j - r such k-vertices (and the component C 

contains exactly r k-vertices) and there is an equivalent re-ordering of  these i + j - r 

calls so that the last j - r calls are between the j - r k-vertices not in C. In this way 
we obtain an equivalent call sequence 

Cl (1 )  . . . . .  Cl(i + j - r ) , c ' (1 )  . . . . .  c'(r).  

Since the j -  r calls cl(i  + 1) . . . . .  cl(i  + j -  r) are between k-vertices not in C, they 

are vertex disjoint from e ' (1)  . . . . .  ct(r). It follows, again by the interchange rule, that 
an equivalent sequence is 

e l ( l )  . . . . .  c l ( i ) ,e ' (1)  . . . . .  e ' ( r ) , c l ( i  + 1) . . . . .  cl(i  + j - r). 

The first i + r calls in the above sequence give rise to the r k-vertices in C. Therefore, 
by the induction hypothesis, these calls can be rearranged so that the last r calls are 

between k-vertices. After re-ordering the first i + r calls in this way, we obtain an 

equivalent call sequence c ~ :,~ e in which the last j calls are between k-vertices. This 
completes the proof  o f  the lemma. [] 
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Now we are ready to conclude our solutions to P(n,k) .  

2 ~ - I  1 - Theorem 6. P ( n , k ) =  [ ~ n  I for  2 k- l  - l <~n. 

Proof. The theorem follows from Lemma 1, Lemma 2 with i = 0, and Lemma 4. 

Theorem 7. P(n, k) = n + i for  0 <~ i <~ k - 4 and i + 2 k - i -2  ~< n ~< i - 2 + 2 k - i -  1. 

Proof. The theorem fol lows from Lemmas 2 and 5. []  

[] 
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