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In terms of the multifractal analysis, we investigate the characteristics of the instantaneous normal modes
(INMs) at two mobility edges (MEs) of a simple fluid, where the locations of the MEs in the INM spectrum
were identified in a previous work [B. J. Huang and T. M. Wu, Phys. Rev. E 79, 041105 (2009)]. The mass
exponents and the singularity spectrum of the INMs are obtained by the box-size and system-size scalings
under the typical average. The INM eigenvectors at a ME exhibit a multifractal nature and the multifractal
INM:s at each ME yield the same results in generalized fractal dimensions and singularity spectrum. Our results
indicate that the singularity spectrum of the multifractal INMs agrees well with that of the Anderson model at
the critical disorder. This good agreement provides numerical evidence for the universal multifractality at the
localization-delocalization transition. For the multifractal INMs, the probability density function and the spatial
correlation function of the squared vibrational amplitudes are also calculated. The relation between the prob-
ability density function and the singularity spectrum is examined numerically, so are the relations between the

critical exponents of the spatial correlation function and the mass exponents of the multifractal INMs.
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I. INTRODUCTION

The localization-delocalization transition (LDT) induced
by disorder, also known as the Anderson transition, is at the
forefront of physics and has been intensively studied with the
model proposed by Anderson for the transport of noninter-
acting electrons [1]. Nowadays, the researches on this subject
are more active than ever, since the LDT occurs in a broad
range of physical systems related to waves [2-8]. In the
Anderson model (AM), the amplitudes of the electronic
wave functions at the LDT exhibit strong fluctuations char-
acterized in a multifractal nature [9]. It is challenging to
study the multifractality at the LDT by numerical methods,
with which only finite-size systems are investigated. Owing
to the recent advance in computers and algorithms, the AM
has been calculated at much large scales [10-13] so that the
understanding for the multifractality at the LDT has consid-
erably progressed.

The LDT also happens to vibrational excitations, the
waves of atomic motions, in disordered media [14—17]. The
studies with vibrational excitations have the benefit to avoid
the complicated problems occurring in the electronic systems
due to the electron-electron and electron-phonon interac-
tions, which make the electron transport in the real materials
deviated from the AM. Vibrational modes in perfect lattices
are extended and some localized modes appear as weak dis-
order is introduced by impurities or defects in lattices. In
topologically disordered systems, such as amorphous mate-
rials, the strong disorder in atomic structures makes the sys-
tems no longer possess a reference of lattice. The vibrational
modes in the topologically disordered systems are generally
extended at low frequencies but localized in the high-
frequency end of the vibrational spectrum, so that a LDT
occurs at some vibrational frequency, named as mobility
edge (ME). Expected to behave multifractally also, the vibra-
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tional modes at a ME provide an alternative for investigating
the universality of the multifractals at the LDT. Recently,
localization of ultrasound is observed in a three-dimensional
elastic network of aluminum beads and the localized ultra-
sounds show strong multifractality [5,18].

We have recently identified the LDT in the instantaneous
normal mode (INM) spectrum of a simple fluid [19]. Re-
ferred as the eigenmodes of the Hessian matrices calculated
at the instantaneous configurations, the INMs of a fluid may
have positive and negative eigenvalues since the fluid con-
figurations are not necessary at the local minima of energy
landscape [20]. By the level-spacing (LS) statistics and the
approach of finite-size scaling, we find two MEs—one with a
positive eigenvalue and the other with a negative
eigenvalue—in the INM spectrum. Determined by the scale
invariance of the nearest-neighbor LS distribution, the loca-
tions of the two MEs are confirmed by good agreement in the
critical exponent and the nearest-neighbor LS distribution at
each ME with those of the AM at the critical disorder. This
confirmation is fulfilled with the requirement by the random
matrix theory [21], which indicates that the LS statistics at a
LDT is universal and subject to the universality class of the
associated random matrices.

Although the universal features of the vibrational modes
and the electronic eigenstates at the LDT were reported [17],
the comparison in quantity between the multifractal natures
of the vibrational modes and those obtained by the AM is
lacking. In this paper, we calculate the multifractal properties
at the MEs in the INM spectrum of the simple fluid we
studied before and compare our results with those of the AM
at the critical disorder. Since the two disordered systems are
fundamentally different, this comparison serves a naive nu-
merical examination for the universal multifractality at the
LDT. In Sec. II, we describe how the fluid configurations are
generated by simulations and present a visualization of the
multifractal structures of the INMs at a ME. In Sec. III, we
generalize the multifractal analysis for the INMs. In Sec. IV,
by the standard box-counting method [22], we calculate the
singularity spectrum of the multifractal INMs. Also, the
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TABLE 1. The system sizes of our simulations for the TLJ fluid at p*=0.972 and 7°=0.836. N is the
particle number and L=(N/p*)'3 is the length of simulation box. Both L and p* are in the LJ units.

N 3000 6000
L 14.56 18.38

12000
23.12

24000
29.12

48000
36.69

96000
46.22

probability density function (PDF) and the spatial correlation
function of the squared vibrational amplitudes in the multi-
fractal INMs are investigated and their relations to the sin-
gularity spectrum and the mass exponents are examined. Our
conclusions are given in Sec. V.

II. INMS AT MOBILITY EDGE

Using the Monte Carlo simulation for N particles in a
cubic box of length L and the periodic boundary conditions,
we generate the configurations of the truncated Lennard-
Jones (TLJ) fluid at reduced density p*=0.972 and reduced
temperature 7°=0.836 in terms of the LJ units [23]. Given in
Table I for the particle number N and the box length L, the
simulations of six system sizes are performed.

With the definition given in Ref. [24], the Hessian matri-
ces of the generated configurations are evaluated and then
diagonalized with the JADAMILU package [25,26]. Presented
in Fig. 2 of Ref. [19], the INM-eigenvalue spectrum D(\)
consists of two branches, corresponding to the positive and
negative eigenvalues. According to the results of the LS sta-
tistics for four system sizes between N=3000 and N
=24 000, the MEs are located at \,,.=1183.8=0.8 and X\,
=-87.1+0.3. By the multifractal analysis given below for
system sizes up to N=96 000 [15,27], the ME in the
negative-eigenvalue branch is found at A\,.=-86.6*0.5,
which, within numerical errors, agrees with that obtained by
the LS statistics.

For each configuration of N particles, there are 3N INMs
with discrete eigenvalues A, where the INM label s is from
1 to 3N. For INM s, the 3N components of the normalized
eigenvector are denoted as ej for j=1,...,N, where e’ is the
three-dimensional projection vector of particle j in the INM
[28]. The magnitude of the projection vector, e‘;- , stands for
the vibrational amplitude of particle j in INM s. Due to the
normalization of an INM eigenvector, the vibrational ampli-
tudes of all particles in an INM are subject to a sum rule,

N

2lelP=1. (1)

J=1

Generally, the geometric structure of an INM eigenvector
can be represented by the spatial distribution of the vibra-
tional amplitudes. A visualization for the vibrational ampli-
tudes in an INM at the ME is shown in Fig. 1.

III. MULTIFRACTAL ANALYSIS FOR INMS

In this section, we generalize the multifractal analysis
[29] for the INMs at the two MEs. We use the standard
box-counting procedure, first dividing the simulation box
into N,, small boxes of linear size [, where N, = 773 with 2

=1[/L. Because of the fluidity in our system, the particle num-
ber n in a small box of each realization fluctuates around the
average value ng=N/N,. As shown in Fig. 2, for a small 7,
ng is very small so that a small variation of n from boxes to
boxes causes a large fluctuation on the particle ratio n/n.
The fluctuation of n is generally a result due to the topologi-
cally disordered structures in our model. This is one of the
differences between our model and the AM, in which the
numbers of lattice points in every small boxes in the box-
counting procedure are the same. Thus, the box-counting
procedure for our model is nothing but a coarse graining of
our system from particles with a unit size into the small
boxes by a scaling factor / in length.

10

107

FIG. 1. (Color) Geometric structure of the INM with (a) A
=1183.25 or (b) —86.78 for the TLJ fluid of 96 000 particles in a
box of L=46.22. In each panel, particles with vibrational ampli-
tudes |ef| larger than the average value N~'Z are presented by
spheres with diameter of one and centered at particle position. The
color of each sphere indicates the |ejs-| value of the particle. The total
numbers of spheres presented in (a) and (b) are about 5700 and
7000, respectively.
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FIG. 2. (Color online) Distribution of particle number n in a
small box in the box-counting method for the TLJ fluid of N
=96 000 particles. The symbols are the numerical results for several
7 values. ng=N/N,, is the average particle number of a small box.

Considering INM s of a configuration, we define a mea-
sure wu;(7) as the sum of the squared vibrational amplitudes
of particles inside the kth small box with the expression as

mn= 2 e (2)
jeboxk
The generalized inverse participation ratio Py(7) of this INM
is defined as a summation of the gth moment of wu;(7) over
all small boxes. That is,

N"/
Pi(n) =2 [u(n)). 3)
k=1

Due to the normalization condition in Eq. (1), as g=1,
P,(m)=1 for all INMs and all values of 7. Then, we make a
typical average on P;(7) over the INMs within a small ei-
genvalue window [11,29,30]. The typical average of P(7),
denoted as P (N, 7), is defined as

P,(\,77)=exp<In P;( 7>, 4)

where (---), is an arithmetic average over the INMs with
eigenvalues within a small interval of width A\ and centered
at \.

Underlying the assumption of multifractality, which, in
principle, has no relevant length scale, P,(\,7) is assumed
to follow the power-law behavior

P, (N, ) = 5. (5)
From this scaling relation, 7, is given as
In P,(\,
7= fim LN 6)
7—0 ln 77

The mass exponent 7, is a quantity characterizing the nature
of the INMs under the average: 7,=d(q—1) for the delocal-
ized INMs, where d is the space dimension and 7,=0 for the
localized INMs. At the MEs, 7,=D,(¢—1), where D, is the
so-called generalized fractal dimension. Generally, D, de-
pends only on the universality class of the associated random
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matrices so that D, should be the same for the two MEs in
the INM spectrum. The value of D, is less or larger than d
for positive or negative g, respectively.

In the multifractal analysis, the singularity spectrum f(c)
is a useful quantity, which can be obtained from 7, through a
Legendre transformation,

fqu(aq)zaqq_qu (7)
with
d
a,= 7; g=F(a). (8)

The meaning of f(a) for the INMs is given as the following:
as long as the scaled linear size L' =1/ 7 is large enough, the
small boxes, which are specified with the coarse-grain
squared vibrational amplitudes u;(7) scaled as 7 form a
fractal with a fractal dimension f(«). That is, the number of
such small boxes scales as L'/, Alternatively, by consider-
ing directly the particles in the fluid configuration of linear
size L, f(a) is the fractal dimension of the set of particles
with |e$|>~ L% and, thus, the number of such particles scales
as L/') In the typical average, the behavior of P,(\,7) is
generally dominated by a single representative INM [30]. To
make sure that the particle number scaling as L/'® in the
representative INM is always larger than one, f(«) under the
typical average is always positive [11] no matter what the
value of L is.
According to the definitions given in Egs. (7) and (8) and
7, in Eq. (6), @, and f, can be reformulated as the following
expressions:
a, = lim In7,(x. ») , 9)
70 Inpy

fq= limln_FM (10)

0 Ingp
where

Ny
> &gy ), (1)

k

InT,(\,7) =
1 \

N

n
> 8(g.mn 8(g.m) ) . (12)
k=1 \

with 8(q, n)=[m ()] Py(n). With the sets of a, and f,
calculated by Egs. (9) and (10) for different values of the
implicit parameter ¢, the function of f(«) under the typical
average is obtained such that the difficulties in numerical
calculations via Egs. (7) and (8) are avoided.

In Fy(\,7) =

IV. MULTIFRACTALITY OF INMs AT A ME

In this section, we present the multifractal properties of
the INMs at the MEs, including the generalized fractal di-
mension and the singularity spectrum. We also show the
probability density function and the spatial correlation func-
tion of squared vibrational amplitudes in the multifractal
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INMs. The results presented in the following are averaged
for the INMs with A=-86.6%£0.5 or those with A
=1183.8=1.

A. Fractal dimension and singularity spectrum

The thermodynamic limit in Eq. (6) is achieved by either
L— % or [—0 but, practically, these two limits cannot be
obtained numerically for the discrete nature of our model due
to particle size and the finite sizes of simulated systems.
Instead of taking the limit, the value of 7, is interpreted as
the slope of In P (\,7) versus In 7 as 7 is very small
Hence, this slope can be obtained numerically by a linear fit
of the In P (N, 7) data within a finite interval of 7. Similarly,
the values of «, and f, in Eqgs. (9) and (10) are obtained from
the slope of a linear fit for In 7,(\, %) and In F,(\, 77) versus
In 7, respectively. By this approach, the three quantities ver-
sus In 7 can be calculated in two different ways: the box-size
scaling and the system-size scaling. In the box-size scaling,
only one system with very large L is needed so that L is a
constant and the variations of the three measured quantities
with the box-size / are calculated. In the system-size scaling,
all simulated systems with different L are partitioned into
small boxes of the same size so that / is a constant and the
variations of the measured quantities with L are evaluated.

In the box-size scaling, by averaging 5 10° INM eigen-
vectors of N=96 000 at the ME in the negative branch and
taking the scaled size L'=1/ 7 as an integer varied from 2 to
10, we have calculated InP,(\,7), InT,\,7), and
In F (N, 7) for g between —5 and 5. The numerical results of
integer g are presented in Fig. 3, including the linear fit for
the data of each g. Generally, for each ¢, the In Pq()\, 7).,
In7,(\,7), and In F,(\,7) data have a linear behavior at
small In 7. We have performed the same calculations at the
positive-eigenvalue ME and the results are almost the same
as those in Fig. 3.

In system-size scaling, we set [=2.427 such that the simu-
lated system of N=3000 is exactly partitioned into 216
boxes, with L'=6 and the average particle number ny=13.9.
For other larger simulated systems and with this [, L/ is not
exactly an integer so that we partition each realization into
small boxes of size [ as many as possible, with some remains
not enough to be a small box. In such a partition, the number

of small boxes available is Z3, where L is the maximum
integer which is smaller than or equal to L//. Thus, for the

six system sizes that we have simulated, the values of L are
6,7,9, 12, 15, and 19; correspondingly, the definition of # in
the system-size scaling changes as 1/ L. For a partition with
remains, only particles in those small boxes are involved in
the calculations of w;(7); however, by requiring that one

corner of the partitioned box of size L coincides with one of
the simulation box, each realization may have eight different
ways of partition, which enhances the number of sampling
for statistical average. Calculated with the system-size scal-
ing, the results of In P (\,7), In T,(\,7), and In F (\, )
versus In 7 are close to those shown in Fig. 3.

The mass exponent 7, and the generalized fractal dimen-

q
sion D,=7,/(g—1) at the two MEs are plotted in Fig. 4 for
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FIG. 3. (Color online) (a) In P,(\,7), (b) In T,(\,7), and (c)
In F (N, 7) versus In 7 for the INMs with A\=-86.6+0.5. The nu-
merical data are obtained by the box-size scaling for N=96 000,
with the scaled size L'=1/7 an integer from 2 to 10. The symbols
are the numerical results, with the filled ones for negative ¢, the
open ones for positive ¢, and the crosses for g=0. The data errors
are smaller than the symbol size. The linear fits for the data are
indicated by either the black dashed lines for ¢ # 0 or the red solid
line for g=0.

—5=¢g=35. The data obtained by the box-size scaling are
accurate enough to indicate that 7, and D, at the two MEs
are identical. At ¢=0, 7,=—d and D,=0 as expected. For ¢
=2, D, is the correlation dimension of the inverse participa-
tion ratio P, [28,30,31]. The results of the box-size scaling
give D,=1.40*0.03, which is generally comparable with
the D, value of the AM estimated with the previously re-
ported methods [32-35]. However, the value of D, by the
system-size scaling is 1.29 * 0.04, close to the value reported
recently by the generalized multifractal analysis for the AM
[36]. In principle, as g varies from —% to %, 7, is a mono-
tonically increase function of ¢, but the slope of the function,
which is ay, decreases from the limiting value @, to a_,
which confines the range of the singularity spectrum f(«)
under the typical average [11]. Estimated by our data at |g]|
=5 in Fig. 4(a), the value of a by the box-size scaling is
limited from 0.86 to 6.7; with almost the same upper limit,
the range of « by the system-size scaling is extended to 0.78.

Presented in the insets of Figs. 5(a) and 5(b) are the val-
ues of a, and f, generated from the slope of the linear fit for
InT,(\,7) and InF,(\,7) with -5=g=35, respectively.
With the «, and f, data by the box-size scaling, the singu-
larity spectra f(a) at the two MEs are plotted in Fig. 5(a).
Within numerical errors, the singularity spectra at the two
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FIG. 4. (Color online) (a) Mass exponent 7, and (b) generalized
fractal dimension D, as a function of g. The black circles and red
triangles are obtained by the box-size scaling for INMs with X\
=1183.8+1.0 and AN=-86.6*0.5, respectively. The green dia-
monds are obtained by the system-size scaling for INMs with A=
—86.6+0.5. The data errors in (a) and those around ¢=0 in (b) are
smaller than the symbol size. The dashed-dotted lines are the PA
with ap=4.04.

ME:s are generally identical and also agree with that of the
AM at the critical disorder [11]. This agreement provides
another confirmation for the locations of the two MEs in the
INM spectrum. Indicated by our results, the maximum of
f(a@) occurs at y=4.034 % 0.006 for the positive-eigenvalue
ME and «;=4.049 £0.016 for the negative-eigenvalue ME;
the two values of ¢ generally agree with each other. Simi-
larly, with the data of the system-size scaling, the singularity
spectrum at the negative-value ME is presented in Fig. 5(b),
with ap=4.1=*0.02 and the left end of the spectrum extended
toward smaller & as compared with the one obtained by the
box-size scaling. The singularity spectrum generally agrees
with that of the AM obtained by the system-size scaling [11],
except for a small deviation in the right (large ) end, which
is attributed to the small average particle number and large
fluctuations in the small boxes in our system-size-scaling
calculations.

Around the maximum at «;, where f(a;)=d, the singular-
ity spectrum can be described by Wegner’s parabolic ap-
proximation (PA) [37],
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FIG. 5. (Color online) Singularity spectrum f(«) of the INMs at
a ME obtained by (a) the box-size scaling and (b) the system-size
scaling. In (a), the INMs are calculated with A=1183.8 = I (circles)
and A=-86.6 0.5 (squares) for N=96 000; in (b), the INMs with
N=—-86.6+0.5 (squares) are calculated for six system sizes from
N=3000 to 96 000. In each panel, f(«) is generated with the data of
@, and f, shown in the insets for ~5=g=35 with a step of Ag
=0.1. The green solid line is the corresponding spectrum trans-
formed via the symmetric relation in Eq. (17). The red dashed line
is that of the AM at the critical disorder [11]. The blue dashed-
dotted lines in (a) and (b) are the PA with ay=4.04 and ay=4.10,
respectively.

(a— a0)2

A —J_ U
fN@)=d= o

(13)
which is ensured to go through the maximum of f(«) and to
be tangential to the line f(@)=a. As shown in Figs. 5(a) and
5(b), f(a) deviates from the PA as « is near either a, or a_,
and the overall shape of f(«) becomes asymmetric about the
maximum of f(a).

By substituting f() in Egs. (7) and (8) with f**(a), 7,
and D, under the PA are given as

TSAz—(aO—d)q2+a0q—d, (14)

DqPA=—(a0—d)q+d, (15)

where « is the only parameter. By setting ay=4.04, 7'5A and
DZA, as shown in Fig. 4, are good only for small g.
Relative to the fully delocalized states, the anomalous di-
mension of multifractals is defined as A,=17,~d(g—1). Re-
cently, based on the nonlinear o model [10,38,39], a sym-

metric relation of the anomalous dimension is shown as
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FIG. 6. (Color online) Anomalous dimension A, and reduced
anomalous dimension &, (inset) versus ¢ at a ME. Obtained by the
box-size scaling, the circles and triangles, guiding the eye with the
dashed line, are the Aq data of the INMs with A\=-86.6 0.5 and
1183.8 =1, respectively. The data errors are smaller than the sym-
bol size. The red solid line is the mirror image of the A, data with
respect to the line g=1/2.

A=A, (16)

With the symmetric relation of A, it has been proved that
the f(a) value for a«<d and that for «>d are transformed
with each other via the relation

fRd-a)=fla)+d- «a, (17)

where « is only defined between 0 and 2d. The symmetric
relation of A, has been confirmed numerically for the power-
law random banded matrix model in one dimension [10], the
symplectic Anderson model in two dimensions [40] and the
orthogonal Anderson model in three dimensions [11,12] and
evidenced experimentally by the ultrasound waves in two
dimensions [18].

We also show in Figs. 5(a) and 5(b) the comparison be-
tween the singularity spectrum of the INMs and the one gen-
erated via the symmetric relation in Eq. (17). By the box-size
scaling, f(@) at a ME is generally satisfied with the symmet-
ric relation within 2 =< @ =4, which is similar as the range for
the AM. To examine the symmetric relation of A, for the
INMs at a ME, we plot in Fig. 6 the anomalous dimension A,
and compare A, with A,_,, which is obtained by the mirror
image of A, with respect to g=1/2. Our data of A, at each
ME are satisfied with the symmetric relation for g between
—0.5 and 1.5. Shown in the inset in Fig. 6 is the reduced
anomalous dimension §,=A,/q(1-¢g). Our result of &, ver-
sus ¢ has a similar shape as the one measured by the multi-
fractal ultrasounds on the surface of an elastic network [18].

According to our results, we have shown that the INMs at
the MEs behave in the same multifractal features as those of
the lattice AM at the critical disorder. The agreement be-
tween our results and those of the AM gives a numerical
evidence for the universality of multifractals at a LDT. In the
following, we investigate the vibrational amplitudes in the
multifractal INMs and present only the results at the ME in
the negative branch.

PHYSICAL REVIEW E 82, 051133 (2010)

B. Probability density function

Another approach to characterize the multifractal INMs is
the statistics of squared vibrational amplitudes in individual
INM eigenvector. Averaged over the multifractal INMs of N

particles in a system of size L, the PDF P, (i) of the squared

vibrational amplitudes =|ej|* is defined such that P, () Ay
is the ratio AN/N, where AN is the averaged number of
particles with squared vibrational amplitudes lying between
¢ and +Ay in an INM. By changing variable to the singu-
larity strength a=-In ¢/In L, the corresponding PDF P;(«)

is given as P, ()di/da. Based on the physical meaning of
f(a), P;(a) has a scaling of L/'®¢ Recently, it has been
proved analytically and confirmed with the numerical results
of the AM in three dimensions [13] that the proportionality
of the scaling is the maximum value of the PDF at « be-
cause of f(ay)=d. Thus, P,;(a) can be expressed as

Py(a) = Pp(ap)L/ 9. (18)

Since the scale invariance of a( with system size, the posi-
tion of the maximum PDF is expected to be independence of
L.

By using the PA of f(«) in Eq. (13), we obtain a Gaussian
approximation (GA) of P;(a) as

2
lazap) L}. (19)

PiMa) = PL(ao>exp{— 4on—d)
ao -

Under the GA, the distribution width of P,(«) decreases
with (In L)"?, while the maximum P,(q,) increases with
(In L)"? due to the normalization of the PDF. On the other
hand, in terms of the symmetric relation of f(«) in Eq. (17),
P;(a) for large enough L is expected to approach the one
generated via the symmetric transformation (ST),

P} (@)= L*P,(2d - @), (20)

where 0= a=2d. The equivalence of P;(«) and PiT(a) im-
plies that the values of P,(e¢=d) and P;(d= «) are corre-
lated with each other. Therefore, the investigation of P;(«)
provides an insight into the property of f(a).

Calculated with 7000 INM eigenvectors for each N from
3000 to 96 000, the variation of P;(a) with system size is
shown in Fig. 7. Located at a=4.1 = 0.04, the position of the
P; () maximum is almost invariant with system size. Within
our numerical resolution, this maximum position is very
close to the «, value of f(a) obtained by the system-size
scaling in Fig. 5(b). Shown in the inset of Fig. 7, P;(«),
with ay=4.1, indeed scales as (In L)"?, which agrees with
the prediction of the GA.

The comparisons of P;(a) with PSA(a) and PiT(a) are
shown in Fig. 8(a) for N=96 000. Our results indicate that a
noticeable deviation of P;(a) from the GA or the ST is found
in the large-a region, which corresponds to small vibrational
amplitudes. To quantify the deviation of P;(«) from the GA
or the ST, we define the difference 5Pf(a):PL(a)—P?(a),
where O is either GA or ST and the integrated difference
SPY=[§|6PY()|da, where a,=2d for O=ST and a,=7 for
O=GA. The numerical results of 5Pf(a) are presented in
Fig. 8(b) and the system-size dependences of 6P;" and 6P
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are in the inset of the figure. For the system sizes investi-
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smaller than that of the ST. However, the integrated differ-
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size, which is consistent with the result of the AM [13].
Fluctuating with the system size, the integrated difference of
the GA does not decay with increasing system size, which
implies the non-Gaussian nature of P;(«) at even large sys-
tem sizes. Thus, our results suggest that, by increasing the
system size of our model, the singularity spectrum f(«) at a
ME gets satisfied with the symmetric relation in Eq. (17) but
not with the PA in Eq. (13).

C. Spatial correlation function

To characterize the spatial structures of the multifractal
INMs, we define the spatial correlation function [41] for the
gth moment of the squared vibrational amplitudes of two
particles separated at a distance r in a system of size L as

N N
> XlePlelasr—ry ), (21)

1
C q(r,L) = E
=1 j#i N

where r;; is the distance between particles i and j, the brack-
ets denote an ensemble average for the multifractal INMs,
and r is assumed to be smaller than half of L. Since the
distribution of squared vibrational amplitudes relies on the
system size, C,(r,L) not only is a function of the distance
between two particles but also depends on L. In terms of
AN,, which is the number of particles within a spherical shell
between r and r+ dr about a central particle, the expression
of C,(r,L) is written as

LA
C (r,L)= HEIPSIE S 22
o(rsL) NAN,,}:} ;:El e[| . (22)

where the second summation is subject to those particles
within the shell.

Based on the multifractal nature, a scaling argument for
the spatial correlation function of the critical states at the
Anderson transition has been given [42,43]. By applying the
scaling argument for the squared vibrational amplitudes of
the multifractal INMs, the scaling behavior of C,(r,L) is
predicted as

C,(r,L) x L7, (23)

where y, and z,, the correlation exponents of the spatial cor-
relation function, are given as

Vg=d+ Ty, (24)

2g=d+27,— 7. (25)

By using the PA of 7, in Eq. (14), y, and z, in the PA are
expressed as

Vit =2ayq - 4(ap - d)g’, (26)

2t =2(ap—d)q’. (27)

To examine whether the correlation exponents of the mul-
tifractal INMs follow the predictions of the scaling argu-
ment, we calculate C,(r,L) at the ME in the negative branch
for several system sizes. Presented in Fig. 9(a) are the
C,(r,L) of N=48 000 with 0<<g<2 for r less than L/2.
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FIG. 9. (Color online) (a) Spatial dependence of C,(r,L) in a
log-log plot for N=48 000. The symbols are the averaged results of
INMs with A\=-86.6*0.5. The data from top to bottom are for ¢
from 0.2 to 1.8 with a step of Ag=0.2. The solid lines are a linear fit
for each g. (b) Correlation exponent z, versus g. The red filled
squares are obtained by the linear-fit results in (a). The dashed-
dotted line is the PA. The black circles and green triangles are the
predictions of the scaling theory with 7, obtained by the box-size
scaling and the system-size scaling, respectively.

Evidenced by our results, Cq(r,L) indeed follows a power-
law decay with respect to . We make a linear fit for the data
of each ¢ in Fig. 9(a) so that the data of z, are extracted. The
numerical results of z, are presented in Fig. 9(b), with the
error of z,, estimated by a similar way given in Ref. [19]. For
large ¢, the original data of C,(r,L) suffer from strong fluc-
tuations, which cause large errors in z,. By substituting the
data of 7, obtained by the box-size scaling or the system-size
scaling into Eq. (25), the predictions of the scaling argument
are shown in Fig. 9(b) for comparison. Indicated by our re-
sults, the scaling argument with 7, of the box-size scaling
agrees with the numerical data for ¢ <1; however, with 7, of
the system-size scaling, the range in ¢ for the agreement is
extended up to 1.2. With ap=4.04 in Eq. (25), the PA of z, is
good for ¢<<0.7, which is consistent with that the PA for 7,
is only good for small q.

Similarly, we calculate Cq(r,L) at a fixed r for several
system sizes of N varying from 3000 to 48 000. No qualita-
tive difference is found in the system-size dependence of
In C,(r,L), wherever r is set at 4.0, 4.5, 5, or 5.5, which are
distances around the fifth shell in the radial distribution func-
tion but still smaller than half of L for N=3000. With results
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FIG. 10. (Color online) (a) System-size dependence of C,(r,L)
in a log-log plot for an average over r at 4.0, 4.5, 5, and 5.5. The
numerical data are for the INMs with A=-86.6*+0.5. From left to
right, the system sizes N are from 3000 to 48 000; from top to
bottom, the values of ¢ are from 0.2 to 1.6 with a step of Ag=0.2.
The dashed lines are a linear fit for each g. (b) Correlation exponent
¥4 versus g. The lines and symbols are similar in meaning as those
in Fig. 9(b).

averaged for the four distances of r, In Cq(r,L) versus In L is
plotted in Fig. 10(a). The linearity of the data for each ¢ in
Fig. 10(a) indicates the power-law dependence of C,(r,L)
with respect to L and the slope of a linear fit gives the nu-
merical data of y,, which are shown in Fig. 10(b) with the
errors estimated in a similar way as those of z,. We have
examined the data of y, for In C q(r,L) evaluated at the four
distances of r; however, the variation of Vq with r is too small
to be noticeable. Again, with the 7 data obtained by the
box-size scaling, the prediction of the scaling argument for
¥, agrees with the numerical results for ¢<<1.2, which is a
little larger than that for z,. Similarly, by the 7, data of the
system-size scaling, the upper limit of the agreement extends
to g=1.4. However, the PA of y, in Eq. (26) is still only good
for ¢<<0.7.

V. CONCLUSIONS

In this paper, we have investigated the multifractality of
the INMs at the two MEs of a simple fluid, with the two MEs
distinguishable by positive or negative eigenvalue. The loca-
tions of the MEs were determined in a previous work by
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using the level-spacing statistics and the finite-size scaling
[19]. We generalize the multifractal analysis for the INMs at
a ME with the box-counting method, in which the simulated
system is partitioned into small boxes of equal volumes. Be-
cause of the fluidity of our model, the particle numbers in the
divided small boxes fluctuate around an average value; this is
a major difference between our model and the lattice AM. By
means of the multifractal analysis under the typical average,
we have calculated the generalized inverse participation ra-
tios of the squared vibrational amplitudes in the INMs by the
box-size and system-size scalings. The results of the box-size
scaling indicate that the INMs at a ME are characterized in
the multifractal nature and the multifractals at the two MEs
yield the same results in generalized fractal dimensions and
singularity spectrum. By both box-size and system-size scal-
ings, the singularity spectrum of the multifractal INMs
agrees well with that of the AM, which provides a numerical
evidence for the universal multifractality at the localization-
delocalization transition due to disorder.

We have examined the singularity spectrum of the INMs
with the symmetric relation originally proposed for the non-
linear o model [10]. Our results indicate that the symmetric
relation is obeyed as our model is in a very large system size;
a similar conclusion is also obtained with the AM [11,13]. In
principle, multifractals exhibit self-similarity for all length
scales, indicating that no length scale is determined by the
systems where the multifractals are produced. However, our
model and the AM are discrete models with a fundamental
length unit, which is the lattice constant in the AM or the
particle size in our model. In a length scale comparable with
the length unit of a discrete model, the basic assumption of
multifractals breaks down for the model. We conjecture that
this is the reason why the system sizes of our model and the
AM should be extremely large in order that the singularity
spectra of the two models are fulfilled with the proposed
symmetric relation.

For the multifractal INMs, the PDF of the logarithm of
squared vibrational amplitudes is calculated for several sys-
tem sizes. Associated with the maximum of the singularity
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spectrum, the location of the maximum PDF is invariant with
the system size. For the system sizes we have investigated so
far, the PDF of the multifractal INMs is deviated from a
Gaussian distribution, which corresponds to the singularity
spectrum under the PA, especially in the region for the small
vibrational amplitudes. Indicated by our numerical results,
the deviation does not decrease with increasing the system
size.

The spatial characteristics of the multifractal INMs in a
finite-size system are examined by the spatial correlation
function for the gth moment of the squared vibrational am-
plitudes of two particles. Being a function of the two-particle
distance and the system size, the spatial correlation function
is numerically evidenced to decay in a power law for each
variable with a correlation exponent. By a scaling argument
[42,43], the two correlation exponents of the spatial correla-
tion function are related to the mass exponents of the multi-
fractal INMs. With the mass exponents obtained by the box-
size and system-size scalings, the predications of the scaling
argument agree with the numerical results of the two corre-
lation exponents at small g but are deviated at large g; the
prediction by the system-size scaling produces a larger range
of agreement in ¢ than that of the box-size scaling. The de-
viation at large ¢ is possibly resulted from the different av-
erages used in our calculations for the spatial correlation
function and the mass exponents of the multifractal INMs,
which are under the ensemble and typical averages, respec-
tively. The deviation is expected to be improved as the mass
exponents of the INMs are also calculated under the en-
semble average, which produces better results in the singu-
larity spectrum of the AM than the typical average does [12].
The multifractal analysis for the INMs under the ensemble
average will be one of our future works.

ACKNOWLEDGMENTS

We are indebted to Professor R. A. Romer for providing
their data of the AM. T.-M.W. acknowledges financial sup-
ports from the National Science Council of Taiwan, under
Grant No. NSC 99-2112-M-009-003-MY?2.

[1] P. W. Anderson, Phys. Rev. 109, 1492 (1958).

[2] F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).

[3] J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan,
D. Clement, L. Sanchez-Palencia, P. Bouyer, and A. Aspect,
Nature (London) 453, 891 (2008).

[4] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zac-
canti, G. Modugno, M. Modugno, and M. Inguscio, Nature
(London) 453, 895 (2008).

[5] H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B.
van Tiggelen, Nat. Phys. 4, 945 (2008).

[6] A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, Phys. To-
day 62(8), 24 (2009).

[7] A. Aspect and M. Inguscio, Phys. Today 62(8), 30 (2009).
[8] A. Richardella, P. Roushan, S. Mack, B. Zhou, D. A. Huse, D.
D. Awschalom, and A. Yazdani, Science 327, 665 (2010).

[9] M. Schreiber and H. Grussbach, Phys. Rev. Lett. 67, 607

(1991).

[10] A. D. Mirlin, Y. V. Fyodorov, A. Mildenberger, and F. Evers,
Phys. Rev. Lett. 97, 046803 (2006).

[11] L. J. Vasquez, A. Rodriguez, and R. A. Romer, Phys. Rev. B
78, 195106 (2008).

[12] A. Rodriguez, L. J. Vasquez, and R. A. Romer, Phys. Rev. B
78, 195107 (2008).

[13] A. Rodriguez, L. J. Vasquez, and R. A. Romer, Phys. Rev. Lett.
102, 106406 (2009).

[14] W. Garber, F. M. Tangerman, P. B. Allen, and J. L. Feldman,
Philos. Mag. Lett. 81, 433 (2001).

[15]7J.7J. Ludlam, S. N. Taraskin, and S. R. Elliott, Phys. Rev. B 67,
132203 (2003).

[16] J. L. Feldman and N. Bernstein, Phys. Rev. B 70, 235214
(2004).

[17] J. J. Ludlam, S. N. Taraskin, S. R. Elliott, and D. A. Drabold,

051133-9


http://dx.doi.org/10.1103/PhysRev.109.1492
http://dx.doi.org/10.1103/RevModPhys.80.1355
http://dx.doi.org/10.1038/nature07000
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nature07071
http://dx.doi.org/10.1038/nphys1101
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206091
http://dx.doi.org/10.1063/1.3206092
http://dx.doi.org/10.1126/science.1183640
http://dx.doi.org/10.1103/PhysRevLett.67.607
http://dx.doi.org/10.1103/PhysRevLett.67.607
http://dx.doi.org/10.1103/PhysRevLett.97.046803
http://dx.doi.org/10.1103/PhysRevB.78.195106
http://dx.doi.org/10.1103/PhysRevB.78.195106
http://dx.doi.org/10.1103/PhysRevB.78.195107
http://dx.doi.org/10.1103/PhysRevB.78.195107
http://dx.doi.org/10.1103/PhysRevLett.102.106406
http://dx.doi.org/10.1103/PhysRevLett.102.106406
http://dx.doi.org/10.1080/09500830110041666
http://dx.doi.org/10.1103/PhysRevB.67.132203
http://dx.doi.org/10.1103/PhysRevB.67.132203
http://dx.doi.org/10.1103/PhysRevB.70.235214
http://dx.doi.org/10.1103/PhysRevB.70.235214

B. J. HUANG AND TEN-MING WU

J. Phys.: Condens. Matter 17, L321 (2005).

[18] S. Faez, A. Strybulevych, J. H. Page, A. Lagendijk, and B. A.
van Tiggelen, Phys. Rev. Lett. 103, 155703 (2009).

[19] B. J. Huang and T. M. Wu, Phys. Rev. E 79, 041105 (2009).

[20] R. M. Stratt, Acc. Chem. Res. 28, 201 (1995).

[21] M. L. Mehta, Random Matrices (Academic Press, San Diego,
1991).

[22] A. Chhabra and R. V. Jensen, Phys. Rev. Lett. 62, 1327
(1989).

[23] T. M. Wu, W. J. Ma, and S. F. Tsay, Physica A 254, 257
(1998).

[24] T. M. Wu and R. F. Loring, J. Chem. Phys. 97, 8568 (1992).

[25] M. Bollhofer and Y. Notay, Comput. Phys. Commun. 177, 951
(2007).

[26] O. Schenk, M. Bollhéfer, and R. A. Romer, SIAM J. Sci. Com-
put. (USA) 28, 963 (2006).

[27] B. J. Huang and T. M. Wu, Comput. Phys. Commun. 182, 213
(2011), doi: 10.1016/j.cpc.2010.07.015

[28] T. M. Wu and W. J. Ma, J. Chem. Phys. 110, 447 (1999).

[29] T. Nakayama and K. Yakubo, Fractal Concepts in Condensed
Matter Physics (Springer-Verlag, Berlin, 2003).

[30] A. D. Mirlin and F. Evers, Phys. Rev. B 62, 7920 (2000).

PHYSICAL REVIEW E 82, 051133 (2010)

[31] D. A. Parshin and H. R. Schober, Phys. Rev. B 57, 10232
(1998).

[32] T. Terao, Phys. Rev. B 56, 975 (1997).

[33] D. A. Parshin and H. R. Schober, Phys. Rev. Lett. 83, 4590
(1999).

[34] E. Cuevas, M. Ortufio, V. Gasparian, and A. Pérez-Garrido,
Phys. Rev. Lett. 88, 016401 (2001).

[35] A. Mildenberger, F. Evers, and A. D. Mirlin, Phys. Rev. B 66,
033109 (2002).

[36] A. Rodriguez, L. J. Vasquez, K. Slevin, and R. A. Romer,
Phys. Rev. Lett. 105, 046403 (2010).

[37] F. Wegner, Nucl. Phys. B 316, 663 (1989).

[38] A. D. Mirlin and Y. V. Fyodorov, J. Phys. I 4, 655 (1994).

[39] D. V. Savin, H. J. Sommers, and Y. V. Fyodorov, JETP Lett.
82, 544 (2005).

[40] A. Mildenberger and F. Evers, Phys. Rev. B 75, 041303
(2007).

[41] M. E. Cates and J. M. Deutsch, Phys. Rev. A 35, 4907 (1987).

[42] K. Pracz, M. Janssen, and P. Freche, J. Phys.: Condens. Matter
8, 7147 (1996).

[43] H. Obuse and K. Yakubo, J. Phys. Soc. Jpn. 73, 2164 (2004).

051133-10


http://dx.doi.org/10.1088/0953-8984/17/30/L01
http://dx.doi.org/10.1103/PhysRevLett.103.155703
http://dx.doi.org/10.1103/PhysRevE.79.041105
http://dx.doi.org/10.1021/ar00053a001
http://dx.doi.org/10.1103/PhysRevLett.62.1327
http://dx.doi.org/10.1103/PhysRevLett.62.1327
http://dx.doi.org/10.1016/S0378-4371(98)00029-6
http://dx.doi.org/10.1016/S0378-4371(98)00029-6
http://dx.doi.org/10.1063/1.463375
http://dx.doi.org/10.1016/j.cpc.2007.08.004
http://dx.doi.org/10.1016/j.cpc.2007.08.004
http://dx.doi.org/10.1137/050637649
http://dx.doi.org/10.1137/050637649
http://dx.doi.org/10.1016/j.cpc.2010.07.015
http://dx.doi.org/10.1063/1.478104
http://dx.doi.org/10.1103/PhysRevB.62.7920
http://dx.doi.org/10.1103/PhysRevB.57.10232
http://dx.doi.org/10.1103/PhysRevB.57.10232
http://dx.doi.org/10.1103/PhysRevB.56.975
http://dx.doi.org/10.1103/PhysRevLett.83.4590
http://dx.doi.org/10.1103/PhysRevLett.83.4590
http://dx.doi.org/10.1103/PhysRevLett.88.016401
http://dx.doi.org/10.1103/PhysRevB.66.033109
http://dx.doi.org/10.1103/PhysRevB.66.033109
http://dx.doi.org/10.1103/PhysRevLett.105.046403
http://dx.doi.org/10.1016/0550-3213(89)90063-1
http://dx.doi.org/10.1051/jp1:1994168
http://dx.doi.org/10.1134/1.2150877
http://dx.doi.org/10.1134/1.2150877
http://dx.doi.org/10.1103/PhysRevB.75.041303
http://dx.doi.org/10.1103/PhysRevB.75.041303
http://dx.doi.org/10.1103/PhysRevA.35.4907
http://dx.doi.org/10.1088/0953-8984/8/38/017
http://dx.doi.org/10.1088/0953-8984/8/38/017
http://dx.doi.org/10.1143/JPSJ.73.2164

