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Abstract—This paper proposes a solid-duty-control (SDC) tech-
nique for application in boost converters to maintain a constant
duty value and reduce dip voltage during load transient periods.
Fast transient response was also achieved because of the variable
transient enhancement controller. The proposed SDC technique
can provide a stable and regulated output for edge-lit light-emitting
diode backlight systems. This converter was used in a 0.25-μm
CMOS process. Experimental results show that compared with a
conventional design without a fast transient technique, the pro-
posed approach yields about 30% and 80% improvement in un-
dershoot voltage and recovery time, respectively, as load current
changes from 50 to 250 mA.

Index Terms—Adaptive off-time., alleviating skill, boost con-
verter, dc–dc converter, light-emitting diode (LED), right-half-
plane (RHP), solid duty control, valley current control.

I. INTRODUCTION

THE CURRENT trend in the development of current liquid
crystal display (LCD) panels is geared toward weightless-

ness and thinness. In this regard, edge-lit light-emitting diode
(LED) backlight configuration has become a popular technique
applied to medium- and small-size LCDs [1]–[3]. Fig. 1(a) il-
lustrates a conventional block diagram of an LCD TV with
edge-lit LED backlight units containing three LED colors. To
obtain perfect image quality, light guides in the edge-lit LED
backlight are designed to prevent total internal reflection and
uniformly distribute light emitted from the LED sources across
the light-guide surface [4]–[7]. Furthermore, the LED backlight
driver, which is composed of boost converters, must be able to
handle the requirements of fast transience, high stability, power
efficiency, and space minimization to handle large instant load
variations without sacrificing image quality and increasing mo-
tion blur effects [8]–[10]. The conventional current-mode boost
converter contains one dominant pole and two zeros, the right-
half-plane (RHP) and left-half-plane (LHP) zero. However, the
RHP zero results in a tradeoff between fast transient response
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Fig. 1. (a) Conventional current-mode boost converter. (b) Proposed boost
converter with SDC controller containing the AHW and VTE controllers. (c) Se-
lection of the RHP zero can simultaneously ensure transient response and system
stability.

and system stability in the boost converters, which operate in
(CCM) [11], [12].

A number of previous studies have mentioned the existence of
the RHP zero that limits the system bandwidth because of system
stability considerations [13]–[16]. In conventional design, the
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relationship between the crossover frequency and the RHP zero
enables the tradeoff between transient response and the system
stability [see Fig. 1(c)]. The crossover frequency is generally
designed to be smaller than 10–20% of the ωRHPZ at heavy
loads. Point A shown in Fig. 1(c) is slightly influenced by the
RHP zero on the phase margin, but the transient response time
considerably slows down. As a result, the output voltage of the
system has a large dip voltage when load current variations
occur because of the limited system bandwidth. If the crossover
frequency is designed as point B in Fig. 1(c), the RHP zero
imposes a serious effect on the drop of the output voltage when
load transient occurs. However, the higher crossover frequency
can ensure that the dip voltage is smaller than that at point A.
The designed value is usually located at point B.

Conversely, the discontinuous conduction mode in conven-
tional boost converter design is widely used in obtaining simple
compensation because the RHP zero appears at high frequen-
cies [17], [18]. However, the slow response cannot satisfy the
requirements of LED backlight systems.

This paper presents a solid-duty-control (SDC) technique
for application in a boost converter with CCM operation [see
Fig. 1(b)] to alleviate the effects of the RHP zero and improve
transient response time. As a result, high bandwidth and fast
transient response can be achieved simultaneously. The rest of
the paper is arranged as follows. The methodology of SDC con-
trol is introduced in Section II. Section III presents the operation
of the proposed SDC boost converter. The implementation of
the proposed variable transient enhancement (VTE) circuit and
adaptive hysteresis window (AHW) modulator is illustrated in
Section IV. Experimental results shown in Section V demon-
strate the advantages of the SDC control technique. Finally, the
conclusions drawn are presented in Section VI.

II. DESIGN OF THE SDC TECHNIQUE

The duty ratio that changes during the load transient period
results in a larger output voltage drop because the RHP zero
moves toward the origin. Therefore, the SDC method is pro-
posed to decrease the output voltage drop by keeping the duty
ratio constant. That is, the SDC method can reduce the RHP ef-
fect because of the extension of the on-time and off-time periods
during the load transient period.

A. Analysis in the Time Domain

As illustrated in Fig. 2(a), the voltage variation on the out-
put capacitor during the on-time and off-time periods can be
expressed as (1) and (2), respectively [19]. Fig. 2(b) shows the
timing diagrams of the voltage and currents related to Fig. 2(a):

VCO ontime =
ILoad

CO
DTS (1)

VCO offtime =
(IL − ILoad)

CO
D′TS . (2)

Here, IL is the inductor average current during the off-time
period. Therefore, the total voltage drop on in the output ca-

Fig. 2. (a) Boost converter scheme. (b) Timing diagram of some important
waveforms.

pacitor CO during one switching period TS can be expressed
as

ΔVCO
= −Vdrop = VCO offtime − VCO ontime

=
TS

CO
(D′IL − ILoad) . (3)

The proposed SDC method extends the on-time and off-time
periods by the same ratio during transient response to ensure
that the duty ratio is kept constant (see Fig. 3). Assume that
the switching period is changed from Ts to mTsI , where “m”
is the extended time ratio for on-time and off-time values for
simplicity. The voltage drop on the output capacitor can then be
expressed as

ΔVCO trann
= −ΔVdrop SDCn

=
TSn

CO
· [IL offtimen

D′
n − ILoadn

] (4)

where

IL offtimen
=

1
2

(I2 + I3) = IL − ΔIL

2
+

1
2

VINDnTSn

L

+
ΔVoutn

L
D′

nTSn

and

ΔVoutn
=

ILD′
n−1

CO
[DnkTSn

− Dn−1TSn −1 ] .

Hence, the voltage drop on the output capacitor CO with the
SDC method can be rewritten as (5), where k is the change ratio
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Fig. 3. Waveforms of inductor current, diode current, power MOSFET current,
and output voltage in the SDC control method and inductor current of the duty-
ratio increasing control.

of the load current.

ΔVCO trann
= −ΔVdrop SDCn

=
mTSn −1 D

′
n−1

CO

×
[
VIN Dn−1TSn −1

2L
(m − 1) − IL (k − 1)

+
mILDn−1

(
D′

n−1TSn −1

)2

2LCO
(mk − 1)

]
. (5)

Compared with the control with an increasing duty ratio from
D to D + ΔD in the transient period, the switching period
simultaneously increases and results in the voltage drop that
can be expressed as

ΔVCO trann
= −ΔVdrop D-increasingn

=
TSn

CO

×
[
I ′L offtimen

D′
n − ILoadn

]
(6)

where

I ′L offtimen
= IL +

VIN

2L
· [DnTSn

− Dn−1TSn −1 ]

+
ΔVoutn

D′
nTSn

2L

ΔVoutn
=

ILD′
n−1

C
· [DnkTSn

− Dn−1TSn −1 ] .

Thus, the voltage drop across the output capacitor CO with
the duty-ratio increasing control can be rewritten as

ΔVCO trann
= −ΔVdrop D-increasingn

=
mTSn −1

CO

{
VIN TSn −1

2L
[Dn−1(m − 1) + mΔD]

·
(
D′

n−1 − ΔD
)

+ IL

[
(1 − k)D′

n−1 − ΔD
]

+

(
D′

n−1 − ΔD
)
mTSn −1

2L
· ILD′

n−1TSn −1

CO

×
[
km(D′

n−1 + ΔD) − Dn−1
]}

. (7)

To identify a range of “m” so that the voltage drop value in
the SDC method is less than that in the duty-ratio increasing
control in transient period. That is, the difference between (5)
and (7) must be larger than or equal to zero. Therefore

ΔVdrop D-increasingn
− ΔVdrop SDC ≥ 0. (8)

Substituting (5) and (7) into (8), the lower bound of the ex-
tension ratio of the on-time or off-time period can be derived
as

m ≥ Dn−1 − (2LIL/VINTSn −1 )
2Dn−1 + ΔD − 1

. (9)

To minimize the settling time in the SDC method, the charge
on the output capacitor during the on-time period is equal to
the off-time period in case of transient period (Qdischarge =
Qcharge). Hence, (5) must be set to zero. The upper bound of
“m” can be derived as

m ≤ 1 +
2ILL (k − 1)

VINDn−1TSn −1

. (10)

Finally, the summary of the range for “m” can be expressed
as

Dn−1 − (2LIL/VINTSn −1 )
2Dn−1 + ΔD − 1

≤ m ≤ 1 +
2ILL(k − 1)

VINDn−1TSn −1

.

(11)
Therefore, the following implementation is based on the de-

sign value to satisfy the requirements defined by (11). Moreover,
assume that factor “m” is at least larger than one, and that the
design value of the switching frequency must be at least larger
than the expression shown in

FSn −1 ≥ VIN · [1 − (Dn−1 + ΔD)]
2LIL

. (12)

B. Analysis in the Frequency Domain

The small-signal model of the conventional current-mode
boost converter is illustrated in Fig. 4 and the control-to-output
transfer function is shown in (13) [19]. R is the output resistance,
Rf denotes the current sensing gain, and RESR represents the
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Fig. 4. Small-signal model of the conventional current-mode boost converter.

equivalent series resistance of output capacitor CO :

Gvc =
v̂o

v̂c
=

1
Rf

Gvd

Gid

= Gvc0

(
1 − (s/ωz (RHP))

) (
1 + (s/ωz (ESR))

)
(1 + (s/ωp1))

(13)

where

Gvd =
v̂o

d̂

∣∣∣∣
v̂ in =0

=
Vo

D′ ·
(
1 − s(L/D′2R)

)
(1 + sRESRCo)

1 + s(L/RD′2) + s2(LCo/D′2)
,

Gid =
îL

d̂

∣∣∣∣∣
v̂ i n =0

=
2 · Vo

D′2R
· (1 + s(RCo/2))
1 + s(L/RD′2) + s2(LCo/D′2)

Gvc0 =
D′R

2Rf
, ωp1 =

2
RCo

, ωz (RHP) =
D′2R

L
,

and ωz (ESR) =
1

RESRCo
. (14)

The control-to-output transfer function contains one dom-
inant pole ωp1 and two zeros, which include one RHP zero
ωz (RHP ) and one LHP zero ωz (ESR). Moreover, the de-
crease in the value D’ caused by the load transient response
pushes the RHP zero toward the origin. This push results in a
large dip voltage, which is the reason for keeping the duty ratio
constant to cancel the effects of the RHP zero. Thus, the SDC
method can improve the performance of the boost converter
compared with the conventional design.

The proportional-integral (PI) compensation with a transfer
function as shown in (15) is typically used to compensate for the
system, with Gc0 being the low-frequency gain of the PI com-
pensator [20], [21]. Compensation zero ωzc1 is used to cancel
the effect of ωp1 , while compensation pole ωpc1 forms the new
dominant pole to determine the system bandwidth. The role of
ωpc2 is used to decrease the high-frequency gain affected by
the existence of ωz (RHP) . Through the constant duty ratio and
high-frequency compensation pole, the effect of the RHP zero

can be effectively canceled:

Gc = Gc0
(1 + (s/ωzc1))

(1 + (s/ωpc1)) (1 + (s/ωpc2))
. (15)

III. PROPOSED SDC CONTROLLER

To cancel the RHP zero effect and achieve faster transient re-
sponse for reliable system stability, the proposed boost converter
utilizes the SDC technique, which contains an AHW modulator
and a VTE controller [see Fig. 1(b)].

The hysteresis window is formed by the value of VCT , which
is generated by the voltage divider from the bandgap circuit and
limits the output ripple within the hysteresis window [22]. Under
heavy load conditions, the on-time period suddenly increases,
whereas the off-time period decreases. The energy delivered
to the output decreases in the beginning, causing the output to
undergo a considerably large voltage drop. After the inductor
current increases to a higher value, the output voltage can be
restored to its regulated value. In other words, the RHP zero
effect induces a large dip in the voltage and long transient re-
sponse. Thus, the SDC controller includes the VTE controller
to decrease the drop voltage and transient response time.

As shown in Fig. 5(a), the increasing on-time results in the
off-time and the energy delivered to the output initially decreases
in the conventional design when load current changes from light
to heavy. Output voltage VOUT(conv .) exhibits a large voltage
drop because the RHP zero causes the output to initially lean to-
ward the wrong direction during the transient period. The AHW
modulator keeps the duty ratio constant during the load transient
period because the increasing on-time accompanies the increas-
ing off-time. Therefore, output voltage VOUT(proposed) exhibits
a smaller dip voltage compared with those in conventional de-
signs. That is, the AHW technique reduces the RHP zero effect.
However, the transient response time does not change because of
the identical bandwidths. The proposed VTE controller instantly
increases the slope of the hysteresis window to further increase
the speed of the transient response. As depicted in Fig. 5(b),
the inductor current can be raised to the rated value to reduce
transient response time.

IV. CIRCUIT IMPLEMENTATION

In the proposed SDC controller, the basic submodules con-
tain the AHW modulator and VTE controller to keep a nearly
constant duty ratio and a fast transient response, respectively.

A. AHW Modulator

Fig. 6(a) illustrates the AHW modulator. According to the
successive approximation register conversion, the adaptive off-
time is controlled by capacitor array Coff to decide off-time
toff [23]. The controller bits [see Fig. 6(b)] can decide a suitable
value for the charging capacitor to determine value toff . In the
steady state, toff is kept constant. In the design of a conventional
boost converter, once the load current changes, the value of toff
decreases because of the effect of the RHP zero. As a result, a
large voltage drop occurs because the output obtains less energy
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Fig. 5. Reduction in voltage drop and transient response are achieved using
the AHW modulator and VTE controller, respectively.

from the input voltage source towing to the decrease in the
off-time period.

Therefore, the AHW modulator prolongs toff through de-
creasing charging current “ICONST – IRHPZ ,” and increases VR

because of the injection of IRHPZ . toff is controlled by RHP
zero control current IRHPZ that stems from the VTE controller
[see Fig. 7(a)]. As a result, the AHW modulator can ensure that
the duty ratio cycle is kept constant even during the load tran-
sient period. The RHP zero effect can be effectively alleviated
to guarantee low dip voltage during the load transient period.
Furthermore, the duty ratio is kept nearly constant using the

Fig. 6. (a) Schematic of the AHW modulator with adaptive off-time controller.
(b) Controlling bits for determining the value of the charging capacitor.

AHW modulator. However, the switching frequency decreases,
causing a slow transient response time. Thus, accelerating the
transient response using the VTE controller is necessary for
enhancing the performance of the SDC controller.

B. VTE Controller

To implement the RHP zero control current, the VTE con-
troller is proposed to keep the duty ratio constant during the load
transient period. Here, the Gm amplifier [see Fig. 7(b)] converts
the voltage difference between VREF and VFB to three cur-
rent signals, IOUT1 , IOUT2 , and IRHPZ [21], [24]. IOUT1 flows
through resistor R1 to form two threshold voltages, VH and VL .
Current signal IOUT2 is compared with a predefined constant
current IB to decide the starting time of the transient period.
During the transient period, reference voltage VREF changes
from VL , which is designed equal to VBG here, to VH . This
change causes the reference voltage (which is connected to the
noninverting terminal of the error amplifier) to increase, thereby
effectively enhancing the performance of the transient response.
This is particularly true for the high-speed current comparator,
which is accelerated because of the shunt–shunt feedback re-
sistor formed by transistor MN 4 . In turn, this allows transistor
MN 4 to rapidly decide on the beginning condition of the tran-
sient response and further alleviate the effect of the RHP zero.
Fig. 7(c) shows the waveforms with and without the VTE con-
troller. The figure shows that the transient performance of the
load transient response can be effectively improved.

V. EXPERIMENTAL RESULTS

The proposed SDC controller for edge-lit LED backlight sys-
tems was fabricated via the TSMC 0.25μm BCD process. Fig. 8
shows the chip micrograph with a silicon area of 2.16 mm2 . The
LED driver provides a 12-V regulated output voltage with a
maximum loading current of 250 mA.
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Fig. 7. (a) Structure of the VTE controller. (b) Schematic of the Gm amplifier.
(c) Improved performance during load transient response caused by the VTE
controller.

To realize effect “m” in decreasing the VOUT drop, the boost
converter is tested with VIN = 4 V, VOUT = 12 V; thus, D is
2/3. Inductor L is 6.8 μH and output capacitor CO is 6.8 μF.
The operation switching frequency is 1.4 MHz. Here, the load
current changes from 50 to 250 mA and vice versa. That is, the
value of k is 5. According to the derived equations, the range of
factor “m” ranges from 1 to 5.29. The simulation and calculation
results during the first period are shown in Fig. 9. The larger the
ratio factor “m” chosen, the lesser is the switching frequency oc-
curring during the load transient period. A reasonable limitation
on crossover frequency ωc should be below 1/10 of the switch-

Fig. 8. Chip micrograph.

Fig. 9. Simulation and calculation results during the first load transient period.

Fig. 10. Load transient response under a 200-mA load current variation in the
conventional and proposed techniques.

ing frequency to reduce the switching output ripples. Thus, the
value of “m” cannot be increased to a large value because this
can impose a serious effect on system stability. On the other
hand, as the switching frequency decreases, more issues related
to switching noise arise. In other words, the value of “m” should
be decreased to enhance system stability.

Fig. 10 shows the experimental results that include the out-
put voltage of the proposed technique compared with the con-
ventional pulsewidth modulation boost converter when load
changes from 50 to 250 mA and vice versa. The under-
shoot voltages of the conventional and proposed techniques
are 100 and 70 mV, respectively. The overshoot voltages of
the conventional and proposed techniques are 90 and 50 mV,
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TABLE I
SUMMARY OF COMPARISON

TABLE II
SUMMARY OF MEASUREMENT RESULTS

Fig. 11. Enlarged load transient waveforms can demonstrate the correct oper-
ation of the proposed technique.

respectively.The SDC controller can effectively reduce the tran-
sient dip voltage because of the constant duty ratio. Furthermore,
the transient response time decreases from 70 to 7 μs when load
current changes from 50 to 250 mA. Conversely, the recovery
time decreases from 80 to 16 μs when load current changes

from 250 to 50 mA. Table I shows that the SDC and VTE meth-
ods are more efficient than the previous approaches presented
in [10], [24], and [25]–[27]. Fig. 11 enlarges the transient wave-
forms to demonstrate the correct operation of the proposed SDC
controller. Table II shows the summary of the proposed SDC
technique.

VI. CONCLUSION

In this paper, we proposed a solid-duty ratio-control technique
for application in the boost converter that maintains the duty ra-
tio at a constant level to reduce dip voltage during the load
transient period. Fast transient response can also be achieved
because of the VTE controller. For edge-lit LED backlight sys-
tems, stable and regulated output driving can be provided by
the proposed SDC technique. Experimental results show that
compared with the conventional design without a fast transient
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technique, the proposed technique yields an enhancement of
30% and 80% for the undershoot voltage and recovery time,
respectively.
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