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We construct two more supersymmetric E6 grand unified models with three generations within the

framework of Z12 asymmetric orbifold compactification of the heterotic string theory. Such an asymmetric

orbifold is missing in the classification in the literature, which concludes that only oneE6 model is possible.

In both of the new models, an adjoint Higgs field is obtained in virtue of the diagonal embedding method.

This method mods out the three E6 factors of an even self-dual momentum-lattice by a permutation

symmetry. In order to realize the ðE6Þ3 even self-dual lattice, we utilize the lattice engineering technique.

Among the eight possible orbifold actions in our setup, two lead to newE6 models. Though thesemodels still

share the unsatisfactory issues with the known one, our discovery raises hopes that excellent models that

solve all the problems in the supersymmetric grand unified models will be found in this framework.
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I. INTRODUCTION

Superstring theory is one of the most promising candi-
dates that describe quantum gravity and unify all the four
fundamental forces of nature. Usually, however, super-
string theory is defined in a ten-dimensional (10D) space-
time and its characteristic scale is taken to be the Planck
scale, incredibly larger than that of the standard model
(SM). If superstring theory truly describes our world, it
must be an indispensable subject to find the way to the SM
from superstring. Unfortunately, superstring has a lot of
perturbative vacua, and so far, the way has not been estab-
lished. Therefore, it is worthwhile to ask phenomenologi-
cal studies for hints.

Independently of the developments on superstring, the
supersymmetric (SUSY) grand unified theory (GUT) [1] is
known as an interesting candidate for the model beyond the
SM. It unifies the three gauge groups SUð3ÞC � SUð2ÞL �
Uð1ÞY in the SM into a single gauge group. This unification
is quantitatively supported by experiments which have
revealed that the three gauge couplings in the minimal
supersymmetric SM meet with a very good accuracy at a
very high scale (the GUT scale) close to the Planck scale.
Moreover, it unifies one generation of quarks and leptons,

which is dispersed among five multiplets in the SM, into
one or two multiplets. This matter unification is qualita-
tively supported by the measurements of quark/lepton
masses and mixings: The pattern of the various hierarchical
structures of the masses and the mixings can be explained
by a simple assumption that the hierarchies of the Yukawa
couplings are induced mainly by the 10 multiplets of
SUð5Þ [2–4].
Among the SUSY-GUTs, the E6 GUT [5], which unifies

all one generation quarks and leptons into a single 27
multiplet, has an advantage that the above assumption for
the Yukawa hierarchies, which must be made by hand in
the SUð5Þ unification, is naturally derived [3,4]. This ad-
vantage is particularly important since it seems difficult to
explain the hierarchical structure in the minimal super-
symmetric SM-like models obtained directly from super-
string [6,7]. Thus, apart from remaining issues, such as the
so-called doublet-triplet (DT) splitting problem and the
SUSY-flavor/CP problem, it is plausible that this E6 struc-
ture is realized.
In addition, consistently with the E6 structure, it has

been shown that the anomalous Uð1ÞA gauge symmetry
[8] and the SUð2ÞH (or SUð3ÞH) family symmetry [4] with
a spontaneousCP violation [9] respectively serve solutions
to the DT splitting problem and the SUSY-flavor/CP prob-
lem. Interestingly, both of the above two additional sym-
metries can be simultaneously adopted. Then, the resulting
models are really promising, where almost all the phe-
nomenological problems are solved, the realistic quark/
lepton mass matrices are obtained naturally and all the
three generations are unified into two multiplets (or a
single one for SUð3ÞH).
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Thus, when we seek for the way to the SM from
superstring, the above scenario must be valuable to be
considered, though we should also keep in mind the pos-
sibilities that not all of the above additional symmetries,
such as the anomalous Uð1ÞA symmetry and the SUð2ÞH
symmetry, are actually realized. Therefore, we assume
only the four-dimensional (4D) SUSY E6 unification in
this letter. Namely, our strategy is to construct phenome-
nological string models with the following minimal re-
quirements,

(i) E6 unification group,
(ii) 4D N ¼ 1 SUSY,
(iii) adjoint Higgs field,
(iv) three families,

anticipating to find models with all or some of the addi-
tional symmetries mentioned above.

In the literature, despite decades of research, only one
model with these requirements has been reported [10].
The authors of the reference claimed that they classified
the models with the minimal requirements and a hidden
non-Abelian gauge symmetry as well which may be useful
to break the SUSY dynamically. Unfortunately, however,
the above-mentioned additional symmetries are not real-
ized in their model. Therefore, we would like to search for
more 4D N ¼ 1 SUSY E6 models in string theory, by
relaxing the requirement of the hidden non-Abelian gauge
symmetry as it is possible to break the SUSY in other ways
(for example, in a meta-stable vacuum [11,12]).

II. STRATEGY

Let us work on the heterotic string theory [13], where the
E6 unified group can be realized without much difficulty. In
contrast to the F-theory [14] which is another related
framework realizing the E6 group [15] and has attracted
attention recently [16], the heterotic string theory has a
microscopic description by a Lagrangian and thus any
quantity is, at least in principle, calculable.

In the heterotic string, to obtain the 4D effective theory,
twenty-two extradimensions in the left-moving bosonic
string and six in the right-moving superstring should be
compactified. Then, both the left-moving and the right-
moving momenta are quantized and compose a lattice. For
the consistency of string theory, the partition function,
namely, the one-loop vacuum diagram of the closed string
must be invariant under the modular transformations
T : � ! �þ 1 and S: � ! �1=�, where � is the moduli
of the worldsheet torus. This requires that the lattice is even
and self-dual with a (22, 6)-Lorentzian signature. A space-
time gauge symmetry G (in particular E6) is realized when
this momentum-lattice contains the appropriately normal-
ized Lie lattice of G in the left-moving part.

To reduce the 4D N ¼ 4 SUSY to N ¼ 1, six com-
ponents among eight of the massless 10D spinor mode in
the right-moving superstring have to be projected out. This

is achieved by an orbifold compactification [17], which
identifies the compactified space under an action of a point
group that leaves the lattice unchanged. In particular, the
compactified right-moving six dimensions should be fully
rotated with three nontrivial rotating angles tRi that satisfyP

3
i¼1 tRi ¼ 0 (mod 2� 2�).
In general, when the heterotic string realizes a spacetime

gauge symmetry, the currents of the corresponding world-
sheet theory form a Kac-Moody algebra: ½jam; jbn� ¼
ifabcj

c
mþn þ km�ab�mþn;0. Here, j

a
m is the Laurent coeffi-

cient of the world sheet current jaðzÞ ¼ P
m2Zj

a
mz

�m�1,
fabc is a structure constant and the integer k is a Kac-
Moody level. The usual orbifold construction described
above realizes the lowest Kac-Moody level (k ¼ 1), while
it is known [18] that a higher level is necessary to obtain
adjoint Higgs fields. A way to increase the level is the so-
called diagonal embeddingmethod [19], whereK-copies of
the current ðjÞI with level k ¼ 1 are permuted by an orbifold
action so that only the diagonal part jdiag ¼

P
K
I¼1ðjÞI re-

mains phaseless under the action. It is easy to see that jdiag
satisfies the Kac-Moody algebra with k ¼ K. The other
eigenstates have nontrivial phases, and thus do not contrib-
ute to the 4D gauge multiplets, while some of them may
couple with chiral multiplets in the right-mover to cancel
the phases, resulting in adjoint Higgs fields. It is also
possible that adjoint Higgs fields appear in twisted sectors.
Unfortunately, it is not easy to clarify the condition in

string theory to construct models with three generations,
while there is a conjecture that the number of the gener-
ations is proportional to the Kac-Moody level [10].
Therefore, we start with the construction of 4D N ¼ 1
SUSY E6 models with an adjoint Higgs field, leaving the
numbers of generations to be determined model-by-model.
To summarize, we take the following strategy:
(1) we prepare a (22,6)-dimensional even self-dual lat-

tice with equivalent K-copies of the left-moving E6

lattice,
(2) we consider an orbifold identification that includes
(a) a permutation among the E6 factors,
(b) rotations of the right-moving six dimensions with

three nonzero angles tRi satisfying
P

3
i¼1 tRi ¼ 0

(mod 2� 2�),
(3) we find out the number of the generations.
According to the conjecture, k ¼ 3 is needed for the

three generations, and we take this choice hereafter. In this
case, the left-moving ðE6Þ3 lattice occupies 18 dimensions
and cannot be fitted in the 16 extradimensions (with respect
to the 10D viewpoint). This means that the usual left-right
symmetric treatment of the six extradimensions is not valid
and we have to work in the asymmetric orbifold [20] with a
Narain compactification [21]. In contrast to the symmetric
orbifold, the general rules for consistent models are rather
involved in the asymmetric orbifold [10], and thus, we
calculate the one-loop partition functions explicitly to
check the modular invariance (see Ref. [22] for the details).
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III. SETUP

The lattice engineering technique [23] is helpful in
constructing desired lattices. The essence of the technique
is that a lattice (for example, the A2 lattice) transforms
oppositely as its complement lattice in the Euclidean even
self-dual E8 lattice (the E6 lattice for the A2 example)
under the modular transformation. Thanks to this, we can
always replace the left-moving A2 lattice by the right-
moving �E6 lattice (denoted with a bar) and vice versa.
Subsequently, since the �E6 lattice is decomposed into three
�A2 lattices, we can construct a left-moving ðE6Þ3 lattice out
of the right-moving ð �A2Þ3 lattice using the same technique
again. Thus, we can easily convert an A2 lattice into three
equivalent E6 lattices.

With all these insights in mind, let us pick up the
E6 � �E6 lattice as our starting point. After decomposing
E6 into ðA2Þ3, we end up with ½ðA2Þ2 � ðE6Þ3� � �E6 using
the above technique. Though this lattice is the same as the
one used in Ref. [10] constructed from the 10D SOð32Þ
heterotic string by a compactification with Wilson lines,
our method is more direct and hence many Narain lattices
with ðE6Þ3 symmetry are accessible with their discrete
symmetries manifest.

The orbifold action on the three left-moving E6 factors is
chosen to be a permutation among them. It turns out that a
shift along the diagonal factor has to be introduced in
addition, as a source of the asymmetry between the num-
bers of the generations and the antigenerations in the
twisted sectors.

A natural candidate for the action on the right-moving
factor is the rotation by the Coxeter element of the right-
moving �E6 lattice, which is an element of a point group
Z12 ¼ Z3 � Z4. Though it was claimed that Z2 is the only

possible symmetry to add to the Z3 symmetry for the above
permutation [10], we find no reasons to exclude this pos-
sibility. Thus, we choose this rotation, which corresponds
to the one with three angles tR ¼ 2�ð1; 4;�5Þ=12 classi-
fied as Z12-I [24], as part of our setup.
Then, the remaining options are actions on the two left-

moving A2 factors. The allowed choices on each factor,
labeled by i, are
(i) shift sLi, with 12sLi ¼ 0 (mod roots),
(ii) rotation with an angle tLi ¼ 2�=3,
(iii) Weyl reflection.

There are a lot of choices of sLi but many of them are
related to each other by transformations under the symme-
try of the A2 lattice, leading to identical models. In addi-
tion, the modular invariance does not allow arbitrary
choices, but only certain combinations. Thus, there remain
only a few possible actions:

fð2;0Þ;ð4;0Þ;“rot”g�fð0;0Þ;ð6;0Þg;
ð1;0Þ�ð3;6Þ;
ð1;6Þ�ð3;0Þ;

where “rot” denotes the 1=3 rotation while ðn;mÞ repre-
sents the shift defined by the vector s ¼ ðn�1 þm�2Þ=12,
with �i being the simple roots of A2. In the first line, we
have three options for the action on one of A2 lattices, and
two for the other. Therefore, there are, in total, 3� 2þ
1� 1þ 1� 1 ¼ 8 consistent models possible in this
setup. Note that the order is irrelevant since the two A2

factors are equivalent.

TABLE I. The massless spectra of the models with three generations: U and T� denote the untwisted and various twisted sectors,
respectively. The quantum numbers of left-handed chiral multiplets and the normalization of the Uð1Þ charges are shown. The gravity
and gauge multiplets are omitted.

Model 1 Model 2 Model 3

gauge symmetry E6 � SUð2Þ �Uð1Þ3 E6 � SUð2Þ �Uð1Þ3 E6 �Uð1Þ4
U ð1; 1;þ6; 0; 0ÞL ð1; 1;þ6;�3; 0ÞL ð1;�6; 0; 0; 0ÞL

ð78; 1; 0; 0; 0ÞL ð78; 1; 0; 0; 0ÞL ð1;þ3;�6; 0; 0ÞL
ð78; 0; 0; 0; 0ÞL

T1 ð27; 1;þ1; 0;�1ÞL � � � ð27;�1;�1;þ1; 0ÞL
T2 ð27; 1;�1;�1; 0ÞL ð27; 1;þ2; 0;�2ÞL ð27;þ1; 0; 0;�1ÞL
T3 2ð1; 1;�3; 0;�3ÞL ð1; 1;�3;�3;�3ÞL ð1;þ3;�3;þ3; 0ÞL

ð1;þ3;þ3;�3; 0ÞL
T4 ð27; 1;�2; 0; 0ÞL ð27; 1;�2;�1; 0ÞL ð27;þ2; 0; 0; 0ÞL

ð27;�1;�2; 0; 0ÞL
T5 ð27; 1;þ1; 0;�1ÞL ð27; 1;þ1;�1;þ1ÞL ð27;�1;þ1;�1; 0ÞL

ð1;�3; 0; 0;�3ÞL
T6 ð1; 2; 0; 0;�3ÞL ð1; 2; 0;�3; 0ÞL ð1; 0;þ6;�2; 0ÞL

ð1; 1;þ3;�3; 0ÞL ð1; 1;�6; 0;þ6ÞL ð1; 0;�6;þ2; 0ÞL
normalization of Uð1Þ ð

ffiffi
2

p
6 ;

ffiffi
6

p
6 ;

ffiffi
6

p
6 Þ ð

ffiffi
2

p
12 ;

ffiffi
6

p
6 ;

ffiffi
6

p
12Þ ð

ffiffi
2

p
6 ;

ffiffi
6

p
12 ;

ffiffi
2

p
4 ;

ffiffi
6

p
6 Þ
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IV. MODELS WITH THREE GENERATIONS

Once fixing the orbifold action, one can calculate the
partition function (see, for example, Refs. [10,22]), which
contains information of the spectrum of the model. It turns
out that, among the above eight models, three lead to
vanishing net generation numbers, while other two and
the remaining three, respectively, have nine and three net
generations. Here, we concentrate on the last three,

ð2; 0Þ � ð6; 0Þ; ð1; 0Þ � ð3; 6Þ; ð1; 6Þ � ð3; 0Þ;
and we call them Model 1, 2, 3, respectively.

Model 1 and Model 2 have the gauge group E6 �
SUð2Þ �Uð1Þ3, and Model 3 has E6 �Uð1Þ4. Their mass-
less spectra are listed in Table I. We find five generations
and two antigenerations in Model 1 and Model 3, while
four and one in Model 2. Thus, we obtain three models with
three generations. Each model contains an E6 adjoint
Higgs field in the untwisted sector.

Model 1 results in the same massless spectrum as the Z6

model in Ref. [10]. The other two, Model 2 and Model 3,
are new. Model 3 does not contain any hidden non-Abelian
gauge symmetry, which is one of the requirements of the
classification in Ref. [10], while Model 1 and Model 2 do.
We also find that these models have ðZ3Þ3 symmetry which
remains unbroken even after all the singlets develop non-
vanishing vacuum expectation values and, unfortunately,
do not possess the additional symmetries [4,8,9]. Thus, the
traditional SUSY-GUT problems, such as the DT splitting
problem and the SUSY-flavor/CP problem, are not re-
solved in these models.

V. SUMMARY

In this letter, we construct 4D SUSY level-3 E6 models.
The k ¼ 3 E6 gauge symmetry is realized from three
copies of k ¼ 1 E6 symmetry via the diagonal embedding.
We utilize the lattice engineering technique, instead of the

compactification of the usual 10D heterotic string models
with Wilson lines, to construct Narain lattices containing
three copies of the E6 lattices. This technique allows us to
construct new even self-dual lattices from a known one in a
simple way, and thus, makes it easier to access newmodels.
Though here we work only on the same lattice as the one
studied in Ref. [10] where the lattice is obtained through
Wilson lines, we show that Narain lattices with desired
three copies of E6 can be immediately constructed from
any lattice containing A2.
Then, we examine all the possible Z12 actions which are

missing in the classification in the literature [10], and we
find three models with the minimal requirements. One of
them has the same spectrum as the model [10] that has been
the only one proposed so far. The other two are new. While
one does not have any hidden non-Abelian gauge symme-
try, the other does, and thus, should be added into the
classification.
The two new models contain neither an SUð2ÞH family

symmetry nor an anomalousUð1ÞA gauge symmetry which
make the E6 models more attractive. Given that we have
shown there are E6 models besides the unique one pro-
posed so far, it is worthwhile to look for more E6 models,
especially the excellent models with the above additional
symmetries. For this purpose, our systematic construction
of the E6 models will be useful.
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