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In this paper, a new optimization technique called SOFT (self-organizing fuzzy technique)
is proposed to solve the macro-cell placement problem. In SOFT, different criteria are
simultaneously accounted by a novel fuzzy gain function which models expert knowledge
to control the optimization process. The presented procedure is an adaptation of
Kohonen’s self-organization algorithm which is well suited for implementation on
massively parallel architecture for fast computing. The MCNC benchmark examples are
presented to verify the performance and feasibility of SOFT. Comparisons are made
with the Hopfield network, SOAP and TimberWolf MC5.6. Experiments show that the
proposed method yields an average of 17% improvement in total wire length compared
with previous methods. Large size problems with 225 and 1024 arbitrarily-sized macro-
cells are also presented.
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1. INTRODUCTION

Macro-cell placement which packs arbitrarily-
sized circuit blocks into a given layout region is a
very important step in VLSI custom-chip design,
since it has a pronounced effect on the final circuit
layout. This optimization problem has been
proven to be NP-hard [4] and must satisfy several
contradictory criteria, such as shorter wire length,
smaller chip area, less module overlap, and a
variety of other constraints. Over the years, a wide
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repertoire of solution methods have been proposed
with varying success [5,7,19-23]; these include
partitioning-based methods, branch and bound,
cluster growth, simulated annealing, genetic-based
methods, force-directed and analytical methods.
Partitioning-based methods [16] place cells on
either side of a partition in such a manner as to
minimize the number of interconnections crossing
the partition. Cluster growth methods [22] apply
a pre-specified select-function and place-function
to select unplaced cells and place cells in the
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placement region. Both of these methods are
greedy constructive approaches that frequently
become trapped in local minima. The constructive
methods create placement in an incremental
manner that produces a complete placement only
when the method terminates. The branch and
bound method which seeks a solution by tracing a
logical tree structure is able to guarantee optimum
results, but the run time is excessive for reasonably
sized problems. This method is also a constructive
approach. The simulated annealing algorithm [19]
with probabilistic hill climbing technique is an
iterative approach. Iterative approaches improve
an initial placement by repeatedly modifying it and
then terminate when a design criterion is met.
Thus, a complete placement is available at every
stage of the modification cycle. Although simu-
lated annealing has been suggested for obtaining
optimal solutions, it requires an enormous amount
of time. The genetic-based method derived from
biological phenomena is ineffective unless a clever
representation scheme is devised to represent the
physical placement as a genetic code. This is also
an iterative approach. Force-directed methods and
analytical methods [20-21] are iterative ap-
proaches that accept the next configuration only
if the value of the objective function is reduced.
They are characterized by their inherently greedy
nature for fast convergence. The disadvantages of
these methods are that they do not permit changes
to previous decisions and they get trapped in local
optima.

Although a number of heuristic algorithms have
been proposed, as described above, all of these
algorithms are inherently sequential and unable to
efficiently exploit massive parallel architecture.
Recent progress in software and VLSI technology
has motivated attempts to exploit more fully the
parallelism of neural networks to solve NP prob-
lems [8—13, 27-28]. For example, a Hopfield net-
work [8] with a symmetrical interconnection
matrix and a sigmoid gain function was applied
to TSP problems in early 1985. Persky [9] used this
model to solve a one-dimensional cell placement
problem. Sriram and Kang [11] introduced a

modified Hopfield model for a two-dimensional
module placement problem. Date et al. [23]
presented an LSI module placement algorithm
using a Hopfield network. Yu [12] attempted to
obtain a placement result using this model, but not
with great success. His experimental results show
that this model gives much the same solutions as
the min-cut algorithm. Since it suffers from the
inherent limitation of the Hopfield model, it
becomes stuck at local minima. If one tries to
improve the quality of the result, on the other
hand, the algorithm may converge to illegal
solutions.

In 1990, Hemani [3] used Kohonen’s self-organi-
zation rule to solve the two-dimensional cell place-
ment problem. In his method, the output neurons
are organized into a rectangular grid and corre-
spond to the locations of cells. Input sample
vectors are the columns of the connectivity matrix
(i.e., the sample vector representing cell i is the i-th
column of the connectivity matrix). Experimental
results show that the columns of the connectivity
matrix used in Hemani’s method are not enough to
preserve the complex topological relation among
cells. Recently, Kim [1] has presented an approach
called SOAP (self-organization assisted placement)
in which Kohonen’s self-organization algorithm is
used as a preprocessor of other heuristic algo-
rithms. In SOAP, output neurons and connection
synapses between output neurons correspond to
cells and wire nets between cells, respectively. The
input sample vectors are generated randomly.
Unless enormous -amounts of random .sample
vectors are generated, the quality of the results is
not guaranteed. Moreover, the sizes of the
modules are not taken into consideration in
obtaining the optimal positions of each module.
This is also the major drawback of the other
previous neural-network methods.

Most previous neural network based algorithms
are suitable only for placement on a checkerboard
model, in which all cells are assumed to be square
and of equal size. Moreover, none of these
previous algorithms explicitly addresses the pre-
sence of multiple contradictory criteria in the cell
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placement problem. In this paper, a general
optimization method called SOFT (self-organizing
fuzzy technique) is proposed to resolve the macro-
cell placement problem. The proposed method
which takes cell shapes into consideration can
easily model arbitrarily-sized macro-cells, hence it
can be expected to provide more accurate place-
ment models. Furthermore, the proposed method
can minimize the interconnection wire length
without any module overlap. In this paper, we
also use an adaptation of Kohonen’s self-organiz-
ing neural network [6] to model the optimization
problem, since this network is well suited for
implementation on massively parallel architecture
for fast computing. Experiments on many test
problems, including the MCNC benchmark cir-
cuits Ami33 and Xerox, have been conducted to
verify the performance and feasibility of the
proposed technique. Comparisons have been made
with both neural-network approaches (the Hop-
field network [2] and SOAP [1]) and non-neural-
network approaches (TimberWolf MC5.6). Large
size problems with 225 and 1024 arbitrarily-sized
macro-cells are also presented. The simulation
results are quite encouraging: the total wire lengths
obtained are average 17% shorter than those ob-
tained using previous methods without any mod-
ule overlap. We also compare results obtained with
and without the fuzzy gain function and give our
comments from this comparison. Moreover, the
proposed self-organizing neural network contains
fewer neurons and connection synapses than the
best neuron models known for this problem. The
proposed model can easily be extended to treat cell
placement in a three-dimensional region or over a
non-planar surface.

The remainder of this paper is organized as
follows. The problem definition and the notation
used in the paper are stated in Section 2. Next,
Section 3 describes the basic fuzzy set theory and
neural network model used. In Section 4, descrip-
tions and analyses of the execution of each step of
the SOFT algorithm are given, and the proposed
self-organizing neural network and the fuzzy
optimization technique are also introduced. Ex-

periments and results are presented in Section 5.
Finally, Section 6 gives the conclusion.

2. PROBLEM DEFINITION

Classical placement algorithms assume that place-
ment quality is a function of the interconnection
wires and is not affected by the shapes of cells.
These algorithms model the circuit blocks as point-
objects. Sometimes, they also define the placement
region as a pre-defined array of slots for gate
arrays or rows for standard cell design styles.
Unlike these traditional layout styles, custom-chip
layout systems must model the circuit blocks with
two dimensions, since both their height and width
are irregular and can affect the layout result.
Macro-cell placement is an important step in
custom-chip design. In macro-cell placement, cir-
cuit blocks are not restricted to having similar sizes
or being arranged together in regular rows and
columns. This lack of restrictions adds consider-
able complexity, in which, the interactions (inter-
connections and overlaps) among circuit blocks
are more difficult to compute. In this paper, a
simple but effective modeling method is proposed
that can easily take cell shapes into consideration
to yield more accurate placement results.

The problem inputs are a wxh placement
region, a set of macro-cells {b)|i=1,...,m}, and
their mxm connectivity matrix CM = [cmyli <i j<m-
The connectivity cm;; specifies the number of
connection wires between cell b; and cell b. A
multi-terminal netlist (say N;) which connects
more than two modules (say p; modules) is
represented by fully-connected ¢; connections in
this paper:

_pix i)

T 2
As shown by Alon and Ascher [25], the strength of
these wire connections can be specified as 2 x ¢;/g;.
The common goal in macro-cell placement is to
minimize total wire length and to avoid module
overlap. Thus, the width w; and the height 4; of
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each cell b; must be considered during the place-
ment process. The cost function for total wire
length Cwy and that for module overlap Cyo can
be specified as follows:

m m
CWL=ZZdij><cmij (1)
i=1 j=i+1
m m
Cmo =Y > MOX; x MOYj )
i=1 j=i+l

MOXU = min (max (O, Yi ;— Y - |dx,,|> , Wi, Wj)

MOY, = min (max (0, L er b _ ldy,ﬂ) i, h,-)

where the Euclidean distance dj; and the X (Y)
coordinate distance dx;;(dy;) between cell b; and
cell b; are defined as follows:

dj = \/dx3 + dy?

dx,-j =Xj— Xi
dyij =y; — yi

Note that optimizing the above cost equations is
computationally very complicated. In this paper,
we model the module overlap cost function heuris-
tically using the distance between cells to make the
computations simpler.

We use the distance ID;; as the ideal minimum
distance (ideal distance, for short) between cells b;
and b; without module overlap. For example, the
ideal distance is defined as (h;+ A;)/2 if b; and b; are
on a vertical line. In general, the ideal distance
between cell b; and cell b; can simply be defined as
follows:

IDy:min<Wi+wj dy hi+hj>< 4 ) (3)

X b)
2 ldxy|” 2 |yl

Figure 1 shows four possible examples of the ideal
distance between two arbitrarily-sized macro-cells
b; and b; for actual-shape-module formulation. We
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FIGURE 1 Four examples of the ideal distance between two
macro-cells 7 and j.

can redefine the cost function of module overlap so
as to preserve the ideal distance between cells. By
Equations (2) and (3), the cost function to minimize
module overlap can be easily formulated in terms
of the ideal distance and defined as follows.

m m
Cymo =) Y MOy

i=1 j=it1

MO, = (IDj — dij)z ID; > dj
’ 0 otherwise

“)

This definition accurately reflects the module over-
lap between macro-cells. Moreover, it is easier to
compute in computer simulations.

As defined above, our objective is to minimize
total wire length without causing module overlap.
Hence, by Equations (1) and (4), a possible
objective function C for the macro-cell placement
problem can be defined as follows.

C =gwL X Cwr + gm0 X Cmo

where gwr and gpo are pre-specified gain terms.
In the past, various strategies have been proposed
to minimize the cost function. However, in reality,
the criteria of less module overlap and shorter wire
length are contradictory. The scaling of the gain
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terms, i.e., gwr and gmo, Will heavily influence the
performance of the system and the solution quality
of the objective function. In this paper, a fuzzy
optimization technique is proposed to resolve this
problem. Moreover, a self-organizing neural net-
work is proposed to model this problem that can
reduce the execution time through the use of
multiple processing elements (neurons) that allow
parallel processing.

3. BASIC FUZZY THEORY AND THE
NEURAL MODEL

The basic fuzzy set theory for the proposed
method is briefly described in this section. The
neural network model proposed for macro-cell
placement problem is also presented.

3.1. Basic Fuzzy Set Theory

Investigation of the characteristics of expert
knowledge shows that people often base decisions
on imprecise or non-numerical information in
everyday life. For example, measurements of
importance may be represented by vague states,
such as “low”, “medium” and ‘“high”. In order to
represent and manipulate vague data, in 1965
Zadeh introduced the fuzzy set theory, which
processes non-statistical uncertainty. Fuzzy set
theory is a generalization of conventional set
theory that can interpret data in a very natural
and intuitively plausible way to resolve various
problems. Fuzzy states (or fuzzy subsets) are
defined as the elements of a particular fuzzy set.
Each subset is described by an appropriate word
(i.e., “low” or “high’). Imprecise or non-numer-
ical information can be described by a membership
function. Figure 2 shows an example with two
fuzzy states, say, ‘“early” and “late”, of a variable,
say, time ¢ within a range (¢yf.). Here, the
membership functions have trapezoidal shapes
which specify the degree of membership in the
fuzzy states. Formally, a fuzzy set is defined as
follows [16]:

early late ~

» timet

te

FIGURE 2 Two fuzzy states (‘“early” and “late”) of a
variable say, time ¢ within a range (20, te).

DerFiNITION 3.1.1 A fuzzy subset 4 of a uni-
verse of discourse X is defined as 4= {(x, pu4(x))|
all xeX}, where X is a space of points and p 4(x) is
a membership function of x€ X which should be an
element of 4, and x belongs to the fuzzy set 4 with
degree of membership u 4(x).

Set operations, such as equality, containment,
union, intersection, and complementation, are also
defined in fuzzy set theory, and the basic opera-
tions on two fuzzy sets A and B are usually defined
as follows:

14 (x) = membership function for a fuzzy set
A ofinput x
wa(x) = membership function for a fuzzy set
B ofinput x
pra=p(x) & pa(x) = ps(x)
pacs(x) € pa(x) < pp(x)
panp(x) = min(ua(x), ua(x))
paup(x) = max(ua(x), ps(x))
pea(x) =1 - pa(x)

3.2. The Neural Network Model

Artificial neural networks were first discussed by
McCullough and Pitts in 1943 to imitate the power
of biological systems for data and information
processing. These models typically consist of many
simple neuron-like processing elements that inter-
act via weighted connections. Each neuron has an
activation value representing its state, which is
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determined by inputs received from other neurons
or by external inputs. Neural network models are a
promising approach to develop feasible solutions
to computationally intense problems. For exam-
ple, in early 1985, neural networks were applied by
Hopfield and Tank [8] to resolve the optimization
problem. A neural network generates a feasible
solution with values close to the values of an
optimum solution in a reasonable amount of time.

In general, the solution to a problem is defined
to correspond to the neuron states or their
connection weights. Given the dimensions of a
set of arbitrarily-sized macro-cells and the con-
nection wires among them, the macro-cell place-
ment problem is to locate the circuit blocks
optimally within the specified region. This is a
constrained mapping problem which determines
the locations for all cells such that all the cons-
traints are satisfied and a weighted sum of total
wire length is minimized. It has been shown that a
self-organizing neural network with Kohonen’s
learning algorithm can create an optimal two-
dimensional feature map of higher dimensional
sample vectors [13, 27 —28]. Given the topological
relation (connection) between each pair of neurons
as a map, the algorithm applies the input sample
vectors to adjust the weights of neurons. The
objective of the self-organization algorithm is to
iteratively adapt the weights between input neu-
rons and output neurons, so that the output
neurons become sensitive to different inputs in an
organized way. This neural network model, which
preserves the topological relation among neurons,
is sometimes called a topology-preserving map. We
shall refer to this topology-preserving map of
macro-cells as a self-organizing cell-map.

In this paper, a neural network model based on
Kohonen’s self-organization rule is proposed to
resolve the macro-cell placement problem. The
relationship between the proposed self-organizing
neuron model and the macro-cell placement model
is illustrated in Figure 3, where output neurons in
the neural network model correspond to the
macro-cells. The connection weight between out-
put neuron i and output neuron j is cmy, which

connection

cell 1 wire nef

P

(®)

FIGURE 3 The relationship between (a) the proposed self-
organizing neural network model and (b) the cell placement
model.

corresponds to the strength of the connection wire
nets. The j-th position weight of output neuron i,
denoted by wj;, corresponds to the j-th coordinate
value of the position of cell b;. In the case of
placement on a two-dimensional space, w; = Xx;
and w;, = y;. When the self-organizing algorithm is
used, neurons connected closely in the topology
are sensitive to sample vectors that are physically
similar. Each neuron is sensitive to a particular
input sample vector that represents the placement
location of the related macro-cell. This method can
easily be extended to handle placement with
various constraints on cell connections and dimen-
sions. For example, w;, is an additional weight
needed for placement in a three-dimensional space
to represent value of the Z coordinate.

4. THE MACRO-CELL PLACEMENT
ALGORITHM

In this section, we first introduce the proposed self-
organizing neural network with its learning algo-
rithm. Next, the fuzzy gain function of SOFT is
presented. Finally, the proposed macro-cell place-
ment algorithm is described and analyzed in more
detail.

4.1. Self-Organizing Neural Network

Kohonen’s algorithm was originally applied to
vector quantization, in which, sample vectors
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provide the primary source of information. Thus,
the solution quality and the system performance
are more sensitive to the quality of the sample
vectors. In contrast to vector quantization, sample
vectors are seldom available in cell placement. In
this paper, a new cell placement technique based
on Kohonen’s self-organization algorithm is pro-
posed. We produce input sample vectors using
spatial relations (connectivities and overlaps
among macro-cells) and adapt the neural network
using Kohonen’s self-organizing rule. This algo-
rithm is well suited for solving such self-organizing
optimization problems (e.g., cell placement) whose
sample vectors are not easily available.

In the traditional self-organization algorithm,
the topological relations among output neurons
are represented as lateral interactions. In this
paper, we use these lateral interactions (stimulus
of excitation and inhibition) between output
neurons to produce sample vectors. Assume that
JwL(dy) is an excitation stimulus function that
minimizes the wire length between cell b; and cell
b;. The inhibition stimulus function, fmo(dy), is
presented to reduce the module overlap between
cell b; and cell b;. As defined above, this inhibition
stimulus function is calculated between cells to
remove their module overlap. In this paper, for
simplification, we preserve the ideal distance
described in Section 2 to reduce the module
overlap between cells. The stimulus functions
Swi(dy) and fumo(dy), which minimize connected
wire length and module overlap, respectively, can
easily be formulated using the ideal distance and
defined as follows:

d:
Sw(dy) = emy; x I_léj; (5)

2
(1D ) .
Svo(dy) = { ( 7 ) Dy >dy (g
0 otherwise

This model accurately reflects the wire connection
and module overlap between cells. There is a rapid

increase in the overlap penalty function and a
slower increase in the wire length penalty function.

4.2. The Fuzzy Gain Function

We have analyzed the macro-cell placement of
expert designers and found the following charac-
teristics in their placement techniques:

(1) They first place the cells in a plane such that
the topology of the cells satisfies the combined
goal of shorter wire length and less module
overlap.

(In this early relative placement phase, the wire
length criterion is more important than in the
later phase).

(2) Then, they remove the module overlap in the
placement by moving the cells such that the
total wire length is kept as low as possible.
(In this late spacing phase, the module overlap
criterion is more important).

From the suggestion of the placement techni-
ques of expert designers, we have four hypothetical
inference rules involving three variables, ¢ (time),
¢ (importance of wire length criterion), and ¢,
(importance of module overlap criterion). It can be
better understood if an “important” in a fuzzy set
is interpreted as an “‘importance is high”. Linguis-
tic values for time ¢ are defined as ‘“‘early” and
“late”. Linguistic values for ¢; and ¢, are defined
as “low”, “medium”, and “high”. The gain func-
tion is defined as the membership function for
“wire length criterion is important” (importance
of wire length criterion), denoted by puc ().
Approximate reasoning based on linguistic vari-
ables and their values [17] is used to define the
membership function for “wire length criterion is
important” of “time”. The detailed analysis is
illustrated in Figure 4. In this paper, defuzzifica-
tion is based on a centroid calculation, in which,
the actual output value is the center of gravity of
the shaded area. For simplification, we use an S-
function g(2) [16], gwrL(¥) = g(¢), as the member-
ship function to model u(f) and use gmo(?)
= 1—g(?) to model p.(?). By Equations (5) and
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FIGURE 4 Approximate reasoning based on linguistic vari-
ables and their values used to define the membership function
for “wire length criterion is important” of ““time”.

(6), the total stimulus function with the proposed
fuzzy gain functions is defined as follows:

f(dy) = gwi(?) x fwL(dy) + gmo(?) X fmo(dy)
(7)

This is the first neural optimization technique that
simultaneously considers the wire length and
module overlap criteria for macro-cell placement.

4.3. Self-Organizing Fuzzy Technique

In this subsection, a brief overview of the SOFT
algorithm will be given and then a more detailed
description of each step of the algorithm will be
given. Initially, we set the position weights as
random values. For each iteration, a cell b; is
selected and its associated sample vector V; is
generated. The position weights associated with
node i and its neighbors NE; are adapted to make
these cells more responsive to the current input ;.
This process is repeated until the system converges.
The detailed description of the SOFT algorithm is
given below.

Step 1. Initialization
Initially, the proposed algorithm sets all
the position weights (x;, ;) of macro-cell b;
as random values around the center of the
layout region (w/2, h/2). The time variable
tis set to 0.

Step 2. Winner and Sample Vector Selection
With each iteration, the algorithm ran-
domly selects a macro-cell, say b;, as the
winner neuron in Kohonen’s self-organiz-
ing algorithm. Equation (7) is then applied
to produce the related sample vector
Vi=(vx; vy;) by force F;=(fx; fy):

e )
vx; = x;(t) + ﬁ, vy = yi(t) + #ﬂ
u d.x,'j
where fx; = Z Sf(dy) x 7
P y

= fldy) x R
= ij

This step is designed to produce a sample
vector that can minimize the total wire
length and the module overlap. For
example, Figure 5(a) shows a selected
neuron, ie., neuron 3, and the lateral
interactions that come from its neighbors.
The summation of the lateral interactions
is computed and the sample vector V3 is
generated. The sizes of cells are initially
small and increase gradually during the
placement process. Define w(f)=wj0)
x gmo(?) and hy(t)=h(0) x gmo(?). The

FIGURE 5 (a) Calculation of the summation of effects and
selection of the sample vector. (b) The selected neuron and its
neighbors are moving toward V3 with various weights.
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gradual expansion of cell size introduces a
kind of function smoothing [14]. Thus, the
smaller the size of the cell, the larger the
space for moving it will be. With a larger
space for moving, the system will have
more chances to converge to an optimal
state. However, an abrupt change of cell
size is generally not desirable because it
will result in a significant distortion of the
current placement.

Self-Organizing Adaptation

Applying the sample vector and the pre-
specified winner neuron described in Step
2, this learning step uses Kohonen’s self-
organizing algorithm to adjust the pro-
posed neural network model. It updates
the position weights of winner neuron i
and its neighbors within NE(r). For all
such macro-cells, say b, the following
adaptation functions are performed:

xie(t+ 1) = (e (2) +n(u, 1) x (vxi—xk(2)))
Yi(t+1) =£,(e() +n(u, t) x (vyi—yk(1)))

A w x h placement region is given and the
bounding functions, fx() and fy(), are
defined as follows:

W,'/2 x < w,~/2
w—w;/2 x>w—w;/2
X otherwise

hi/2 y < hi/2
h=hf2  y—h)2
y otherwise

fy(yi) =

n(u,t) is a time-decreasing neighboring
gain function and u is the topological
distance between neuron k and neuron i.
The moving distances of the cells are
decreased as the number of iterations
is increased or as u is increased. For
example, in Figure 5(b), the selected
neuron and its neighbors move toward
V3 with the movement vectors which are
represented by arrows showing the direc-

tion and the magnitude of the movement.
Figure 6 shows that the neighborhood
NE;(t) of a neuron j at time ¢ is a set of
neurons lying within the topological dis-
tance 6(¢) from the neuron j. Here the 6(¢)
determining the size of the neighborhood
is a time-decreasing function.

Step 4. Stop or Next Iteration

Increase the time variable ¢ by 1. Go to
Step 2 if the neural network model does
not converge. If it converges, a placement
solution is obtained and macro-cell b; is
placed on position (x;, y;). In this paper,
we define the system to be convergent if
the position weights have no distinct
changes (or the time variable ¢ is larger

than a pre-specified large constant f,,y).

4.4. Algorithm Analyses

As point out above, input sample vectors provide
the primary information for the learning of self-
organizing neural network such that the solution
quality and the system performance are more
sensitive to the quality of the input sample vectors.
To demonstrate the performance of the proposed
algorithm, we present a small but difficult example
called NCTUS8, in which, 8 cubic-connected
macro-cells are placed on a 480 x 480 layout
region. Figure 7 shows the first 300 sample vectors
produced by the proposed method. The pre-
specified topological relation of these 120 x 120

8(t0)=2

8(t1) =1

8@2)=0

FIGURE 6 Node is represented as the selected node. Regions
with different fill patterns are represented as the neighborhood
region at difference time, 10 <1 <#2.
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(a) (®)

FIGURE 7 An illustration of the proposed method. (a) Input
topological relation. (b) Sample vectors and input order of the
sample vectors with label 3.

macro-cells is shown in Figure 7(a). Figure 7(b)
shows the distribution of the produced sample
vectors. The input sequence of the sample vectors
with the winner neuron 3 is also demonstrated. It
can easily be shown that the proposed method is
better than Kim’s SOAP method, in which, sample
vectors are randomly generated and uniformly
distributed on the placement region. Kim’s self-
organizing process is highly time-consuming,
especially because it attempts to represent parti-
cular information by random data.

Figure 8 demonstrates the execution of the
SOFT algorithm as it finds a solution for the
placement of NCTUS. There are four development
stages. The initial position weights are random
values around the center of the given region, as
shown in Figure 8(a). Next, cells are grouped and
interchanged, as shown in Figure 8(b) and (c), to
minimize the total wire length; finally, cells are
spread out over the given region, as shown in
Figure 8(d), without any module overlap. During
the placement process, the variation in wire length
at the early stage is high and it then gradually
converges to a constant value. Moreover, module
overlap gradually converges to zero. The large
variation at the early stage is due to the large size
of the neighborhood and the large gain value. As
the process continues, the changes are reduced,
because the size of the neighborhood and the
magnitude of the gain term decrease. The total
iteration time of the proposed algorithm is

(@ (®
1
R
N
© @

FIGURE 8 Four development stages for the placement of
NCTUS by SOFT. (a) The initial position values in the given
region. Next, (b) cells are grouped and (c) interchanged to
minimize wires. Finally, (d) cells are spread out over the given
region without overlap.

independent of the number of input macro-cells
and the number of wire nets. In other words, the
execution time is bounded by a constant number if
the algorithm is has been implemented by a real
analog neural network.

Table I shows the number of neurons and
connections used in the proposed model, in which,
position weights can be stored in their correspond-
ing output neurons and the input neurons can be
removed. Three different models are used for
comparison: Kita et al.’s Hopfield-like model [2],
Hemani&Postula’s self-organization model [3] and
Kim & Kyung’s SOAP [1], where w and A are the
width and the height of the placement region, and
s (=w x h) stands for the area of the placement
region. Additionally, m and »n represent the

TABLE I Comparisons of the number of neurons and
connection weights (m is the number of cells, n is the number
of wires and s is the size of region)

{1 [2] [3] Ours

Nodes O(m) O(m+s) O(@mxys) O(m)
Connections O(m+n) O((mxs)?) O@mx s) Oo(n)
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number of cells and the number of wire nets,
respectively. The proposed approach uses O(m)
neurons and O(n) connection weights; this is fewer
than the best neuron models [1] known for cell
placement problems.

5. EXPERIMENTS AND RESULTS

The proposed algorithm has been implemented in
C language on a Sun Sparc IPC station running
UNIX. Several macro-cell placement examples
(i.e., MCNC benchmark circuits: Xerox and
Ami33) were presented to our solution procedure
to prove that our algorithm can handle these pro-
blems. The large size problems with 225 and 1024
arbitrarily-sized macro-cells were also presented.
Table II shows the number of cells, number of
wires, and size of the placement region for the
input test circuits. The results of running the
proposed algorithm on various placement pro-
blems are discussed below.

The first example is an artificial, but difficult,
problem from Reference [1] called m4 x 4. This
circuit has 16 cells connected in a 4 x4 mesh-
connected pattern. The proposed algorithm was
able to achieve the optimal solution (shown in Fig.
9(a)) in approximately 5 seconds. Figure 9(b)
shows the experimental results for 100 simulation
runs. The vertical axis indicates the number of the
obtained solutions having wire lengths with the
value specified by the horizontal axis. All the trials
were started from different randomly generated
initial configurations. The solution quality of the
proposed solution model can be seen by compar-

TABLE II The number of cells, number of wires, and size of
placement region for input test circuits

Circuit Number of Cells Number of Wires Region (um?)
m4 x 4 16 24 4x4
mblk-2 29 82 100 x 85
ALU 67 81 30 x 30
Ami33 33 121 2230 x 2360
Xerox 10 203 8750 x 7440
NCTUS 8 12 4x4
NCTU225 225 49964 42 x 42
NCTU1024 1024 1045256 120 x 120

100
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FIGURE 9 An example called m4 x4, with 4 x4 mesh
connected cells. (a) The optimal solution achieved by the
proposed method. (b) The experimental results for 100
simulation runs. The vertical axis indicates the number of
solution obtained having wire lengths with the value specified
by the horizontal axis.

ison with the Hopfield-like placement algorithm
described in [2]. The proposed optimization
technique is almost independent of the initial
configuration. There are 82% of the simulation
runs achieved the optimal placement result and
96% achieved a near optimal solution. All the
solutions obtained were valid. Compare with the
solution model described in [2], on the other hand,
13% of the simulation runs achieved the optimal
placement result and 27% achieved a near optimal
solution. Moreover, 14% of the solutions were
invalid after 200 iterations. The results show that
the total wire length obtained is insensitive to
differences in the initial configuration. In other
words, the proposed algorithm successes can yield
a proper placement when different initial confi-
gurations are used. Our method improves both the
total wire length and module overlap, compared
with previous approaches.

The second example consisting 29 cells and 82
nets was reproduced from Reference [18] and
called mblk-2. Figure 10 presents the solution for
mblk-2 within a 100 x 85 region. The total wire
length obtained was 1035. The third example,
called ALU, consisted of 67 cells and 81 nets. Each
cell in this example is a 3 x 3 rectangle and has to
be placed within a 30 x 30 region. The total wire
length obtained from our system was 605 units. In
addition, the placement result was free from
overlap (see Fig. 11). Our result was better than
that achieved by Kim’s SOAP [1], which used
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FIGURE 10 The solution for placing mblk-2 within a
100 x 85 region. The total wire length obtained was 1035.

FIGURE 11 The placement solution for example circuit
ALU. The total wire length obtained from our system was
605 units. In addition, the placement result is free from module
overldp.

approximately 838 units and did not consider
module overlap. The fourth example is an MCNC
benchmark circuit called Ami33 that consists of 33
cells and 121 wire nets. The proposed method
achieved a solution with shorter total wire length
(60571 um) than TimberWolfMCS5.6 (74310 um)
[26] with half-perimeter estimation. The next
example, which consists of 10 macro cells and
203 wire nets, is an MCNC benchmark circuit
called Xerox. The achieved total wire length
(562066 pum for half-perimeter estimation) was
also shorter than that given by TimberWolfMCS5.6

(603260 pum) [26]. The placement results for these
two MCNC benchmark circuits are shown in
Figure 12. and Figure 13. Our results for all these
examples are free of module overlaps.

Two large size problems were also solved to
demonstrate the performance of the proposed
algorithm. The first large size example, called
NCTU225, consists of 225 macro-cells and 49964
nets. The total wire length is compared with the
results of the random cluster growth method, in
which, unplaced cells are selected at random and
placed around the pre-placed cells randomly. The
total wire length obtained was 991823.75. For the
random cluster growth method, the total wire

L]
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—
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FIGURE 12 The Ami33 example of the MCNC benchmark
circuit, in which, 33 cells are placed within a 2230 x 2360 region.
The result obtained has a total wire length of 60571.
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FIGURE 13 Solution for placing MCNC benchmark circuit
Xerox within a 8750 x 7440 region. (a) With fuzzy gain
function, the total wire length is 562066. (b) Without fuzzy
gain function, the total wire length is 687564.
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length obtained in the best experimental result
within 100 simulation runs was 3870765.85. The
second large size example, which consists of 1024
macro-cells and 1045256 nets, is called
NCTU1024. The total wire length achieved was
40171352, and the placement region was
120 x 120. This result was also shorter than that
of the random cluster growth method, which
obtained 230555424.36 for the best experimental
result within 100 simulation runs. These experi-
ments show that the SOFT method can obtain
feasible solutions for large size problems.

Table III presents a detailed comparison of the
total wire length obtained by the other ap-
proaches, i.e., SOAP (self-organizing assist place-
ment) and TWMC 5.6 (TimberWolfMC5.6, a
simulated annealing approach). We define a
measurement of improvement in result as follows:

Improvement =
Result of SOFT
( ~ Result of Other Method) x 100%

The results show that our algorithm provides an
average of 17% improvement in total wire length is
compared with the other approaches. A compari-
son of the results of the proposed self-organizing
optimization technique with and without the use
of the fuzzy gain function is shown in Table IV. It
can be seen that the fuzzy gain function is very
important in balancing the multiple conflicting
objectives. The average improvement is over 11%.
Note that the reduction in total wire length is only
0.4% when the fuzzy gain function is used in

placing the test circuit ALU. The major reason for
this insignificant improvement is that all the cells
in ALU are small squares and the disturbance
from module size and height/width ratio is not
marked.

6. CONCLUSION

A novel self-organizing neural network has been
presented to solve the problem of macro-cell
placement. The proposed model uses the position
weights of output neurons to represent the
positions of cells. With an additional self-organi-
zation algorithm, the position weights evolve in a
continuous manner toward the ultimate solution.
This continuous representation is quite different
from the one found in many traditional algorithms
that use discrete-representation, i.e., the Hopfield
optimization network, where all the intermediate
solutions examined are various permutations of
cells. The experimental results for our method are
quite encouraging. The proposed approach is
competitive with previous state-of-the-art algo-
rithms, no matter whether they are neural-network
based or non-neural-network based. The proposed
method provides 17% improvement in total wire
length over the results of previous algorithms, and
the results obtained are independent of the initial
configuration. Our macro-cell placement method
improves both the total wire length and module
overlap, one of which has always been trade-off for
the other in previous approaches. Our experiments
also demonstrate that solutions obtained using the

TABLE III Total wire length for the test examples

TOTAL WIRE LENGTH (um)

Example [1* [21* TWMCS.6 Ours Improvement
m4 x 4 - 30.10%* - 24.13%* 20%
ALU 838 - - 605 28%
Ami33 - 74310 60571 18%
Xerox - 603260 562066 7%

~Not proposed or not available.
*Considers only the dot—module formulation.
**Average of the best 86% solutions in 100 simulation runs.
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TABLE IV Comparisons of the proposed self-organizing
optimization technique with and without fuzzy gain function

TOTAL WIRE LENGTH (um)
Example Initial Without g(f) With g(¢) Improvement
mblk-2 3369 1208 1035 14%
ALU 1720 608 605 0.4%
Ami33 177538 69767 60571 12%
Xerox 987547 687564 562066 18%

fuzzy optimization technique are better than those
achieved without it.
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