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This study proposes a method for creating a light field with controlled distribution of transverse momen-
tum (TM) by displaying a hologram only in an azimuth region that centers at θ0 and has a range ofΔθ of a
spatial light modulator in holographic optical tweezers. This study utilized ray optics to analyze the TM
of the resultant field, revealing that the direction of the TM is determined by the center angle of the
azimuth region and that the magnitude of the TM is proportional to sinðΔθ=2Þ, without regarding
the intensity. The relationship was verified experimentally. In addition, this study demonstrated moving
particles along a designed path and depleting particles by the fields. © 2011 Optical Society of America
OCIS codes: 140.7010, 090.1760, 230.6120.

1. Introduction

Using holographic optical tweezers (HOTs) [1–4] to
create a light field with momentum transverse to the
optical axis provides a simpler approach for control-
ling the motions of microparticles. Without any light
intensity change or external force, particles in the
field can move along the region of highest intensity
because of the transverse momentum (TM). A large
number of applications have thus utilized special
light modes with the TM, such as optical vortices.
[5–7]. Studies of creating a light field with a con-
trolled distribution of momentum have been con-
ducted as well [8–12].

In electromagnetic theory, the TM of a field is pro-
portional to the phase gradient and intensity of the
field [13]. Applying only phase modulation to a light
field is insufficient to control the TM distribution.
Certain studies adjust both the amplitude and phase
of a light field to produce a desired TM distribution.
For instance, the shape-phase algorithm [10] by

Roichman and Grier uses a phase-only hologram
to direct partial light with assigned phase shifts, ac-
cording to a shape function that produces a required
amplitude distribution. Another method, proposed
by Jesacher et al. [11], is based on controlling ampli-
tude and phase distribution with two cascade phase-
only holograms.

In ray optics, models of light fields are composed
of rays. Because the momentum of a ray rests along
the ray’s direction, inclined rays contribute the TM
[14]. In conventional optical tweezers [15], numerous
inclined rays are created when incident rays are
brought into focus. However, because of the azimuth
symmetry of incident light intensity, the TM contrib-
uted by the incident rays is cancelled out completely
at the focus. This implies that breaking the azimuth
symmetry can realize alternative approaches toward
creating a light field with TM distribution.

Based on this notion, this study proposes a method
for creating a light field with a controlled TM distri-
bution by displaying a hologram only in an azimuth
region of a spatial light modulator (SLM) in HOTs.
This paper uses ray optics to analyze the TM dis-
tribution of the resultant field. By tracing all the
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incident rays from the SLM to the focal plane of an
objective in HOTs and summing the TM contributed
by all the rays passing through the same points of the
focal plane, the TM distribution of the field can be
obtained. Implementation of this approach reveals
a criterion for creating a light field with a controlled
TM distribution. To verify the proposed method,
electromagnetic theory is used to calculate the TM
distributions of resultant fields numerically. In addi-
tion, the ability of moving particles of these fields is
experimentally demonstrated.

2. Theory

This section presents the usage of ray optics to ana-
lyze the TM flux density, the TM per unit time per
unit area, of an optical pattern produced by a holo-
gram that is displayed only in an azimuth region of
an SLM in HOTs. The azimuth region centers at θ0
and has an angle range of Δθ. A normally incident,
collimated ray bundle of power ptotal that extends
over the entire input aperture of an objective models
the incident light. Before considering the diffraction
effect of the hologram, the TM flux at focus is
analyzed, to which all of the incident rays within
the azimuth region converge.

In HOTs, a hologram displayed on an SLM is
imaged onto the back focal plane of an objective.
The resultant light field is consequently created on
the front focal plane of the objective. Thus, the setup
of HOTs can be simplified to an objective between the
front and back focal planes. A typical objective used
in HOTs is an infinite-corrected objective, which
conforms to the Abbe sine condition, and can be mod-
eled by the first principal plane (PP), the second PP,
and a spherical surface S [16]. The spherical surface
S is centered at the focus, and is a tangent to the
second PP.

Figure 1 shows the path of a normally incident
ray in HOTs from the SLM plane through an objec-
tive to the focal plane. The optical axis is in the z di-
rection. The ray originates from the azimuth region
at the position rr ¼ rr cosðθÞxþ rr sinðθÞy and crosses
the first PP at Point A1, which is at the same position
rr. According to the Abbe sine condition [16], the ray
emerges from Surface S at Point As, of which the

transverse component of the position vector is also
rr, before converging to the focus. At the focus, the
TM flux contributed by the ray Pt;ray can be shown
as follows:
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where n is the refractive index of the surroundings,
pray is the power transported by the ray, c is the speed
of light in vacuum, f obj is the focal length of the ob-
jective, and x and y are the unit vectors in the x and y
direction, respectively. Since all the normal incident
rays within the azimuth region converge to the focus,
after summing, or integrating, the TM contributed
by all the rays within the region, the total TM at
the focus Pptotal
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whereR is the radius of the objective’s back aperture,
Nr is number density of the incident rays on the
SLM, and pray is substituted by ptotal=ðπR2NrÞ.

When considering the diffraction effect of the holo-
gram, the incident ray bundle is assumed to be split
into a large number of collimated ray bundles bear-
ing different headings and power after the hologram.
This is similar to the concept of the angular spectrum
in Fourier optics [17], which decomposes a field into
plane waves, though these ray bundles originate only
from the azimuth region. Once these ray bundles
pass through the objective, they converge to points

Fig. 1. (Color online) Schematic illustration of a ray path in HOTs from the SLM plane to the focal plane.
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on the focal plane and form an intensity distribu-
tion Iðx; yÞ.

Usually, the size of the optical pattern is signifi-
cantly smaller compared to the focal length of the ob-
jective. The inclined angles between the ray bundles
and the optical axis are close to zero. This study thus
assumes that regardless of the inclined angles, these
ray bundles contribute the same TM flux at the focal
plane as long as they have the same power. In other
words, the total TM flux of the entire optical pattern
is equal to the TM flux at the focus to which all the
incident rays converge. Consequently, the TM flux
density of the optical pattern Jptotaltotal ðx; yÞ can be ob-
tained by redistributing the total TM at the focus
to the entire optical pattern according to the inten-
sity distribution, as follows:

Jptotal
total ðx; yÞ ¼ Pptotal

t;totalInðx; yÞ; ð3Þ

where

Inðx; yÞ ¼
Iðx; yÞR

∞

−∞

R
∞

−∞

Iðx; yÞdxdy ; ð4Þ

which is a normalized intensity distribution of the
optical pattern. After substituting Eq. (2) into Eq. (3),
the TM flux density of the optical pattern becomes

Jptotal
t;totalðx; yÞ ¼ −

�
2
3πc

��
n

R
f obj

�
ptotal sinðΔθ=2Þ

× ½cosðθ0Þxþ sinðθ0Þy�Inðx; yÞ: ð5Þ

FromEq. (5), the direction of the TM flux density is
along −½cosðθ0Þxþ sinðθ0Þy�, which is determined
only by θ0. The magnitude of the TM flux density
is proportional to the normalized intensity Inðx; yÞ
and the total incident power ptotal. In addition, the
magnitude of the TM flux density is also proportional
to sinðΔθ=2Þ. When Δθ is equal to 0°, the TM flux
density is zero due to an absence of incident rays.
As Δθ increases, the magnitude of the TM flux den-
sity increases in conjunction with the extension of
the azimuth region, reaching its maximum value at
Δθ ¼ 180°. However, when Δθ is larger than 180°,
more rays arrive at the focal plane, though part of
the TM flux density is cancelled by the newly added
rays. The magnitude of the TM flux density thus
decreases and experiences a complete cancellation
whenΔθ ¼ 360°. This is the reason why the TM flux,
or the transverse scattering force, is not observed in
optical tweezers.

Creating an optical pattern with controlled TM
distribution thus becomes two parts: (1) controlling
the direction of the TM by adjusting θ0 of an azimuth
region withΔθ < 360°; and (2) calculating a required
hologram for producing a desired intensity distribu-
tion, which can be accomplished by most algorithms
used in HOTs, such as the Gerchberg–Saxton (GS)
algorithm [18], the weighted GS algorithm (GSW)

[19], or the generalized adaptive add algorithm
(GAA) [3].

3. Setup

The schematic illustration of the experimental setup
is shown in Fig. 2. The trapping laser is a fiber laser
(YLR-10-1064-LP; IPG photonics) with an output
power of up to 10W at 1064nm. The laser beam is
first expanded by a beam expander to fulfill the ac-
tive area of the SLM (X10468-03; Hamamatsu).
A half-wave plate and a polarized beam splitter are
utilized to control incident laser power on the SLM.
The laser beam immediately leaving the SLM is
consequently imaged by a telescope onto the back
focal plane of a 100× water-immersion objective, with
a numerical aperture (NA) that equals 1.1 (Plan;
Nikon). Once the laser beam passes through the ob-
jective, a designed optical field is formed on a sample
held on a stage. The sample is illuminated by a light-
emitting diode (LED) and is imaged on a CCD
camera (PL-B955G; PixeLink) by the objective and
a tube lens.

4. Results

Figure 3(a) shows a phase-only hologram for produ-
cing two trap arrays with opposite directions of TM.
The hologram is divided into two azimuth regions,
separated by a horizontal dash line. The hologram
in each region produces a point trap array labeled
with the same number as that of the azimuth region,
as shown in Fig. 3(b). The trap arrays extend in the y
direction. The traps in each trap array are arranged
to set the distances between the neighboring traps at
2 μm. According to Eq. (5), the central angle of Region
1 is 90°; the TM of the resultant trap array is there-
fore along −y. Similarly, the central angle of Region 2
is 270°; the TM of the resultant trap array is hence
along y.

Figures 3(c) and 3(d) show the normalized simu-
lated TM distributions of the resultant field in the
x and y directions, respectively. The field produced
by the hologram was calculated by performing a fast
Fourier transform (FFT) on the transmittance of the

Fig. 2. (Color online) Experimental setup.
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hologram. The TM distribution of the field was sub-
sequently calculated by multiplying the intensity
distribution by the gradient of the phase distribution
of the field [13] before normalizing by the maximum
magnitude of the result. These figures show that the
TM of the trap array produced by Region 1 is along
−y, indicated by a black color, and that of the trap
array produced by Region 2 is along y, indicated
by a white color. These results are consistent with
the results predicted by Eq. (5).

These trap arrays were projected in a solution of
9 μm diameter polystyrene beads, which was placed
between a cover slip and a slide. Figure 3(e) shows
the sequential snapshots of beads moving along the
trap arrays. The beads were pushed against the slide
surface and were confined in the trap arrays. Within
the trap arrays, the beads experienced only light gra-
dient force due to cancellation between the gradient
forces from different traps. As the beads scattered
the photons of the trap array, they obtained the TM
and thus moved along the y direction. Equation (5)
shows that the TM is proportional to sinðΔθ=2Þ and
ptotal; the average moving speeds of the beads should
thus also be proportional to sinðΔθ=2Þ and ptotal.

Figure 4(a) shows the average moving speed in the
y direction of the beads in the trap arrays at different
Δθ and ptotal. The solid lines are a result of the fits
to the function Vmax sinðΔθ=2Þ, where Vmax is a free
parameter. The data show the same dependence

Fig. 4. (Color online) Average moving speed of a 9 μm diameter
bead in a trap array at different Δθ and ptotal: (a) is the average
moving speed at different Δθ from 60° to 300°. The solid lines
fit the function VmaxSinðΔθ=2Þ; (b) is Vmax at different incident
power ptotal. The straight line is a linear fit, which does not pass
through the origin, indicating that a minimum incident power
of approximately 63:2mW is required to overcome the resistance
between the particle and slide surface.

Fig. 3. (Color online) Moving particles along two trap arrays
(a number near the trap array indicates the region from which the
trap array was created): (a) is the phase pattern for creating two
trap arrays; (b) is the corresponding intensity distribution on the
focal plane; (c) and (d) are the simulated TM distributions in the x
and y directions, respectively; and (e) represents the sequential
snapshots of two 9 μm diameter beads moving in the trap arrays.

Fig. 5. (Color online) Particles moving along a heart-shaped path:
(a) is the phase pattern for producing a heart-shaped path; (b) is
the corresponding intensity distribution on the focal plane; (c) and
(d) are the simulated TM distributions in the x and y directions,
respectively; and (e) represents the sequential snapshots of beads
moving along the path (Media 1).
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on Δθ as the TM flux density predicted by Eq. (5).
Figure 4(b) shows Vmax at different ptotal. The solid
line is a linear fit and does not pass through the ori-
gin, indicating that a minimum input power of
approximately 63:2mW is required to move the
beads. This may be caused by the resistance between
the surface and the beads.

A more complex path can also be created. A phase
pattern which produces point traps that form a
heart-shaped path is shown in Fig. 5(a). The traps
are arranged to set the direction of TM along the
path. The corresponding intensity and the simulated
TM distributions in the x and y directions are shown
in Figs. 5(b)–5(d). Figure 5(e) (Media 1) represents
the sequential snapshots of moving 9 μm diameter
beads along the path. The time interval between
snapshots is 1 s. The white triangle in each snapshot
indicates the same bead at different times. These fig-
ures show that the beads move along the path in a
direction, as predicted by the simulated results.

In addition to moving particles along closed loops,
trap arrays can also be used to deplete particles.
Figure 6(a) shows a phase pattern for producing an
equally-spaced trap array with 2 μm spacing, which
forms a hexagon. The phase pattern is divided into
six regions. The phase pattern in each region pro-
duces a triangular trap array, which is labeled with

the same number as the corresponding region, shown
in Fig. 6(b). The TM of these triangular trap arrays
directs outward from the center of the hexagon, as
shown in Figs. 6(c) and 6(d). Figure 6(e) (Media 2)
represents the sequential snapshots when the trap
array was projected in a solution containing 0:5 μm
diameter beads. The time interval between snap-
shots is 1 s. At the beginning of the experiment, a
large number of beads were located in the center
of the screen. Over time, the beads jumped outward
because of the TM and help from Brownian motions
and particle collisions. When most particles were
outside the trap array, particle collisions became
rare. The Brownian motions of particles became the
only aid for the particles to overcome the gradient
forces. The depletion rate thus decreased and some
particles remained trapped at the end of the experi-
ment. This process can be reversed with the reversal
of the direction of the TM in each subtrap array.
In this manner, particles can be concentrated at
the central region and local particle concentration
can thus be controlled.

5. Conclusion

This paper proposes an alternative method for con-
trolling the TM distribution of a light field, other
than by modulating its phase and amplitude distri-
bution. This study used ray optics to analyze the
TM distribution of a field produced by a hologram.
The results reveal that a field with controlled TM dis-
tribution can be created by displaying a hologram
only in an azimuth region with an angle range of
Δθ < 360°. The direction of the resultant TM distri-
bution is determined by the center angle θ0 and lies
along the direction −½cosðθ0Þxþ sinðθ0Þy�. The magni-
tude of the TM is proportional to sinðΔθ=2Þ, without
regarding the intensity distribution of the field.
The control of the TM distribution of a light field is
thus divided into two parts: (1) controlling the direc-
tion of the TM by adjusting θ0 of an azimuth region
with Δθ < 360°; and (2) calculating a required holo-
gram to produce a desired intensity distribution.

The relationship is experimentally verified. In
addition, this study created point trap arrays with
controlled TM distributions to demonstrate moving
particles along predetermined paths and the deple-
tion of particles.

The authors thank Sien Chi and Yi-Ren Chang
for their thought-provoking discussions and
suggestions.
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