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theory in the literature, and this model is phenomenologically unsatisfactory. Recently, in

arXiv:1012.1690, we have constructed two new such E6 grand unified models in heterotic

asymmetric orbifolds. Although our new models themselves cannot resolve the unsatis-

factory point in the previous model, our discovery raises hopes that one can construct

many other such models in this framework and find better models. Here, by giving par-

tition functions explicitly, we explain the details of our construction. Utilizing the lattice

engineering technique and the diagonal embedding method, we can construct models sys-

tematically. We hope that these techniques and the details of our construction will lead to

more phenomenologically desirable models.

Keywords: Compactification and String Models, Superstrings and Heterotic Strings,

GUT

ArXiv ePrint: 1104.0765

c© SISSA 2011 doi:10.1007/JHEP12(2011)100

mailto:mot@eken.phys.nagoya-u.ac.jp
mailto:skuwa@eken.phys.nagoya-u.ac.jp
mailto:maekawa@eken.phys.nagoya-u.ac.jp
mailto:moriyama@math.nagoya-u.ac.jp
mailto:takahashi-2nyh@jp.nomura.com
mailto:takei@eken.phys.nagoya-u.ac.jp
mailto:teraguch@ifrec.osaka-u.ac.jp
mailto:yamasita@eken.phys.nagoya-u.ac.jp
http://arxiv.org/abs/1104.0765
http://dx.doi.org/10.1007/JHEP12(2011)100


J
H
E
P
1
2
(
2
0
1
1
)
1
0
0

Contents

1 Introduction 2

2 Lattice partition functions 6

2.1 Lattices 7

2.2 Lattice engineering technique 7

2.3 General shift actions 10

2.3.1 Partition functions without shift actions 10

2.3.2 Generalized theta function 11

2.3.3 Partition functions with general shift actions 12

2.4 Permutation with a specific shift action 14

3 Models and partition functions 17

3.1 Unorbifolded theory 17

3.2 Z4 suborbifold 18

3.3 Z12 orbifold 21

3.4 Prefactor 22

3.5 Classification 22

4 Analysis of models 24

4.1 Phases from fixed points 24

4.2 Phases from the lattice 25

4.3 Massless spectrum 27

5 Summary and discussion 30

A Partition functions of fermionic/bosonic oscillators 32

A.1 Fermion 32

A.2 Boson 33

A.3 Phases from fermions 34

B Lattice decomposition 34

B.1 E8 → E6 × A2 34

B.2 E6 → (A2)
3 36

B.3 E6 → D4 × Ã2 36
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1 Introduction

The standard model is unsatisfactory from an aesthetic viewpoint. Even though the model

has very good agreement with experimental results, the matter content appears to be too

complicated to be the most fundamental structure of the universe. This unsatisfactory

point can be stated in a more scientific way. Despite the complicated matter content in the

model, after summing over their contributions, the quantum anomaly cancels miraculously.

This miraculous cancellation has to be explained. Considering that the periodic table of

the chemical elements finally led to the discovery of the subatomic structure and that the

representation-theoretical diagrams of hadrons led to the discovery of quarks, it is natural

to expect a more fundamental structure beyond the standard model.

A fundamental structure was proposed as the grand unified theory (GUT) [1–5]. For

example, if we regard the standard model gauge group SU(3)C×SU(2)L×U(1)Y as E3×U(1)

and continue the unification in the exceptional algebras of the E-series, we find that the

matter content of each generation is unified into a few multiplets or a single multiplet in

E4 = SU(5) or E5 = SO(10), respectively. Furthermore, in the E6 unification [6–8], the

seemingly redundant fields in the fundamental representation 27 are useful for explaining

the hierarchical structure of the quark-lepton masses and mixings in the standard model

in a simple way [9–14]1. Reviewing all of these beautiful unifications, it seems reason-

able to anticipate the emergence of an E-series structure independent of the details of

models. It is also natural to require four-dimensional N = 1 supersymmetry (SUSY) to

enforce the gauge-coupling unification and adjoint Higgs fields to enable symmetry breaking

in this context.

String theory is another candidate fundamental structure which also unifies gravity.

Among the known frameworks for phenomenological studies of string theory [15–48], het-

erotic string theory [49–51] matches particularly well with the E-series and has a well-

defined Lagrangian description. Therefore, aside from any further specific phenomenologi-

cal requirements, it is interesting to ask whether we can find unified models with

• an E6 unification group,

• Higgs fields in the adjoint representation,

• three generations,

• four-dimensional N = 1 SUSY,

from heterotic string theory.

In the construction of phenomenological models in heterotic string theory, compact-

ifications on geometric Calabi-Yau manifolds or symmetric orbifolds [52, 53] are usually

utilized. In symmetric orbifolds, the standard ten-dimensional heterotic string theory with

an extra left-moving rank 16 gauge group E8 × E8 or SO(32) is compactified on a six-

dimensional orbifold, which is defined by a six-dimensional torus divided by its rotation

symmetries. The orbifold action θ is basically defined for the target space, θ : x 7→ θx,

1 In addition, there are no chiral exotics with respect to the standard model gauge group in E6 models.
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with a clear geometric picture. In terms of its world-sheet theory, the action is common

for the left-movers XL(z) and right-movers XR(z) of the string coordinates. In the case

of heterotic string where fermions are only right-moving, the orbifold action θ is extended

to act on the left-moving E8 × E8 or SO(32) lattice to compensate the asymmetry. It has

been found, however, that in these compactifications it is difficult to find unified models

with the above requirements.

Considering that the orbifold action can be generalized so as to also act on the extra

left-moving lattice, it is natural to generalize the orbifold action further so that it acts on

the left-moving and right-moving lattices separately. This type of construction is called an

asymmetric orbifold [54, 55]. Namely, in asymmetric orbifolds, the action can be defined

independently on the left-movers and right-movers,

θ : XL 7→ θLXL, XR 7→ θRXR, (1.1)

with θL 6= θR. In general, the starting point is not necessarily restricted to the E8 × E8

or SO(32) heterotic theory but may include heterotic theory compactified on a general

Lorentzian even self-dual lattice [56], which combines the geometric six dimensions and

the extra left-moving 16 dimensions together from the beginning. Since, in this paper,

we describe even self-dual lattices using Lie lattices, asymmetric orbifold actions are de-

fined as orbifold identifications of discrete symmetries of these Lie lattices. Compared with

symmetric orbifolds, asymmetric orbifolds offer many more possibilities for model construc-

tion since there are many possible even self-dual lattices and asymmetric orbifold actions,

although the consistency condition is more complicated.

A thorough study on heterotic asymmetric orbifolds in [57–60] showed that such con-

struction of E6 GUTs is actually possible. The authors of [57–60] claimed that, under the

additional requirement of a hidden non-Abelian gauge group for SUSY breaking [61], only

one model with the above physical requirements exists. Since, however, it is known that

there are other possibilities for breaking the SUSY such as that in [62], in which our world

is realized in a metastable vacuum [63], the requirement of the hidden non-Abelian gauge

group may be relaxed to construct new models. In addition, unfortunately there are no

mechanisms to prevent the doublet-triplet splitting problem and the SUSY flavor/CP prob-

lem in their unique model in [57–60]. Considering possible solutions to the problems uti-

lizing additional gauge symmetries such as the anomalous U(1)A gauge symmetry [64–78]

and SU(2)F family symmetry [13, 14, 79, 80], it is worth checking whether or not such

additional symmetries can be realized in these new models.

We revisited this direction in [81], where we systematically translated the above four

physical requirements into a setup in string theory. As a result, we found three models

with one of them having the same massless spectrum as that in [57–60] and two of them

being new. Surprisingly, we found that one of the new models contained a further hidden

non-Abelian gauge group and was dropped from the classification in [57–60]. In addition to

these explicitly constructed models, we stress that the techniques used in [81] are now well

established and we can construct many types of models at will. Unfortunately, our new

models share the same phenomenologically unsatisfactory issues as the model in [57–60].
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Despite this, we believe that our discovery of new E6 models in a systematic way is impor-

tant because it raises hopes that more phenomenologically attractive models will be found.

In the current paper, we present details of the model construction in [81] using partition

functions in a self-contained way. The techniques used include the lattice engineering

technique [82], modular invariance with arbitrary shift actions and the diagonal embedding

method [83] with a shift action. As explained in [81], various physical requirements can be

translated into the string setup using the above techniques. Note that, although we have

applied these techniques to E6 GUT model construction in this study, the same techniques

can be used for constructing models with other unified gauge symmetries such as SO(10),

SU(5) and the standard model group SU(3)C × SU(2)L × U(1)Y . We shall briefly review

our setup from the viewpoint of the following physical requirements.

E6 unification group. Since we are considering the compactification of heterotic string

theory, the momentum space is quantized on a lattice. From the consistency condition of

the modular invariance in string theory, the lattice is required to be [56]

• even, meaning that (ein
i)2 = (ein

i)◦(ejn
j) ∈ 2Z for ni ∈ Z, with ei being the lattice

basis and ◦ being the inner product in the lattice space, and

• self-dual, meaning that {ein
i|ni ∈ Z} = {ẽim

i|mi ∈ Z}, with ẽi being the dual lattice

basis such that ei ◦ ẽj = δij .

According to [56], provided we have an extra even self-dual (22,6)-dimensional lattice

(which denotes a lattice containing a 22-dimensional left-moving lattice and a six-dimen-

sional right-moving lattice), we can obtain a consistent four-dimensional string theory

without considering its 10-dimensional origin. Hence, hereafter we specify our unorb-

ifolded theory by its (22,6)-dimensional lattice. Since the left-moving part of the lattice

contributes to the spacetime gauge symmetry, we have to construct an even self-dual lattice

containing E6 in the left-moving part.

Adjoint Higgs fields. In general, when heterotic string theory realizes a spacetime

gauge symmetry, the currents of the corresponding worldsheet theory form the Kac-Moody

algebra

[ja
m, jb

n] = ifab
cj

c
m+n + kmδabδm+n,0. (1.2)

Here ja
m is the Kac-Moody current and fab

c is its structure constant. In the above con-

struction of even self-dual lattices, we typically find the Kac-Moody level to be k = 1. It is

known, however, that to obtain adjoint Higgs fields we need to increase the Kac-Moody level

to k > 1 [84–90]. For this purpose, we utilize the diagonal embedding method [83]. Namely,

we select K copies of the above Kac-Moody current denoted by I with I = 1, · · · ,K and

consider the orbifold action by permuting them. Then, the remaining diagonal current

after the orbifold projection

Jdiag =
K∑

I=1

jI (1.3)

satisfies the same Kac-Moody algebra with the level k = K.
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Three generations. To obtain a nonvanishing generation number, we have to introduce

a shift action in addition to the permutation action to break the symmetry between chiral

and antichiral matter. Unfortunately, it is not easy to translate the condition of three

generations into the string theory setup. Since there is a conjecture stating that the

generation number is a multiple of the Kac-Moody level [57–60], we choose the Kac-Moody

level to be three here. For this purpose, our lattice has to contain a left-moving (E6)
3

lattice, which does not fit the 16 extra left-moving dimensions. This is why we consider

heterotic string theory with a Narain compactification [56] instead of the standard E8×E8

or SO(32) heterotic string theory.

N = 1 SUSY. To meet the requirement of N = 1 SUSY we need a suitable orbifold

projection on the right-moving lattice. For the right-moving E6 part, a typical choice is

the Z12 Coxeter element.

For the construction of the desired even self-dual lattice, the lattice engineering tech-

nique is useful [82]. This technique allows us to generate a new even self-dual lattice from

a known one. The essence of this technique is to utilize the fact that a lattice (say, an

A2 lattice) transforms oppositely under the modular transformation compared with its

complement lattice in the E8 lattice (the E6 lattice for the case of the above example of

an A2 lattice). Using this fact, we can always replace the left-moving A2 lattice with the

right-moving [E6]
∗ lattice and vice versa. Here we denote the right-moving lattice with

an asterisk because it contributes to the partition function in the complex conjugate. Us-

ing this technique, we can always obtain an even self-dual lattice containing a left-moving

(E6)
3 sublattice starting from a lattice containing a left-moving A2 sublattice. Namely,

we can always replace the left-moving A2 sublattice with a right-moving [E6]
∗ lattice and,

after subsequent decomposition into [(A2)
3]∗ and further replacements, we end up with a

lattice containing (E6)
3. For example, in [81] we prepare the E6 × [E6]

∗ lattice as a known

even self-dual. After decomposing the left-moving E6 part into (A2)
3, we can replace one

of the A2 by (E6)
3 and obtain an even self-dual [(A2)

2 × (E6)
3] × [E6]

∗ lattice. Note that

this technique is merely a mathematical tool for finding new even self-dual lattices and is

unconnected with whether or not we can construct a heterotic string theory from it.

At this stage, it may appear that the above requirements restrict possible lattices

too strongly and that there is little room to construct many models. However, we can

introduce further orbifold actions on the two A2 lattices of [(A2)
2×(E6)

3]×[E6]
∗, which add

variety to models without changing the above properties including the modular invariance.

Therefore, we also classify all the possible shift and rotation actions on the two A2 lattices

in this paper.

The outline of this paper is as follows. In the next section, we define the lattice

partition functions with a general shift action, which are needed for the asymmetric orbifold

construction of our E6 models. We also explain the lattice engineering technique and the

diagonal embedding method used to obtain adjoint Higgs fields. In section 3, we present

the setup of our model construction explicitly and classify all the possible models in this

framework. In section 4, we analyze the massless spectra of our new models with three

generations in detail. Section 5 is devoted to a summary and discussion. Other technical

– 5 –



J
H
E
P
1
2
(
2
0
1
1
)
1
0
0

details are left to the appendices, where we summarize the partition functions of bosonic and

fermionic oscillators and give a short review on some useful decompositions of Lie lattices.

2 Lattice partition functions

The one-loop partition function of closed string theory is defined by

Z(τ) = TrHqL0−aqL0−a, (2.1)

for a modular parameter τ and q = e2πiτ . Here the trace is taken over the closed string

Hilbert space H, while L0(L0) and a(a) are the Virasoro zero mode and zero-point energy

of the left(right)-moving modes, respectively. The modular transformations that identify

the different moduli τ form a discrete group PSL(2, Z) and are generated by

T : τ 7→ τ + 1, S : τ 7→ −1/τ. (2.2)

The partition function (2.1) should be invariant under the transformations

Z(τ + 1) = Z(τ), Z(−1/τ) = Z(τ). (2.3)

In ZN orbifold theory, the partition function is divided into various sectors labeled

by (α, β),

Z(τ) =
1

N

N−1∑

α,β=0

Z
[α
β

]
(τ), Z

[α
β

]
(τ) = TrHαqL0−aqL0−aθβ, (2.4)

with θ being the orbifold action. Here, Hα is the Hilbert space of the α twisted sector.

These sectors should transform covariantly under the modular transformation

Z
[α
β

]
(τ + 1) = Z

[ α

β + α

]
(τ), Z

[α
β

]
(−1/τ) = Z

[ β

−α

]
(τ), (2.5)

supplemented by the orbifold periodic consistency condition

Z
[α
β

]
(τ) = Z

[ α

β + N

]
(τ). (2.6)

In the following, we divide the partition function into several parts originating from the

fermions, the bosonic oscillators and the zero-mode momentum states on a lattice. In

studying each contribution, we typically define a partition function for arbitrary (α, β) so

that it satisfies the modular transformation (2.5). We only require the orbifold periodic

condition (2.6) of each part to hold up to a phase, since various phases may cancel each

other after summing over all the contributions.

In the asymmetric orbifold construction, the main complication arises from the

lattice part

ΘL(τ) =
∑

(pL,pR)∈Γ

qp2
L

/2qp2
R

/2, (2.7)

where Γ denotes the lattice. Therefore, in this paper, we focus on the lattice partition

function and give the definition of the fermion and bosonic oscillator partition functions in

appendix A.

– 6 –



J
H
E
P
1
2
(
2
0
1
1
)
1
0
0

2.1 Lattices

To obtain the four-dimensional spacetime in heterotic string theory we have to compactify

the (22, 6)-dimensional spacetime. After compactification, the momenta are quantized and

reside on a (22, 6)-dimensional Lorentzian lattice. A lattice is a set of points that are

generated by a set of basis vectors ei with integral coefficients: {ein
i|ni ∈ Z}. A lattice is

even when it satisfies (ein
i)2 ∈ 2Z. The dual lattice is a lattice {ẽim

i|mi ∈ Z} generated

by the dual basis ẽi of the original lattice, which satisfies ei ◦ ẽj = δij . A lattice is self-dual

when the dual lattice is exactly the same as the original one. For the modular invariance

of string theory, we require the lattice to be even and self-dual. In heterotic string theory,

the left-moving part of the Lie lattice is responsible for the spacetime Lie-algebraic gauge

symmetry. In a Lie algebra, the root lattice is generated by the simple roots αi, and it

is known to be an even lattice for the case of a simply laced Lie algebra. Therefore, we

are especially interested in simply laced Lie algebras. A weight lattice is generated by the

fundamental weights ωi satisfying αi ◦ ωj = δij. In other words, a weight lattice is the

dual lattice of a root lattice and, in fact, a root lattice is a sublattice of its weight lattice.

Since we have already chosen even lattices, it is desirable to know how close they are to

being self-dual lattices and how we can generate even self-dual lattices from this knowledge.

An efficient way to study the above questions is to use conjugacy classes. Conjugacy classes

can be defined by identifying points of the weight lattice, whose difference resides in the

root lattice. For E6 and A2, which are our main concern in this paper, the conjugacy

classes are isomorphic to Z3, with the generator being the weight vector of the fundamental

representation with the minimal dimension. This means that the conjugacy classes of E6

(or A2, respectively) have three elements, namely, the root lattice, that shifted by the

weight of the fundamental representation 27 (or 3) and that shifted by the weight of the

antifundamental representation 27 (or 3). These elements have the same additive structure

as the additive group {0, 1, 2} mod 3.

In the following, we explain various techniques used in constructing our E6 unified

models [81], including the lattice engineering technique, orbifolds with general shift ac-

tions and permutation with a specific shift. In appendix B, we summarize some useful

decompositions of Lie lattices used in our analysis in terms of their conjugacy classes.

2.2 Lattice engineering technique

As mentioned in the previous subsection, modular invariance requires the momentum lattice

to be even and self-dual. Therefore, our starting point in studying heterotic string theory

is to search for an even self-dual lattice with the desired properties. In this subsection, we

explain the lattice engineering technique [82], using which we can construct a new even

self-dual lattice out of a given one with different dimensionality. In fact, it turns out that

this technique is particularly useful for constructing models with E6 gauge symmetry with

Kac-Moody level 3, where we need an even self-dual lattice containing (E6)
3.
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Here we study the E6 lattice and A2 lattice. The partition functions of the A2 lattice

and the lattice shifted by the fundamental weight (denoted as A(τ) and a(τ), respectively)

can be expressed in terms of the standard theta function:

A(τ) = ϑ
[0
0

]
(2τ)ϑ

[0
0

]
(6τ) + ϑ

[1/2
0

]
(2τ)ϑ

[1/2
0

]
(6τ),

a(τ) = ϑ
[0
0

]
(2τ)ϑ

[1/3
0

]
(6τ) + ϑ

[1/2
0

]
(2τ)ϑ

[5/6
0

]
(6τ). (2.8)

Note that the root lattice shifted by the antifundamental weight is actually the same as

that shifted by twice the fundamental weight and takes the same partition function, a(τ).

From the decompositions E8 → E6 ×A2 and E6 → (A2)
3 (reviewed in (B.5) and (B.8)), it

is not difficult to obtain the relations

ΘL
E8

(τ) = E(τ)A(τ) + 2e(τ)a(τ) (2.9)

and

E(τ) = A(τ)3 + 2a(τ)3, e(τ) = 3A(τ)a(τ)2. (2.10)

Here, ΘL
E8

(τ) is the partition function of the E8 root lattice, and E(τ) and e(τ) are the

partition function of the E6 root lattice and that of the root lattice shifted by its fun-

damental (or antifundamental) weight, respectively. Under the modular transformations,

these partition functions transform as

A(τ + 1) = A(τ), A(−1/τ) =
√
−iτ

2 1√
3
(A + 2a)(τ),

a(τ + 1) = ωa(τ), a(−1/τ) =
√
−iτ

2 1√
3
(A − a)(τ),

E(τ + 1) = E(τ), E(−1/τ) =
√
−iτ

6 1√
3
(E + 2e)(τ),

e(τ + 1) = ω−1e(τ), e(−1/τ) =
√
−iτ

6 1√
3
(E − e)(τ), (2.11)

with ω = exp(2πi/3). If we respectively define Ak(τ) and Ek(τ) to be the A2 and E6

partition functions shifted by k-multiples of their fundamental weights,

Ak(τ) =
(
A(τ), a(τ), a(τ)

)
, Ek(τ) =

(
E(τ), e(τ), e(τ)

)
, (2.12)

the above modular transformation can be expressed as

Ak(τ + 1) = ωk2
Ak(τ), Ak(−1/τ) =

√
−iτ

2 1√
3

2∑

l=0

ω−klAl(τ),

Ek(τ + 1) = ω−k2
Ek(τ), Ek(−1/τ) =

√
−iτ

6 1√
3

2∑

l=0

ωklEl(τ). (2.13)
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One might notice that Ak and Ek transform oppositely under the modular transformation.

This property becomes even more manifest if we rewrite the decomposition (2.9) of the E8

partition function, which is invariant under modular transformations, in terms of Ak and

Ek as

ΘL
E8

(τ) =
2∑

k=0

Ak(τ)Ek(τ). (2.14)

Thus, the partition function of a lattice (say, an A2 lattice) transforms oppositely com-

pared with the partition function of its complement lattice in the E8 lattice (E6 lattice for

the case of the above example of an A2 lattice). Since the left-moving and right-moving

lattice partition functions also transform oppositely, we can construct a new lattice without

changing its modular transformation property by replacing the left-moving A2 lattice with

the right-moving [E6]
∗ lattice and vice versa. Thus, one can always generate new even

self-dual lattices from known ones. This is the lattice engineering technique [82].

We show some examples of the lattice engineering technique. For this purpose, we

rewrite (2.14) as

ΘL
E8

(τ) =
∑

(kA,kE)∈ΠE8

AkA
(τ)EkE

(τ), ΠE8 = {(0, 0), (1, 1), (2, 2)} (2.15)

and use the set of conjugacy classes ΠE8 as the definition of the lattice. In the current

case, the conjugacy classes do not change upon the replacement of the lattices in the

lattice engineering technique. For example, if we replace the left-moving E6 lattice with

the right-moving [A2]
∗ lattice, the resulting lattice is the (2, 2)-dimensional even self-dual

lattice A2 × [A2]
∗. Here, the corresponding partition function and conjugacy classes of the

A2 × [A2]
∗ lattice are respectively given as

ΘL
A2×[A2]∗

(τ) =
∑

(kA,kA∗)∈ΠA2×[A2]∗

AkA
(τ)
[
AkA∗ (τ)

]∗
, ΠA2×[A2]∗ = {(0, 0), (1, 1), (2, 2)}.

(2.16)

On the other hand, if we consider the replacement of the left-moving A2 lattice with the

right-moving [E6]
∗ lattice, we obtain the (6, 6)-dimensional even self-dual lattice E6× [E6]

∗

with the partition function and conjugacy classes

ΘL
E6×[E6]∗

(τ) =
∑

(kE ,kE∗)∈ΠE6×[E6]∗

EkE
(τ)
[
EkE∗ (τ)

]∗
, ΠE6×[E6]∗ = {(0, 0), (1, 1), (2, 2)}.

(2.17)

Furthermore, we can use this technique iteratively by considering the decomposition of an

even self-dual lattice into various sublattices and further replacements. Note that after the

decomposition, conjugacy classes are expressed in terms of the corresponding subalgebras.

For the construction of our model, we employ the following subsequent decompositions

and replacements:

E8 → E6 × A2 → E6 × [E6]
∗ → (A2)

3 × [E6]
∗ → (A2)

2 × [E6 × E6]
∗

→ (A2)
2 × [(A2)

3 × E6]
∗ → [(A2)

2 × (E6)
3] × [E6]

∗. (2.18)

– 9 –



J
H
E
P
1
2
(
2
0
1
1
)
1
0
0

The corresponding conjugacy classes for these processes will be given later in subsection 3.1.

Similarly, provided we have an even self-dual lattice containing A2, we can always construct

another even self-dual lattice containing (E6)
3. For example, we can construct the (18, 2)-

dimensional even self-dual lattice (E6)
3×[A2]

∗ out of A2×[A2]
∗ and the (20, 4)-dimensional

even self-dual lattice [Ã2× (E6)
3]× [D4]

∗ out of D4× [D4]
∗ using the decomposition (B.12).

Note that although the dimensionality of even self-dual lattices varies in the lattice

engineering technique, this is unrelated to the dimensionality of the string theory. We

are simply employing the resultant (22, 6)-dimensional even self-dual lattice with the de-

sired properties after performing lattice engineering for our (26, 10)-dimensional heterotic

string theory.

2.3 General shift actions

In this subsection, we introduce the general shift actions for the two A2 lattices in (2.18).

In fact, it will turn out that the modular transformation property does not change even if

we introduce shift actions. Therefore, we can treat models with and without shifts equally.

In the following, we begin with the case without shift actions, and then we generalize to

the case with shift actions with the help of the generalized theta functions that we introduce

subsequently. For the purpose of explanation, we consider the A2 × [A2]
∗ lattice with the

conjugacy classes ⊕2
k=0k(1, 1) and perform an orbifold projection on the right-moving part

[A2]
∗ by the Z3 twist with the rotation angle 2π × 1/3.

2.3.1 Partition functions without shift actions

Here we study the partition function without shifts. Since only the origin is invariant under

a nontrivial twist, among the conjugacy classes, only (0, 0), which contains the origin of

[A2]
∗, remains. Thus, our lattice partition functions in the untwisted sectors are simply

A(τ) (up to a phase ambiguity). Therefore, we shall define the A2 lattice partition function

for each sector of the orbifold theory, A
[α
β

]
(τ), as




A
[1
0

]
(τ) A

[2
0

]
(τ)

A
[0
1

]
(τ) A

[1
1

]
(τ) A

[2
1

]
(τ)

A
[0
2

]
(τ) A

[1
2

]
(τ) A

[2
2

]
(τ)




=




−i√
3
(A + 2a)(τ)

i√
3
(A + 2a)(τ)

A(τ)
−i√

3
(A + 2ωa)(τ)

i√
3
(A + 2ω2a)(τ)

−A(τ)
−i√

3
(A + 2ω2a)(τ)

i√
3
(A + 2ωa)(τ)




(2.19)

(with periodic conditions in α and β), shown compactly in a matrix form, where the first

entry corresponding to the original unorbifolded theory is omitted because we do not need

it in our later application. Using (2.11), one can verify that this partition function has the

desirable modular transformation property

A
[α
β

]
(τ + 1) = A

[ α

β + α

]
(τ), A

[α
β

]
(−1/τ) =

√
−iτ

2
iA
[ β

−α

]
(τ). (2.20)
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Note that, in our convention, the S-transformation of the partition function of the twisted

boson contains an extra phase i for every complex dimension as in (A.10). Therefore, we

have defined the lattice partition function so that its S-transformation also acquires the

same phase i.

2.3.2 Generalized theta function

Before considering partition functions of the A2 lattice with general shift actions, let

us define the generalized theta function for a lattice whose metric matrix is given by

Mij = ei ◦ ej as

ϑM

[~α
~β

]
=
∑

~n

exp
(
−π(~n + ~α) · (−iτM)(~n + ~α) + 2πi(~n + ~α) · M ~β

)
. (2.21)

The first term in the exponent is the square of the length of the lattice state ei(n + α)i

shifted by eiα
i from the original lattice, i.e., (~n + ~α) ·M(~n + ~α) = (ei(n + α)i)2, while the

second term is the phase of the state obtained by the inner product with ejβ
j, (~n+~α)·M ~β =

ei(n + α)i ◦ ejβ
j . If the matrix M is the Cartan matrix C of a simply laced Lie algebra

and ~α = ~β = ~0, the lattice becomes the root lattice of the corresponding simply laced

Lie algebra, and the even condition ~n · C~n ∈ 2Z is automatically satisfied because of the

property of the Cartan matrix, Cii ∈ 2Z and Cij = Cji ∈ Z (i 6= j). For example, if we

choose the Cartan matrix of A2 and E6, the generalized partition functions respectively

reduce to A(τ) and E(τ) defined in the previous subsection (or a(τ) and e(τ) in the case

that a shift by the fundamental weight is introduced). We can prove the following modular

transformation rule by using the Poisson resummation formula:

ϑC

[~α
~β

]
(τ + 1) = e−πi~α·C~αϑC

[ ~α
~β + ~α

]
(τ), (2.22)

ϑC

[~α
~β

]
(−1/τ) =

√
−iτ

dimC

√
det C

e2πi~α·C~βϑC−1

[ C~β

−C~α

]
(τ). (2.23)

Here, in ϑC−1, the sum is taken over the weight lattice. Note that, after the S-transfor-

mation, the phase assignment ~β is mapped into a shift of the lattice. In particular, if we

set ~α = ~0, the momentum lattice after the transformation is given by the weight lattice

shifted by ~β.

Since the root lattice is a sublattice of the weight lattice, the weight lattice can be

decomposed into conjugacy classes. The conjugacy classes of our simply laced Lie lattices

are given in table 12. Hereafter, we denote the generator of the conjugacy classes simply

by ω without the index of the fundamental weight ωi. We also denote the corresponding

column of ω in a quadratic-form matrix (or the inverse of the Cartan matrix) as ~F with

its components on the diagonal line f , while the number of conjugacy classes is given by

2 We can generalize the following formulas in the text to the case of Dr with even r, where we need

two generators for the conjugacy classes Z2 × Z2. For simplicity, however, we focus on the case that the

conjugacy classes are generated by a single generator.
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Conjugacy classes Order (det C)

Ar Zr+1 r + 1

Dr Z2 × Z2 for r ∈ 2Z, Z4 for r ∈ 2Z + 1 4

Er Z9−r 9 − r

Table 1. Conjugacy classes of various simply laced Lie lattices.

det C of the Cartan matrix C. As the weight lattice is decomposed into several conjugacy

classes of the root lattice

{~m · ~ω|~m ∈ Z
dimC} = ⊕det C−1

k=0 {~n · ~α + kω|~n ∈ Z
dimC}, (2.24)

so is the shifted weight lattice

{(~m + ~α) · ~ω|~m ∈ Z
dimC} = ⊕det C−1

k=0 {(~n + C−1~α) · ~α + kω|~n ∈ Z
dimC}. (2.25)

Using this decomposition, we obtain the corresponding decomposition formula of the gen-

eralized theta function as

ϑC−1

[~α
~β

]
=

det C−1∑

k=0

ϑC

[C−1~α + k ~F

C−1~β

]
. (2.26)

Then, the S-transformation (2.23) can be rewritten as

ϑC

[~α
~β

]
(−1/τ) =

√
−iτ

dim C

√
detC

e2πi~α·C~β
det C−1∑

k=0

ϑC

[~β + k ~F

−~α

]
(τ). (2.27)

Note also that it satisfies the integer shift formula (~n ∈ Z
dimC)

ϑC

[ ~α
~β + C−1~n

]
= e2πi~n·~αϑC

[~α
~β

]
. (2.28)

2.3.3 Partition functions with general shift actions

We now turn to partition functions with shift actions. As a generalization of (2.19), a

partition function with general shift actions ~l can be defined as

A
~l
[α
β

]
= ϕA

[(α)det C

(β)det C

]
Â

~l
[α
β

]
(2.29)

for various (α, β) sectors with GCD(α, β) 6= 0 mod detC. Here we have divided the

modular covariant partition functions A
~l into a product of the numerical factors ϕA and

the physical partition functions Â
~l. Each numerical factor ϕA is given by

ϕA

[(α)det C

(β)det C

]
=





ϕ
(
(β)det C

)
for (α)det C = 0, (β)det C 6= 0,

(−i)r/2ϕ
(
(α)det C

)
√

det C
for (α)det C 6= 0,

(2.30)
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where the symbol (n)m is defined as n mod m. The function ϕ, which takes the values ±1,

is introduced so that, as discussed later, an elegant modular transformation property (2.36)

is obtained. For the case of the A2 lattice, the explicit form of ϕ will be given later in (2.33).

On the other hand, the physical part Â
~l is given by

Â
~l
[α
β

]
=





A
~l
0

[α
β

]
for (α)det C = 0, (β)det C 6= 0,

det C−1∑

k=0

eπiα−1βfk2
A

~l
k

[α
β

]
for (α)det C 6= 0,

(2.31)

with A
~l
k further defined using the generalized theta function as

A
~l
k

[α
β

]
= e−πiαβ~l·C~lϑC

[α~l + k ~F

β~l

]
, (2.32)

where α−1 denotes an integer that satisfies α−1α = 1 mod detC. For our application to

the A2 lattice, various Lie algebraic quantities are given by

r = 2, C =

(
2 −1

−1 2

)
, ~F =

1

3

(
2

1

)
, f =

2

3
, ϕ(1) = 1, ϕ(2) = −1, (2.33)

while α−1 means 1−1 = 1 and 2−1 = 2 mod 3. Then, the numerical factors ϕA and physical

partition functions Â
~l are given explicitly by

ϕA

[(α)3
(β)3

]
=




−i√
3

i√
3

1
−i√

3

i√
3

−1
−i√

3

i√
3




(2.34)

and

Â
~l
[α
β

]
=




(
A

~l
0 + A

~l
1 + A

~l
2

)[α
β

] (
A

~l
0 + A

~l
1 + A

~l
2

)[α
β

]

A
~l
0

[α
β

] (
A

~l
0 + ω(A

~l
1 + A

~l
2)
)[α

β

] (
A

~l
0 + ω2(A

~l
1 + A

~l
2)
)[α

β

]

A
~l
0

[α
β

] (
A

~l
0 + ω2(A

~l
1 + A

~l
2)
)[α

β

] (
A

~l
0 + ω(A

~l
1 + A

~l
2)
)[α

β

]




, (2.35)

where the components in the matrix on the right-hand side should be chosen as (α)3 and

(β)3. These partition functions generalize (2.19).

Again, it is not difficult to verify that this partition function satisfies the same modular

transformation property

A
~l
[α
β

]
(τ + 1) = A

~l
[ α

β + α

]
(τ), A

~l
[α
β

]
(−1/τ) =

√
−iτ

2
iA

~l
[ β

−α

]
(τ), (2.36)
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using the above formulas for the generalized theta function. Thus, the modular transfor-

mation formula (2.36) is not changed from (2.20) even after introducing shift actions. This

indicates that we can enhance the variety of models by introducing shifts which only affect

the periodic relation, changing it to

A
~l
k

[ α

β + N

]
= eπiNα~l·C~lA

~l
k

[α
β

]
. (2.37)

Although for our application, we only need the A2 case, our framework here is suitable

for a general simply laced Lie lattice with detC being an odd prime integer if we suitably

define various Lie algebraic quantities.

2.4 Permutation with a specific shift action

In this subsection we study the partition function of the (E6)
3 sublattice with the Z3

orbifold action permuting the three E6 factors. For concreteness, we consider the even

self-dual lattice (E6)
3 × [A2]

∗ defined with the set of conjugacy classes

{(0, 0, 0, 0), (1, 1, 1, 0), (2, 2, 2, 0),

(0, 1, 2, 1), (2, 0, 1, 1), (1, 2, 0, 1),

(0, 2, 1, 2), (1, 0, 2, 2), (2, 1, 0, 2)} (2.38)

constructed from the lattice A2 × [A2]
∗ with ⊕2

k=0k(1, 1) as in (2.16). The lattice partition

function of this even self-dual lattice is given by

(E3 + 2e3)(τ)[A(τ)]∗ + 6Ee2(τ)[a(τ)]∗. (2.39)

Then, we impose the Z3 orbifold action by permuting the three E6 factors and simultane-

ously twisting the right-moving part [A2]
∗ by the rotation angle 2π × 1/3.

In the untwisted sector, by definition, the permutation acts as

〈p, p′, p′′|Permutation|p, p′, p′′〉 = 〈p, p′, p′′||p′, p′′, p〉 = δp,p′δp′,p′′ . (2.40)

Here we denote the left-moving momenta corresponding to the three E6 parts of the even

self-dual lattice (E6)
3 × [A2]

∗ as p, p′ and p′′. Hence, only the diagonal E6 remains after

the insertion of the permutation operator. On the other hand, the right-moving sector is

removed except for the origin. As a result, the partition function is given by (E + 2e)(3τ).

To determine which states survive after the orbifold projection, it is useful to consider the

eigenstates of the permutation

|p, p′, p′′〉k =
1√
3

(
|p, p′, p′′〉 + ωk|p′′, p, p′〉 + ω2k|p′, p′′, p〉

)
, (2.41)

with the eigenvalues ωk (k = 0, 1, 2). In the above partition function, there has been

cancellation among different states,

(E + 2e)(3τ) = (E + 2e)(3τ) +
1 + ωβ + ω2β

3

(
(E3 + 2e3)(τ) − (E + 2e)(3τ)

)
, (2.42)
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where the first term on the right-hand side is the contribution of the diagonal states |p, p, p〉,
while the second term originates from the other eigenstates |p, p′, p′′〉k with k = 0, 1 and 2,

respectively. Note that the eigenstates that survive after the orbifold projection depend on

the phase originating from other factors. For example, k 6= 0 states might survive if they

are combined with right-moving states with suitable orbifold phases that cancel the phase

ωk. This is how the adjoint Higgs field can appear in the untwisted sector when we increase

the Kac-Moody level by performing a permutation, as discussed generally in [84–90].

Then, we define the partition function in each sector, taking the extra phase factors

into account, as




(−i)3

9
√

3
E
(τ

3

) i3

9
√

3
E
(τ

3

)

(E + 2e)(3τ)
(−i)3

9
√

3
E
(τ + 1

3

) i3

9
√

3
E
(τ + 2

3

)

(−1)3(E + 2e)(3τ)
(−i)3

9
√

3
E
(τ + 2

3

) i3

9
√

3
E
(τ + 1

3

)




. (2.43)

Here note that the arguments of the twisted sector partition functions are divided by 3.

Typically, the original arguments contribute significantly to the mass and it is difficult

to obtain massless states in a large representation such as the adjoint representation in

the twisted sector. Here we increase the Kac-Moody level by performing the permutation

orbifold action for the three E6 lattices, and as a result we obtain a smaller argument of

τ/3. Even though a larger zero-point energy appears after the orbifold projection, as a

whole, a smaller argument is still preferred in this case. This is another way to obtain

adjoint Higgs fields by increasing the Kac-Moody level.

The result, however, contains only the functions E in the twisted sectors. Since the

matter/antimatter resides in the fundamental/antifundamental representation, we instead

require the functions e, whose lattice is shifted from that of E by a fundamental weight. As

we have seen in the previous subsection, to introduce a momentum shift in the twisted sec-

tor, we need to assign phases to various states in the untwisted sector by introducing a shift

action in the coordinate space. Therefore, we introduce an additional shift, (ω,ω,ω)/3,

with ω being the weight vector corresponding to the generator of the conjugacy classes of

E6, so that a momentum shift by the fundamental weight is realized3. Namely, we obtain

the partition function (E + ωe + ω2e)(3τ) = (E − e)(3τ) in the untwisted sector instead of

(E + e + e)(3τ) = (E + 2e)(3τ) and introduce the functions e in the twisted sectors.

Hence, instead of (2.43), we define the orbifold partition function for generic (α, β)

sectors with GCD(α, β) 6= 0 mod 3 as

E
[α
β

]
(τ) = ϕE

[(α)3
(β)3

]
Ê
[α
β

]
(τ), (2.44)

3 Precisely speaking, the remaining E6 is slightly different from the simple diagonal E6 that remains

when the additional shift is not introduced, as discussed in subsection 4.2. Note that this shift action is the

only one compatible with the diagonal E6 symmetry.

– 15 –



J
H
E
P
1
2
(
2
0
1
1
)
1
0
0

with (n)3 being n mod 3, whose value is 0, 1 or 2. As before, we have divided the modular

covariant partition function into the product of the numerical factor ϕE and the physical

partition function Ê. Here the numerical factor ϕE is given by

ϕE

[(α)3
(β)3

]
=




(−i)3

9
√

3

i3

9
√

3

13 (−i)3

9
√

3

i3

9
√

3

(−1)3
(−i)3

9
√

3

i3

9
√

3




, (2.45)

while the physical partition function Ê is given by

Ê
[α
β

]
(τ) =




e
(τ

3

)
e
(τ

3

)

(E − e)(3τ) e
(τ + 1

3

)
ω2e
(τ + 2

3

)

(E − e)(3τ) e
(τ + 2

3

)
e
(τ + 1

3

)




, (2.46)

for α, β = 0, 1, 2. We further define the partition function Ê for the other values of (α, β) as

Ê
[α
β

]
(τ) = ω−α[β/3]+β[α/3]Ê

[(α)3
(β)3

]
(τ). (2.47)

Here [x] is given by the largest integer that does not exceed x. Note that, although the

same function e(τ/3) appears in both the α = 1 and α = 2 sectors, these functions actually

correspond to the root lattices shifted differently by one and two fundamental weights,

respectively.

The extra factor ω2 in the (2, 1) sector in (2.46) may seem new. However, it appears

naturally by considering that the states in the (2, 1) sector acquire half the phases of those

in the (2, 2) sector, which is obtained directly from the T -transformation of the (2, 0)

sector. As a result, the total partition function E
[α
β

]
(τ) satisfies the elegant modular

transformation property

E
[α
β

]
(τ + 1) = E

[ α

β + α

]
(τ), E

[α
β

]
(−1/τ) =

√
−iτ

6
i3E
[ β

−α

]
(τ), (2.48)

as before. Compared with (2.20), the extra power of 3 of i in the S-transformation origi-

nates from the three complex dimensions of the diagonal E6 lattice. In the ZN (N ∈ 3Z)

orbifold, the periodic relation is given by

E
[ α

β + N

]
(τ) = e

4
9
πiNαE

[α
β

]
(τ). (2.49)

To summarize, in this subsection we have shown that we can obtain an adjoint Higgs

field by increasing the Kac-Moody level, which is achieved by the orbifold action permuting

three E6 lattices. Furthermore, to obtain a nonvanishing generation number we need to

introduce shifts to break the symmetry between chiral and antichiral matter.
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3 Models and partition functions

As we explained in the introduction, in the asymmetric orbifold construction it is neces-

sary to compactify our heterotic string theory on a general Lorentzian (22,6)-dimensional

even self-dual lattice and consider an orbifold action that can act on left-moving and right-

moving modes independently. As reviewed in the introduction, in [81] we chose the even

self-dual lattice [(A2)
2 × (E6)

3] × [E6]
∗ to compactify our heterotic string theory and con-

sidered a Z12 orbifold action that acts on each factor of the lattice independently as follows:

• (A2)
2: an arbitrary Z12 shift action (which will be constrained later) or the twist

action with the rotation angle 2π × 1/3 (or the 1/3-twist hereafter)4

• (E6)
3: the Z3 permutation action with the shift

• [E6]
∗: the Z12 Coxeter element of E6, namely, the twist action with the rotation

angles

2π × (1/12,−5/12, 1/3). (3.1)

In this section, we study their partition functions explicitly.

3.1 Unorbifolded theory

The even self-dual lattice [(A2)
2 × (E6)

3] × [E6]
∗ can be generated from the E8 lattice

as explained in (2.18). The E8 lattice is represented by the conjugacy classes ΠE8 =

⊕2
k=0k(1, 1) in E6 × A2. Following the construction, we find that the conjugacy classes in

E6 × A2 (and also in E6 × [E6]
∗) are changed into the conjugacy classes

Π = ⊕2
k,l=0

[
l(1, 1, 1, 0) + k(0, 1, 2, 1)

]
(3.2)

in (A2)
3 × [E6]

∗ and (A2)
2 × [E6 × E6]

∗ and subsequently become

⊕2
k,l,m=0

[
m(0, 0, 1, 1, 1, 0) + l(1, 1, 0, 1, 2, 0) + k(0, 1, 0, 2, 1, 1)

]
(3.3)

in (A2)
2 × [(A2)

3 ×E6]
∗ and [(A2)

2 × (E6)
3]× [E6]

∗. From this knowledge, we see that the

partition function before orbifolding is given by

ΘL(τ) =
∑

(kA1,kA2,kE ,kE)∈Π

AkA1
(τ)AkA2

(τ)EkE
(τ)[EkE

(τ)]∗. (3.4)

Here we have used the conjugacy classes Π in the notation of (A2)
3×[E6]

∗ before converting

one of the A2 into (E6)
3, and we have defined Ek, the partition functions for the (E6)

3

part, as

(
E
)
k

=
(
E3 + 2e3, 3Ee2, 3Ee2

)
. (3.5)

4 Although we have also studied the possibility of the Weyl reflection, we found that it does not lead to

modular invariant partition functions. Thus, we do not consider this possibility in the following.
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The integers k = 0, 1 and 2 of Ek correspond to the conjugacy classes of A2 which can

be translated to the conjugacy classes of (E6)
3 by the lattice engineering technique, as

A2 → [E6]
∗ → [(A2)

3]∗ → (E6)
3. The modular transformation of Ek is given by

Ek(τ + 1) = ωk2Ek(τ), Ek(−1/τ) =
√
−iτ

18 1√
3

2∑

l=0

ω−klEl(τ). (3.6)

Namely, as in (2.13), under the T -transformation the partition function Ek acquires a factor

ωk2
, while the S-transformation takes the form of a finite Fourier transformation. The full

partition function with the lattice part given by (3.4) is clearly modular invariant up to

the power of
√
−iτ from the construction of this lattice.

3.2 Z4 suborbifold

Next, we consider the partition functions for orbifold theory. Their form strongly depends

on whether β = 0 mod 3 or β 6= 0 mod 3, because some components of the twist actions

become trivial for β = 0 mod 3. Therefore, we examine the two cases separately. In this

subsection, we concentrate on the Z4 suborbifold, namely, the case with g = GCD(α, β) =

0 mod 3. In the following, we first discuss the untwisted sectors and then define the

partition functions for all of the (α, β)-sectors, so that each sector of the partition functions

is modular covariant.

First, we consider the effect of the twist part of the orbifold action. In the untwisted

sector, the last component of the twist (3.1) in [E6]
∗ becomes trivial and keeps the last

factor intact. This factor corresponds to the Ã2 plane of the decomposition E6 → D4× Ã2,

described in appendix B.3, while the first two rotations act on the D4 planes and extract

the origin. In the lattice decomposition (B.10), we find that the conjugacy classes of Ã2

paired with the origin of the D4 plane are exactly the same as the corresponding classes of

E6. Therefore, the surviving partition function is that of [(A2)
2 × (E6)

3] × [Ã2]
∗ summed

over the same conjugacy classes as Π in (3.2). Note that in the two A2 lattices we include

general shifts to allow more possibilities in model construction, since the inclusion does not

change the modular transformation as we have seen in (2.36).

Here, we note a beautiful property of the partition function under the modular trans-

formation. We assume that the partition function consists of four triplet building blocks,

Θ(τ) =
∑

(kA,kB,kC ,kD)∈Π

AkA
(τ)BkB

(τ)CkC
(τ)DkD

(τ). (3.7)

Here kM (M = A,B,C,D) runs over 0, 1, 2. If each building block transforms as

MkM
(τ + 1) = ωk2

M MkM
(τ) (3.8)

under the T -transformation, the partition function is obviously invariant. Suppose under

the S-transformation, each building block transforms as a finite Fourier transformation:

MkM
(−1/τ) =

1√
3

2∑

lM =0

ω−kM lM M̃lM (τ), (3.9)
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where we have omitted the power of the factor
√
−iτ assuming that it will be canceled out

finally. Then, we find that the partition function transforms into

Θ(−1/τ) =
∑

(lA,lB ,lC ,lD)∈Π

ÃlA(τ)B̃lB (τ)C̃lC (τ)D̃lD (τ). (3.10)

Namely, under the S-transformation each building block M in the partition function ef-

fectively transforms into M̃ . In particular, if M = M̃ for each building block, the par-

tition function is modular invariant, which is the case of (3.4). This modular invariance

is not a surprise but simply a consequence of the two subsequent lattice decompositions

E8 → E6 × A2 and E6 → (A2)
3.

We now define the partition function of the Z4 suborbifold as

ΘL
[α
β

]
(τ) =

∑

(kA1,kA2,kE ,kA)∈Π

A
~l1
kA1

[α
β

]
(τ)A

~l2
kA2

[α
β

]
(τ)EkE

(τ)
[
AkA

[α
β

]
(τ)
]∗

. (3.11)

Compared with the partition function in unorbifolded theory (3.4), which is the (0,0)

sector of orbifold theory, the first and second entries Ak are replaced by A
~l
k (2.32) with

the shift contribution, where ~l is a general vector representing the Z12 shift determined

later in (3.32), while the third entry Ek (3.5) is exactly the same as that in (3.4) regardless

of the (α, β) sector. Note that, under the T -transformation, these factors acquire the

phases ωk2
as in (3.8), while their S-transformations take the form of the finite Fourier

transformation (3.9). The final entry in (3.11), [AkA
]∗, is the contribution from [Ã2]

∗. Since

it originates from the right-moving part, we have taken the complex conjugate in (3.11).

Ak is defined as follows5:

Ak

[α
β

]
=




(
A1

0

)
k

(
A1

0

)
k

(
A1

0

)
k(

A0
1

)
k

(
A1

1

)
k

(
A0

1

)
k

(
A1

1

)
k(

A0
1

)
k

(
A1

0

)
k

(
A1

1

)
k

(
A1

0

)
k(

A0
1

)
k

(
A1

1

)
k

(
A0

1

)
k

(
A1

1

)
k


 , (3.12)

with components (A•
•)k defined by

(
A0

1

)
k

=
(
Â0

1

)
k
,

(
Â0

1

)
k

=
(
A
(
2τ
)
, a
(
2τ
)
, a
(
2τ
))

,

(
A1

0

)
k

= −1

2

(
Â1

0

)
k
,

(
Â1

0

)
k

=
(
A
(
τ/2
)
, a
(
τ/2
)
, a
(
τ/2
))

,

(
A1

1

)
k

= −1

2

(
Â1

1

)
k
,

(
Â1

1

)
k

=
(
A
(
(τ + 1)/2

)
, ωa

(
(τ + 1)/2

)
, ωa

(
(τ + 1)/2

))
. (3.13)

5 The components in the matrix on the right-hand side should be chosen as (α/3)4 and (β/3)4.
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In other words, we have separated the partition functions A into the numerical factors ϕA
and the physical partition functions Â as

Ak

[α
β

]
= ϕA

[(α)12
(β)12

]
Âk

[α
β

]
, (3.14)

ϕA
[(α)12
(β)12

]
=




1 −1/2 −1/2 −1/2

1 −1/2 1 −1/2

1 −1/2 −1/2 −1/2

1 −1/2 1 −1/2


 , Âk

[α
β

]
=




(
Â1

0

)
k

(
Â1

0

)
k

(
Â1

0

)
k(

Â0
1

)
k

(
Â1

1

)
k

(
Â0

1

)
k

(
Â1

1

)
k(

Â0
1

)
k

(
Â1

0

)
k

(
Â1

1

)
k

(
Â1

0

)
k(

Â0
1

)
k

(
Â1

1

)
k

(
Â0

1

)
k

(
Â1

1

)
k


 . (3.15)

Thanks to the elegant modular transformation properties of the quantities (A•
•)k,

T :
(
A0

1

)
k
7→ ω−k2(A0

1

)
k
, S :

(
A0

1

)
k
7→ −

√
−iτ

2
2∑

l=0

ωkl

√
3

(
A1

0

)
l
,

T :
(
A1

0

)
k
7→ ω−k2(A1

1

)
k
, S :

(
A1

0

)
k
7→ −

√
−iτ

2
2∑

l=0

ωkl

√
3

(
A0

1

)
l
,

T :
(
A1

1

)
k
7→ ω−k2(A1

0

)
k
, S :

(
A1

1

)
k
7→ −

√
−iτ

2
2∑

l=0

ωkl

√
3

(
A1

1

)
l
, (3.16)

[A]∗ also transforms as in (3.8) and (3.9) except for the minus sign originating from the

right-hand side of (3.16).

We find that the total lattice partition function (3.11) is covariant under the modular

transformation up to the above minus sign. As we have explained in appendix A, the

twisted boson partition function acquires an extra factor i in the S-transformation for

each complex dimension. To make the partition function transform covariantly, we have

required the lattice partition function to transform in the same way. Here the surviving

lattice [(A2)
2 × (E6)

3] × [Ã2]
∗ spans (2 × 2 + 3 × 6)/2 = 11 complex dimensions with

two A2 lattices and three E6 lattices in the left-moving part and one complex dimension

with one Ã2 lattice in the right-moving part. Therefore, the minus sign acquired in the

S-transformation (3.16) matches the required phase i11(i1)∗ = −1 effectively.

Combined with the fermion and twisted boson partition functions, ΘF and ΘB, respec-

tively, the total partition function in the Z4 suborbifold is given by

Z
[α
β

]
=

1

Im τ
ϕ
[(α)12
(β)12

]
· 1

η24
· ΘL

[α
β

]
·
[

1

η4
ΘB

(1/12)

[α
β

]
ΘB

(−5/12)

[α
β

]
ΘF

(0,1/12,−5/12,1/3)

[α
β

]]∗
.

(3.17)

Here, the first factor, 1/Im τ , originates from the integration over the transverse momenta

in the four-dimensional spacetime, and the definition of the overall prefactor ϕ will be given

later in this section. Finally, we have to ensure the orbifold periodic condition (2.6). Since

the periodic relation of the lattice partition function is given by (2.37) or (2.49), to satisfy

the orbifold periodic condition, we require

N(= 12) × 3

2

[ 2∑

j=1

~lj · C~lj

]
∈ Z, (3.18)
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where the factor 3 in the numerator is due to the fact that α is now a multiple of 3. Note

that the contributions from the right-moving part cancel among themselves as we have

noted below (A.11) in appendix A.

3.3 Z12 orbifold

We now proceed to the other sectors of the Z12 orbifold, namely, the (α, β) sectors with

GCD(α, β) 6= 0 mod 3. These sectors can be generated from the untwisted sector with

β 6= 0 mod 3. In the untwisted sector, the orbifold action twisting the right-moving [E6]
∗

projects out all the states except for the origin, and the orbifold action permuting (E6)
3

extracts the diagonal contribution

⊕2
m=0m(0, 0, 1diag), (3.19)

where the components denote the conjugacy classes of the two A2 lattices and the diagonal

E6 lattice. Therefore, the partition function contains only the (A2)
2 root lattice with shifts

and the diagonal (E6)
3 lattice (E − e)(3τ). Although the setups used for the orbifold

construction in subsections 2.3 and 2.4 are different, the resulting conjugacy classes of the

two A2 lattices and the diagonal E6 lattice are exactly the same, and therefore we can

utilize the partition function studied there. If we choose the 1/3-twist action for the A2

part instead of the shift actions, the contribution must be replaced with the twisted boson

partition function.

We first consider the shift actions as the orbifold action on the (A2)
2 part and define

the partition functions as

ΘL
[α
β

]
(τ) =

( 2∏

j=1

A
~lj
[α
β

]
(τ)
)
E
[α
β

]
(τ). (3.20)

The definition of each building block has already appeared in (2.29) and (2.44). As we

have seen there, each building block satisfies an elegant modular transformation property.

To summarize, our partition function takes the form

Z
[α
β

]
=

1

Im τ
ϕ
[(α)12
(β)12

]
· 1

η12

(
ΘB

(2/3)

[α
β

])6
· ΘL

[α
β

]

·
[

1

η2
ΘB

(1/12)

[α
β

]
ΘB

(−5/12)

[α
β

]
ΘB

(1/3)

[α
β

]
ΘF

(0,1/12,−5/12,1/3)

[α
β

]]∗
. (3.21)

In this case, the orbifold periodic condition is given by

N(= 12)

2

[ 2∑

j=1

~lj · C~lj + 4/9

]
∈ Z, (3.22)

where we have omitted the contribution from the left-moving twisted bosons (A.11), which

becomes integral in this case. Note that the periodic condition for Z4 suborbifold (3.18) is

automatically satisfied provided the above condition is satisfied.

For the cases that the orbifold action on the A2 part is the 1/3-twist, we should

replace the factor A
~l/η2 in the above partition function with ΘB

(1/3), which contributes to

the periodic condition (3.22) as −N(1/3)2/2 instead of N~l · C~l/2.
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3.4 Prefactor

In this subsection, we discuss the prefactor ϕ, which has been postponed so far. For the

case of the shift action without any twist on (A2)
2, we define it as

ϕ
[(α)12
(β)12

]
=





−4 if g = 6

−81
√

3 if g = 4

2 if g = 3

27
√

3 if g = 2

−27
√

3 if g = 1

, (3.23)

with g = GCD(α, β, 12). Note that since the partition function in each (α, β) sector is

modular covariant, the prefactor ϕ has to be common in the (α, β) sectors that share

the same value of g and hence are related by a modular transformation. The prefactor

is determined so that it cancels the unwanted numerical factors such as 2 sin βπφ in the

untwisted sectors:

(
[2 sin βπ(2/3)]6 · 2 sin βπ(1/12) · 2 sin βπ(−5/12) · 2 sin βπ(1/3)

)
β=0,1,··· ,11

= (0,−27
√

3,−27
√

3, 0,−81
√

3, 27
√

3, 0,−27
√

3, 81
√

3, 0, 27
√

3, 27
√

3), (3.24)
(
2 sin βπ(1/12) · 2 sin βπ(−5/12)

)
β=0,3,6,9

= (0, 2,−4, 2). (3.25)

Since we have three lattice partition functions with extra minus signs in the untwisted

sectors with β = 2 mod 3, we have to change signs for these cases to obtain the prefactor ϕ.

In the case with twists, we should multiply the above result by [2 sin βπ(1/3)]1 or 2 and

the extra minus signs appropriately. The prefactors for the cases with one twist and two

twists on (A2)
2 are given respectively by

ϕ
[(α)12
(β)12

]
=





−4 if g = 6

243 if g = 4

2 if g = 3

−81 if g = 2

−81 if g = 1

, ϕ
[(α)12
(β)12

]
=





−4 if g = 6

−243
√

3 if g = 4

2 if g = 3

81
√

3 if g = 2

−81
√

3 if g = 1

. (3.26)

3.5 Classification

In the previous subsections, we defined modular invariant partition functions for our mod-

els. Neither the extra shifts ~li nor the 1/3-twist in the (A2)
2 lattices changes the modular

invariance provided the periodic condition (3.22) (or the condition with the replacement

of N~l · C~l/2 with −N(1/3)2/2) is satisfied. In this subsection, we investigate the number

of consistent models.

Regarding the shift action, since we are considering the Z12 orbifold, we can choose the

shift vector to be ~l = (m1,m2)/12 in each of the two A2 planes with m1,m2 = 0, 1, · · · , 11,
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because 12 times the shift belongs to the root lattice and the shift is defined up to the root

lattice. In the following we define the shift vectors in the lattice space as

λ = ~α ·~l =
α1m

1 + α2m
2

12
(3.27)

for convenience. Noting that the possible values of

L =
1

2
122λ ◦ λ =

1

2
122~l · C~l = (m1)2 − m1m2 + (m2)2 (3.28)

are

L = 0, 1, 3, 4, 7, 9 mod 12, (3.29)

we have to take the combinations {L = 4, L = 0}, {L = 1, L = 3} and {L = 7, L = 9} in the

two A2 planes so that their sum is 4 mod 12 to satisfy the periodic condition (3.22). There

are 24 combinations of (m1,m2) resulting in L = 4 while 12 combinations result in L = 0.

Similarly, there are 36 × 18 combinations for the {L = 1, L = 3} condition and the {L =

7, L = 9} condition. Thus, there appear to be many possibilities: 24×12+36×18+36×18 =

1584. However, owing to the root lattice symmetry (m1,m2) ∼ (m1 + 12,m2), (m1,m2) ∼
(m1,m2 + 12), the Weyl reflection symmetry Wα1 : (m1,m2) 7→ (−m1,m1 + m2), Wα2 :

(m1,m2) 7→ (m1 + m2,−m2) and the charge conjugation C : (m1,m2) 7→ (−m1,−m2),

most of them lead to identical models. After identifying the shift vectors that give the

same physical model, we find there are 3 × 4 + 4 × 3 + 3 × 2 = 30 models, where the

representative elements for each value of L are given by

• the {L = 4, L = 0} case,

— for L = 4: (2,0), (6,8), (4,0),

— for L = 0: (0,0), (4,8), (6,0), (10,8),

• the {L = 1, L = 3} case,

— for L = 1: (1,0), (5,8), (5,0), (9,8),

— for L = 3: (3,6), (7,2), (11,10),

• the {L = 7, L = 9} case,

— for L = 7: (1,6), (5,2), (9,10),

— for L = 9: (3,0), (7,8).

In addition, we can identify two shifts whose difference resides on the weight lattice, because

in sectors with α = 0 mod 3, the difference vector is three times a weight vector and resides

exactly on the root lattice, while in sectors with α 6= 0 mod 3, the right-movers are twisted

nontrivially and thus the left-movers remain only in the root lattice. For this reason, we

can further identify shifts with a difference in the fundamental weight of (4, 8),

(2, 0) ∼ (6, 8), (0, 0) ∼ (4, 8), (6, 0) ∼ (10, 8),

(1, 0) ∼ (5, 8), (5, 0) ∼ (9, 8), (3, 6) ∼ (7, 2) ∼ (11, 10),

(1, 6) ∼ (5, 2) ∼ (9, 10), (3, 0) ∼ (7, 8). (3.30)
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Furthermore, a shift by (1,0) and a shift by (5,0) have the same effect, because both 1 and

5 are generators in Z12 and the exchange between them simply corresponds to the exchange

among sectors.

For the twist action, since the 1/3-twist gives the same contribution to the periodic

condition as the shift action with L = 4, the combination of the twist and the shift action

with L = 0 satisfies the periodic condition.

Finally, we are left with only 3 × 2 + 1 × 1 + 1 × 1 = 8 models:

{(2, 0), (4, 0), “rot”} ⊗ {(0, 0), (6, 0)}, (1, 0) ⊗ (3, 6), (1, 6) ⊗ (3, 0), (3.31)

where “rot” denotes the 1/3-twist action. Out of these eight models, only three of them

actually contain three generations. Their shifts are given by

(2, 0) ⊗ (6, 0) : λ
(1)
1 =

α1

6
, λ

(1)
2 =

α1

2
,

(1, 0) ⊗ (3, 6) : λ
(2)
1 =

α1

12
, λ

(2)
2 =

α1 + 2α2

4
,

(1, 6) ⊗ (3, 0) : λ
(3)
1 =

α1 + 6α2

12
, λ

(3)
2 =

α1

4
. (3.32)

We call these models Models 1, 2 and 3 respectively. Since Model 1 results in the same

massless spectrum as the model found in [57–60], we shall restrict ourselves to Models 2

and 3 hereafter.

4 Analysis of models

In the previous section, we completely fixed the model setup, so that it satisfies the require-

ments mentioned in the introduction. In this section, we identify their massless spectra

by detecting the states whose total phases cancel. Note that, in addition to the phases

originating from the physical partition functions, various numerical factors contribute to

the phases, which may be interpreted as fixed point numbers associated with phases.

4.1 Phases from fixed points

In the study of the partition functions, we have separated the modular covariant partition

functions into the products of the physical partition functions and the extra factors as

in (2.29), (2.44), (3.14) and (A.12). Here we collect all of these extra factors and interpret

them as fixed points with phases, although the geometric picture of fixed points is not very

clear in the asymmetric orbifold.

For this purpose, we first collect the extra numerical factors from the lattices and

twisted bosons as

ϕL
[(α)12
(β)12

]
=
(
ϕA

[(α)3
(β)3

])2
ϕE

[(α)3
(β)3

]
ϕA
[(α)12
(β)12

]
, ϕB

[α
β

]
=
∏

i

ϕB
(φi)

[α
β

]
, (4.1)

respectively, and also include the prefactor defined in subsection 3.4,

Φ
[α
β

]
= ϕ

[(α)12
(β)12

]
ϕL
[(α)12
(β)12

]
ϕB
[α
β

]
. (4.2)
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α 1 2 3 4 5 6

number of fixed points nα 1 1 1 3 1 2

phases of fixed points ϕ
(α)
i 0 0 0 0,±1/4 0 ±1/6

overall phase ϕ
(α)
0 19/48 −7/24 −1/16 1/12 23/48 −3/8

Table 2. Number of fixed points nα, the phases of fixed points ϕ
(α)
i and the overall phase ϕ

(α)
0 in

each sector.

Note that the numerical factors ϕA, ϕE , ϕA and ϕB
(φi)

are only defined for some special

(α, β) sectors. If we have not defined them in that sector, we simply regard them as 1.

The resulting factors Φ form an unwieldy matrix containing complex numbers. In

the β = 0 sectors, these contributions are simply positive integers and hence are easily

interpreted as the number of fixed points. On the other hand, in the β 6= 0 sectors we

encounter various complex factors. It is then natural to interpret them as fixed points

with phase contributions. Namely, supposing we have nα fixed points in the α sectors, the

numerical factor in each (α, β) sector should be interpreted as

Φ
[α
β

]
= (e2πiβϕ

(α)
1 + e2πiβϕ

(α)
2 + · · · + e2πiβϕ

(α)
nα )e2πiβϕ

(α)
0 , (4.3)

where each of the nα fixed points acquires a phase ϕ
(α)
i (i = 1, 2, · · · , nα) in the orbifold

action. Here we have introduced the overall vacuum phase ϕ
(α)
0 to make the phases of the

fixed points as simple as possible. After separating the overall phase ϕ
(α)
0 , we find that the

remaining factors can be understood as the contributions from the fixed points with the

definite phase ϕ
(α)
i as given in table 2.

4.2 Phases from the lattice

Now let us turn to the physical part of the partition function. Again, we focus only on

the lattice part here, with the remainder considered in appendix A.3. First, we consider

the untwisted sector. The original lattice before orbifolding is the [(A2)
2 × (E6)

3] × [E6]
∗

even self-dual lattice with the conjugacy classes given in (3.3). For the E6 part, the phases

for the eigenstates of the permutation (2.41) are given by ωk. In addition, the shift6

(ωE ,ωE ,ωE)/3 introduces additional phases. The original 72 states in each E6 root lattice

are separated into 40, 16 and 16 states with phases 1, ω and ω2, respectively, depending

on their inner product with the shift. Although at first sight all the E6 gauge symmetries

appear to be broken by the shift, the diagonal symmetry is actually restored by combining

the phases from the permutation and shift. Finally, the three sets of the 72 states acquire

the phases 1, ω and ω2.

6We have added subscript E to distinguish from the generator of the conjugacy classes of A2, which will

also appear later.
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Next, we proceed to the twisted sectors. Massless states and their phases can be read

off from the physical part of the lattice partition functions (3.11) and (3.20). The massless

condition for the left-movers is given by7

1

2
p2 +

(1

2

∑

i

(αφi)1
(
1 − (αφi)1

)
− 1
)

= 0, (4.4)

where the first term is the contribution from the diagonal E6 and the two A2 lattices,

p2 = pE
2 +
∑2

j=1 pAj
2, while the second term represents the zero-point energy, which gives

−1/3 for α 6= 0 mod 3. In the following, we shall focus only on the states that satisfy the

above massless condition.

Let us start with the states of the E6 part.

• For the case of α 6= 0 mod 3, where the partition function is given by (2.44), the

lattice momenta take values in the set

SE(α) =
{

pE =
1√
3
(~n · ~αE + αωE)

∣∣∣~n ∈ Z
6
}
, (4.5)

where αE and ωE are the simple roots and one of the fundamental weights corre-

sponding to the generator of the conjugacy classes of E6, respectively. The lightest

states for α = 1 and 2 form the 27 and 27 representations in E6, respectively, and

their contribution to the mass is pE
2/2 = 2/9. Since the partition function e(τ/3)

takes the form 27q2/9 +O(q5/9), the next lightest states already exceed the massless

condition.

• For the case of α = 0 mod 3, the lattice partition function Ek (3.5) takes the form

(1+O(q1),O(q4/3),O(q4/3)), where the next lightest states in O(q1) match the mass-

less condition exactly. However, in Models 2 and 3, the (A2)
2 part also gives a non-

vanishing contribution, and these states become massive. Hence, only the origin can

form massless states.

We can read off the phases for these states from the partition function in the (α, 1) sector.

There are two types of phase contributions. The first consists of the powers ω[α/3] in (2.47),

while the second originates from the partition functions e
(
(τ + 1)/3

)
and ω2e

(
(τ + 2)/3

)

in (2.46). Using the expansion of these partition functions (α = 1, 2)

e
(τ + α−1

3

)
=

∑

pE∈SE(α)

e2πiα−1
p

2
E/2qp

2
E/2, (4.6)

with 1−1 = 1 and 2−1 = 2 (mod 3) as before, we find that the second contribution is given

by 0, 2/9, 1/9 for α = 0, 1, 2 mod 3, respectively These phases for the lightest states are

summarized in table 3.

Next we consider the (A2)
2 part, which also depends on the shift vectors (λ1,λ2).

7 As in section 2.3.3 and appendix A.2, (x)1 is the fractional part of x: (x)1 = x mod 1.
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α 0 1 2 3 4 5 6

phase 0, 0, 1/3, 2/3 2/9 1/9 1/3 5/9 4/9 2/3

Table 3. Phases originating from the (E6)
3 lattice. The first phase in the untwisted sector is the

contribution from the origin, while the remaining three are those from the three sets of 72 states

after recombining the original 72 states in each E6.

• For the sectors α 6= 0 mod 3, whose partition function is given in (2.31), the lattice

momenta can be read off as
{

pA1 = ~n1 · ~αA + αλ1 + k1ωA

∣∣∣~n1 ∈ Z
2, k1 ∈ {0, 1, 2}

}

⊗
{

pA2 = ~n2 · ~αA + αλ2 + k2ωA

∣∣∣~n2 ∈ Z
2, k2 ∈ {0, 1, 2}

}
, (4.7)

where αA and ωA are the simple roots and one of the fundamental weights corre-

sponding to the generator of the conjugacy classes of A2, respectively. After taking

the mass contribution from the E6 part into account, the massless states have to

satisfy
∑2

j=1 pAj
2/2 = 1/9.

• For the α = 0 mod 3 sectors, since the origin is extracted for both the E6 part and

the right-moving [Ã2]
∗ part, we find that only the conjugacy class (0, 0, 0, 0) survives

out of the whole set of conjugacy classes Π (3.2). Hence, only the states contributing

to A
~l
k=0 in (3.11) are relevant, whose momenta are given by

{
pA1 = ~n1 · ~αA + αλ1

∣∣∣~n1 ∈ Z
2
}
⊗
{

pA2 = ~n2 · ~αA + αλ2

∣∣∣~n2 ∈ Z
2
}

. (4.8)

As in the previous case, after substituting the mass contribution of the E6 part, the

massless states have to satisfy
∑2

j=1 pAj
2/2 = 1.

Again, the (α, 1) sectors of the partition functions, (2.31), (2.32) and (2.21), imply the

phase contribution

2∑

j=1

(1

2
α−1fk2

j −
1

2
α(λj)

2 + pAj ◦ λj

)
(4.9)

for each model (depending on λ1 and λ2). Here α−1 denotes an integer satisfying α−1α = 1

mod 3 as before, while in the case of α = 0 mod 3 the first term does not contribute. We

list these massless candidates in the A2 part and their phase contributions for Models 2

and 3 in tables 4 and 5, respectively.

4.3 Massless spectrum

In the previous subsections, we calculated the phases that are relevant to the massless

spectra of Models 2 and 3. It is now necessary to combine them to form phaseless states.

Let us examine how an adjoint Higgs field and chiral (antichiral) generations appear in

Model 2 as an example. Note that, in each of the α = 0 and 6 sectors, massless states and
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α State Phase

0

| ± α1〉 ⊗ |0〉
(| ± α2〉, | ∓ (α1 + α2)〉) ⊗ |0〉

|0〉 ⊗ | ± α1〉
|0〉 ⊗ (| ± α2〉, | ± (α1 + α2)〉)

±1/6

∓1/12

0

∓1/4

1 − −

2
|2λ1〉 ⊗ |2λ2 + ω − α1 − α2〉

|2λ1〉 ⊗ |2λ2 − ω − α2〉
−4/9

1/18

3
(|3λ1 − α1 − α2〉, |3λ1 + α2〉) ⊗ |3λ2 − α1 − 2α2〉

|3λ1 − α1〉 ⊗ (|3λ2 − α1 − α2〉, |3λ2 − α2〉)
0

−1/3

4
(|4λ1 + ω − α1〉, |4λ1 − ω〉) ⊗ |4λ2 − α1 − 2α2〉

|4λ1〉 ⊗ |4λ2 − α1 − 2α2〉
−17/36

5/18

5 (|5λ1 + ω − α1〉, |5λ1 − ω〉) ⊗ |5λ2 + ω − 2α1 − 3α2〉 2/9

6

(|6λ1 − α1 − α2〉, |6λ1 + α2〉) ⊗ (|6λ2 − 2α1 − 3α2〉, |6λ2 − α1 − 3α2〉)
|6λ1 − α1〉 ⊗ |6λ2 − 2α1 − 4α2〉
|6λ1 − α1〉 ⊗ |6λ2 − α1 − 2α2〉
|6λ1〉 ⊗ |6λ2 − 2α1 − 4α2〉
|6λ1〉 ⊗ |6λ2 − α1 − 2α2〉

−1/6

0

1/2

1/6

−1/3

Table 4. Massless candidates for Model 2 with the shifts λ1 = α1/12, λ2 = (α1 + 2α2)/4. We

have omitted the index A in the simple roots α1, α2 and the fundamental weight ω.

their CPT conjugate states exist in the same sector and compose the untwisted sector U

and twisted sector T6. In the other sectors, states and their CPT conjugate states reside

in the α and 12 − α sectors, respectively, and compose the twisted sectors T1,2,3,4,5.

We first consider the untwisted sector U . This sector contains gauge fields and the

adjoint Higgs field. In Model 2, in addition to the diagonal E6, a non-Abelian part from

one of the (A2)
2 survives as seen in table 4. Adding the Abelian parts from excited bosons

with vanishing phases, the gauge group of Model 2 turns out to be

Model 2 : (E6)3 × SU(2) × U(1)3, (4.10)

where the lower index denotes the Kac-Moody level of the gauge group. The other states

originating from (E6)
3 acquire phase contributions ω±1 as discussed at the beginning of

subsection 4.2, which are canceled by the phases originating from the right-moving states

|0, 0, 0,±1〉 (NS) or | ± (1/2,−1/2,−1/2, 1/2)〉 (R) to form massless fields (See table 7

in appendix A.3.). We define the four-dimensional chirality as ‘left-handed’ if the first

component of the fermionic states is 1/2. Since these fields are in the adjoint representation

of (E6)3 gauge symmetry and do not have nontrivial charges in the other gauge symmetries,

they compose the left-handed chiral multiplet (78,1, 0, 0, 0)L of E6×SU(2)×U(1)3. There

are also chiral multiplets in the nontrivial representation of U(1)3, (1,1,+6,±3, 0)L, where

the three U(1) are normalized with the unit (
√

2/12,
√

6/6,
√

6/12).
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α State Phase

0

| ± α1〉 ⊗ |0〉
| ± α2〉 ⊗ |0〉

| ∓ (α1 + α2)〉 ⊗ |0〉
|0〉 ⊗ | ± α1〉

|0〉 ⊗ (| ± α2〉, | ∓ (α1 + α2)〉)

∓1/3

∓1/12

±5/12

1/2

∓1/4

1 |λ1 + ω − α1 − α2〉 ⊗ |λ2〉 1/9

2 |2λ1 − α2〉 ⊗ (|2λ2 + ω − α1〉, |2λ2 − ω〉) 1/18

3

|3λ1 − 2α2〉 ⊗ |3λ2〉
|3λ1 − α1 − 2α2〉 ⊗ |3λ2〉

|3λ1 − α2〉 ⊗ (|3λ2 + α2〉, |3λ2 − α1 − α2〉)

0

1/3

−1/3

4

|4λ1 + ω − α1 − 2α2〉 ⊗ |4λ2 − α1〉
|4λ1 − ω − 2α2〉 ⊗ |4λ2 − α1〉
|4λ1 − 2α2〉 ⊗ |4λ2 − α1〉

−17/36

1/36

−2/9

5 |5λ1 + ω − α1 − 3α2〉 ⊗ |5λ2 − α1〉 2/9

6

|6λ1 − α1 − 4α2〉 ⊗ |6λ2 − 2α1〉, |6λ1 − 2α2〉 ⊗ |6λ2 − α1〉
|6λ1 − α1 − 4α2〉 ⊗ |6λ2 − α1〉, |6λ1 − 2α2〉 ⊗ |6λ2 − 2α1〉
|6λ1 − α1 − 3α2〉 ⊗ (|6λ2 − 2α1 − α2〉, |6λ2 − α1 + α2〉)

|6λ1 − 3α2〉 ⊗ (|6λ2 − 2α1 − α2〉, |6λ2 − α1 + α2〉)

1/3

−1/6

1/2

1/6

Table 5. Massless candidates for Model 3 with the shifts λ1 = (α1 + 6α2)/12, λ2 = α1/4.

Let us proceed to the twisted sectors Tα. As we have seen in table 4, there are no

massless candidates in the α = 1 sector and therefore no massless fields in the twisted

sector T1. In the α = 2 twisted sector in table 4, there are two massless candidates,

|2λ1〉 ⊗ |2λ2 + ω − α1 − α2〉 and |2λ1〉 ⊗ |2λ2 − ω − α2〉. Combined with the lightest

momentum states in SE(2), which correspond to the 27 representation, and the right-

moving fermionic states, only the latter candidate cancels the phase and survives after the

projection. Then, with its CPT conjugate in the α = 10 sector, it composes the multiplet

(27,1,+2, 0,−2)L . A similar analysis can be performed for the other sectors. Note that

in the twisted sectors T4 and T6, we have to take into account the fixed points (three fixed

points for T4 and two fixed points for T6) and their phases in table 2. In this way, one can

find all the massless fields in Model 2 and also those in other models.

We list the resulting spectra of the three models with three generations in table 6. We

omit the gauge and gravity multiplets in the table. The gauge group of Models 1 and 2 is

E6×SU(2)×U(1)3 and that of Model 3 is E6×U(1)4. Each model contains a chiral multiplet

in the adjoint representation of the level 3 E6 group which corresponds to a GUT adjoint

Higgs field. It turns out that the numbers of chiral and antichiral generations for Models

1 and 3 are 5 and 2, while they are 4 and 1 for Model 2, respectively. Hence, each model

leads to a net of three chiral generations. Models 1 and 2 contain a hidden gauge group

SU(2) and its doublet field in the twisted sector T6, while there is no non-Abelian hidden

sector in Model 3. As mentioned in the previous section, the massless spectrum of Model 1
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Model 1 Model 2 Model 3

gauge

symmetry
E6 × SU(2) × U(1)3 E6 × SU(2) × U(1)3 E6 × U(1)4

U
(78,1, 0, 0, 0)L
(1,1,+6, 0, 0)L

(78,1, 0, 0, 0)L
(1,1,+6,±3, 0)L

(78, 0, 0, 0, 0)L
(1,−6, 0, 0, 0)L

(1,+3,±6, 0, 0)L

T1 (27,1,+1, 0,±1)L — (27,−1,−1,+1, 0)L

T2 (27,1,−1,±1, 0)L (27,1,+2, 0,−2)L (27,+1, 0, 0,±1)L

T3 2(1,1,−3, 0,±3)L (1,1,−3,±3,−3)L
(1,+3,−3,+3, 0)L
(1,+3,+3,−3, 0)L

T4 (27,1,−2, 0, 0)L (27,1,−2,±1, 0)L
(27,+2, 0, 0, 0)L

(27,−1,±2, 0, 0)L

T5 (27,1,+1, 0,±1)L (27,1,+1,±1,+1)L (27,−1,+1,−1, 0)L

T6
(1,2, 0, 0,±3)L

(1,1,+3,±3, 0)L

(1,2, 0,±3, 0)L
(1,1,−6, 0,+6)L

(1,−3, 0, 0,±3)L
(1, 0,+6,−2, 0)L
(1, 0,−6,+2, 0)L

normalization

of U(1)

(√
2

6 ,
√

6
6 ,

√
6

6

) (√
2

12 ,
√

6
6 ,

√
6

12

) (√
2

6 ,
√

6
12 ,

√
2

4 ,
√

6
6

)

Table 6. Massless spectra of the models with three generations: U and Tα denote the untwisted

and various twisted sectors, respectively. The quantum numbers of the left-handed chiral multiplets

and the normalizations of the U(1) charges are shown. The irrational normalizations of the U(1)

originate from a general decomposition of the Lie algebra into its subalgebras. The gravity and

gauge multiplets are omitted.

is the same as that analyzed in the framework of the Z6 orbifold model [57–60]. Although

it is possible that the two models, which are constructed in Z6 and Z12, respectively, have

different interactions, they are likely to be the same. On the other hand, the other two

models, Models 2 and 3, are completely new.

5 Summary and discussion

As we reported briefly in [81], we have found two novel four-dimensional N = 1 E6 grand

unified models with an adjoint Higgs field with three generations in the framework of the

asymmetric orbifold of heterotic string theory. Before this work, only one such E6 unified

model was known, which was claimed to be unique in the classification [57–60].

In this paper, we have presented all the details and techniques used in our construction,

in the hope that they will be useful in the construction of other models using heterotic string

theory. We would like to stress that, with all the techniques collected from previous works,

one can now systematically design the setup of heterotic string theory to satisfy various

requirements at will.
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Actually, one of our motivations in this work was to embed the scenario of the anoma-

lous U(1) GUT into the framework of string theory. Unfortunately, similarly to the

model in [57–60], we found that our new models do not possess additional gauge sym-

metries, such as the anomalous U(1)A gauge symmetry [64–78] and SU(2)F family sym-

metry [13, 14, 79, 80], which help to prevent the doublet-triplet splitting problem and the

SUSY flavor/CP problem. Our models also share the property that a (Z3)
3 subgroup of

the U(1)3 symmetry remains unbroken even after all the singlets develop nonvanishing vac-

uum expectation values. Nevertheless, our discovery of new models that have been missed

from the classification raises hopes for the discovery of many other new models including

phenomenologically desirable ones.

In the rest of this section, we discuss some related issues on our formulation of the

partition function and the interpretation of the orbifold projection.

In [57–60] a similar argument using the modular invariant partition function was pre-

sented with the concept of the conjugacy classes defined by modding out the dual invariant

sublattice by the invariant sublattice. It is in general, however, difficult to find the conju-

gacy classes explicitly in this formulation, particularly when orbifolds with permutation are

considered. Our formulation is based on the conjugacy classes of the Lie algebra. Hence,

we can always write down the formula explicitly without difficulty. Also note that our for-

mulation is applicable to any of the Zn actions, although the explicit expression depends

on the details of the orbifold actions.

Finally, we comment on the assignment of phases to the massive part of the T6 twisted

sector of the lattice partition function. In the (6, β) sectors, we have two different lattices

depending on the value of β, as shown in (3.12) and (3.13). The β = 0, 6 sectors with an

argument of τ/2 correspond to a condensed A2 lattice with root length
√

2 × 1/
√

2 = 1,

while the β = 3, 9 sectors with an argument of 2τ correspond to a dilute A2 lattice with

root length
√

2 ×
√

2 = 2. Although it is possible to assign phases for these sectors so

that the contributions from the extra lattice points in the condensed lattice cancel among

themselves to give a dilute lattice in the β = 3, 9 sectors, we cannot identify a unique phase

assignment because its interpretation in terms of shifts or twists is not clear. Nevertheless,

our massless spectra do not depend on how the phase assignment is chosen, since only the

origin of the right-moving lattice contributes to the massless states. It, however, will be

interesting to study how the assignment is fixed. We hope to return to this point in our

future work.
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A Partition functions of fermionic/bosonic oscillators

The Dedekind eta function and Jacobi theta function are respectively defined as

η(τ) = q1/24
∞∏

m=1

(1 − qm),

ϑ
[α
β

]
= η(τ)qα2/2−1/24e2πiαβ

∞∏

m=1

(1 + qm+α−1/2e2πiβ)(1 + qm−α−1/2e−2πiβ)

=
∑

n

e−π(n+α)(−iτ)(n+α)+2πi(n+α)β . (A.1)

Using the Poisson resummation formula, the modular transformations of these partition

functions are as follows:

η(τ + 1) = e2πi(1/24)η(τ), η(−1/τ) =
√
−iτη(τ),

ϑ
[α
β

]
(τ + 1) = eπiα(1−α)ϑ

[ α

β + α − 1/2

]
(τ), ϑ

[α
β

]
(−1/τ) =

√
−iτe2πiαβϑ

[ β

−α

]
(τ). (A.2)

A.1 Fermion

Let us define the fermion partition function by

ΘF
(φ)

[α
β

]
=

e−πi(αφ)·(βφ)

2η4

{ 3∏

i=0

ϑ
[αφi

βφi

]
−

3∏

i=0

e−πiαφiϑ
[ αφi

βφi + 1/2

]
−

3∏

i=0

ϑ
[αφi + 1/2

βφi

]}
,

(A.3)

with 2πφi (i = 0, 1, 2, 3) being the rotation angles of a ZN orbifold action on right-moving

transverse complex four-dimensional space. In addition to the orbifold condition

φ0 = 0, Nφi ∈ Z, (A.4)

the φi have to satisfy the fermion consistency condition
∑

i

Nφi = 0 mod 2. (A.5)

Here the first two terms correspond to the GSO-projected NS sector, while the third term

corresponds to the GSO-projected R sector.

This partition function transforms under the modular transformation as

ΘF
(φ)

[α
β

]
(τ + 1) = e−2πi(16/24)ΘF

(φ)

[ α

β + α

]
(τ), ΘF

(φ)

[α
β

]
(−1/τ) = ΘF

(φ)

[ β

−α

]
(τ). (A.6)

It also satisfies the periodicity relation

ΘF
(φ)

[ α

β + N

]
= eπiαφ·NφΘF

(φ)

[α
β

]
(A.7)

if we impose the fermion consistency condition (A.5). Since we are imposing the SUSY

condition
∑

i

φi = 0 mod 2, (A.8)

the above consistency condition (A.5) is automatically satisfied.
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A.2 Boson

For every complex dimension, the twisted boson partition function is given by

ΘB
(φ)

[α
β

]
= eiπαφ(βφ−1) η

ϑ
[αφ + 1/2

βφ − 1/2

] , (A.9)

while the untwisted boson partition function is 1/η2. Under the modular transformations,

it satisfies

ΘB
(φ)

[α
β

]
(τ + 1) = e−2πi(2/24)ΘB

(φ)

[ α

β + α

]
(τ), ΘB

(φ)

[α
β

]
(−1/τ) = iΘB

(φ)

[ β

−α

]
(τ). (A.10)

Note that an extra phase i appears in the S-transformation compared with the untwisted

boson partition function 1/η2(τ). Therefore, to simplify the modular transformation of

the total partition function, we define the lattice partition function in the text so that it

transforms with the same factor i for every complex dimension.

The orbifold periodic relation is given by

ΘB
(φ)

[ α

β + N

]
= e−πiαφNφe−πiNφΘB

(φ)

[α
β

]
. (A.11)

In the right-moving case, since we have the consistency condition (A.5), the second factor

e−πiNφ is cancelled. Combined with the result for the fermion partition function (A.7),

it implies that the phase contributions of the right-moving modes to the total orbifold

periodic condition (2.6) always cancel among themselves.

Although the above boson partition function is defined to have a desirable modular

transformation property, it does not take a form suitable for physical interpretation. For

this reason we rewrite the partition function ΘB
(φ) as the product of the physical partition

function Θ̂B
(φ) and an overall multiplicative factor ϕB

(φ):

ΘB
(φ)

[α
β

]
= ϕB

(φ)

[α
β

]
Θ̂B

(φ)

[α
β

]
. (A.12)

The factor ϕB
(φ) and the physical partition function Θ̂B

(φ) are defined as

ϕB
(φ)

[α
β

]
= (−i)(−1)[αφ]e−πiβφ(αφ−1)+2πiβφ[αφ],

Θ̂B
(φ)

[α
β

]
=

1

q(1/2−(αφ)1)2/2−1/24
∏∞

n=1(1 − qn−1+(αφ)1e2πiβφ)(1 − qn−(αφ)1e−2πiβφ)
(A.13)

for αφ 6∈ Z and

ϕB
(φ)

[α
β

]
=

(−1)αφeπiβφαφ

2 sin βπφ
,

Θ̂B
(φ)

[α
β

]
=

1

q2/24
∏∞

n=1(1 − qne2πiβφ)(1 − qne−2πiβφ)
(A.14)

for αφ ∈ Z, βφ 6∈ Z. Here [x] is the largest integer that does not exceed x, [x] ≤ x < [x]+1,

while (x)1 is defined as x mod 1, (x)1 = x − [x].
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A.3 Phases from fermions

Here we summarize the orbifold phases originating from the fermions by focusing on the

massless states. For this purpose, it is easiest to view the fermionic state as the lattice state

on the D4 = SO(8) lattice. Before orbifolding, the states in the NS sector are given by the

D4 root lattice shifted by the weight of the vector representation 8v, while the states in the

R sector are given by the lattice shifted by that of the spinor representation 8s. Namely,

they are given by

NS:
{∣∣∣n0 + 1, n1, n2, n3

〉}
, R:

{∣∣∣n0 +
1

2
, n1 +

1

2
, n2 +

1

2
, n3 +

1

2

〉}
, (A.15)

where ni ∈ Z are subject to the constraint
∑3

i=0 ni ∈ 2Z. Under the twist action, these

lattice states are further shifted by αφi in the α sector. For the lattice point |s0, s1, s2, s3〉,
the mass contribution from the fermion partition function can be read off from (A.3):

q−4/24+
P3

i=0(si)
2/2 = q

P3
i=0{(si)

2/2−1/24}, although it has to be supplemented by the mass

contribution from the vacuum state of the boson partition function as given in (A.13)

and (A.14): q−
P3

i=0{(1/2−(αφi)1)2/2−1/24}. Therefore, the massless condition is simply

1

2

3∑

i=0

(si)
2 +

1

2

3∑

i=0

(αφi)1
(
1 − (αφi)1

)
− 1

2
= 0. (A.16)

Here we have considered only the ground state, since the contribution from the bosonic

oscillators makes the states massive. The phases obtained by the orbifold action θβ=1 for

the α-twisted massless states can be read off from the partition function (A.3) as

α

2

3∑

i=0

(φi)
2 −

3∑

i=0

siφi, (A.17)

where we include the minus sign originating from the complex conjugate of the right-moving

part. We list these massless states and their phase contributions in table 7.

B Lattice decomposition

B.1 E8 → E6 × A2

We begin with the decomposition of the E8 lattice into the E6 and A2 lattices. As is well

known, the E8 lattice is the only even self-dual lattice in the Euclidean eight-dimensional

space. The E8 root lattice is constructed from the sum of the multiples of its simple roots

α1, · · · ,α8. The Dynkin diagram of the E8 group is depicted in figure 1. According to the

general theory of Lie algebras, a maximal subalgebra can be obtained by adding one more

node α0 to form an extended Dynkin diagram and subsequently removing one of its nodes.

In the case of E8, the minimal root to be added is

α0 = −2α1 − 4α2 − 6α3 − 5α4 − 4α5 − 3α7 − 2α8 − 3α6. (B.1)
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α NS R Phase

0

| ± 1, 0, 0, 0〉
|0,±1, 0, 0〉
|0, 0,±1, 0〉
|0, 0, 0,±1〉

| ± (1/2, 1/2, 1/2, 1/2)〉
| ± (1/2, 1/2,−1/2,−1/2)〉
| ± (1/2,−1/2, 1/2,−1/2)〉
| ± (1/2,−1/2,−1/2, 1/2)〉

0

∓1/12

±5/12

∓1/3

1 |0, 1/12, 7/12, 1/3〉 |1/2,−5/12, 1/12,−1/6〉 13/48

2 |0, 1/6, 1/6, 2/3〉 |1/2,−1/3,−1/3, 1/6〉 1/8

3
|0,−3/4,−1/4, 0〉
|0, 1/4, 3/4, 0〉

| − 1/2,−1/4, 1/4, 1/2〉
|1/2,−1/4, 1/4,−1/2〉

19/48

−13/48

4 |0, 1/3, 1/3, 1/3〉 |1/2,−1/6,−1/6,−1/6〉 −5/12

5 |0,−7/12,−1/12,−1/3〉 | − 1/2,−1/12, 5/12, 1/6〉 −7/48

6
|0,−1/2,−1/2, 0〉
|0, 1/2, 1/2, 0〉

| − 1/2, 0, 0, 1/2〉
|1/2, 0, 0,−1/2〉

−7/24

1/24

Table 7. Massless states and the corresponding phases for the fermions.

A1 × E7 ⊕1
k=0k(1, 1)

A2 × E6 ⊕2
k=0k(1, 1)

A3 × D5 ⊕3
k=0k(1, 1)

A4 × A4 ⊕4
k=0k(1, 2)

Table 8. Possible decompositions of the E8 lattice.

For the decomposition into E6 × A2, we have to remove α7, and identify the remaining

roots with those for E6 × A2 as follows:

E6 : α′
1 = α1, α′

2 = α2, α′
3 = α3, α′

4 = α4, α′
5 = α5, α′

6 = α6, (B.2)

A2 : α′′
1 = α0, α′′

2 = α8. (B.3)

The lattice originally spanned by α1, · · · ,α8 does not change even after we add α0. How-

ever, to remove α7 and span it by α1, · · · ,α6 of E6 and α0,α8 of A2, it has to be supple-

mented by

α7 = ω′
E + ωA + roots. (B.4)

Therefore, in the decomposition E8 → E6 × A2, the root lattice of E8 is divided into the

conjugacy classes

⊕2
k=0k(1, 1) = (0, 0) ⊕ (1, 1) ⊕ (2, 2). (B.5)

Other decompositions of E8 can be similarly found as summarized in table 8.
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Figure 1. Dynkin diagram of the E8 group.

1′′ 2′′ 5′ 4′ 3′ 2′ 1′

6′

0′

Figure 2. Dynkin diagrams of the A2 group and E6 group.

B.2 E6 → (A2)
3

The next example of a decomposition is E6 → (A2)
3 as depicted in figure 2. In this case

we add the root α′
0 to obtain the extended Dynkin diagram, where

α′
0 = −α′

1 − 2α′
2 − 3α′

3 − 2α′
4 − α′

5 − 2α′
6, (B.6)

and remove the root α′
3. Since the removed root α′

3 and the fundamental weight of the E6

algebra ω′
E are decomposed in terms of the (A2)

3 lattice as

α′
3 = 1 · ω(1)

A + 1 · ω(2)
A + 1 · ω(3)

A + roots, ω′
E = 0 · ω(1)

A + 1 · ω(2)
A + 2 · ω(3)

A + roots,

(B.7)

we find that the various conjugacy classes are decomposed as

0 → 0 · (0, 1, 2) +
[
⊕2

k=0k(1, 1, 1)
]

= (0, 0, 0) ⊕ (1, 1, 1) ⊕ (2, 2, 2),

1 → 1 · (0, 1, 2) +
[
⊕2

k=0k(1, 1, 1)
]

= (0, 1, 2) ⊕ (1, 2, 0) ⊕ (2, 0, 1),

2 → 2 · (0, 1, 2) +
[
⊕2

k=0k(1, 1, 1)
]

= (0, 2, 1) ⊕ (2, 1, 0) ⊕ (1, 0, 2). (B.8)

B.3 E6 → D4 × Ã2

Let us consider the decomposition

E6 → D5 × U(1) → D4 × [U(1)]2. (B.9)

This time, by studying the decomposition carefully, we find that two pieces of U(1) actu-

ally take the form of an A2 lattice, although the lattice spacing is
√

2 times that of the
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original lattice (called Ã2 here), and the decompositions of the various conjugacy classes

are given by

0 → (0, 0̃) ⊕ (v, 0̃ + ṽ) ⊕ (s, 0̃ + s̃) ⊕ (c, 0̃ + c̃),

1 → (0, 1̃) ⊕ (v, 1̃ + ṽ) ⊕ (s, 1̃ + s̃) ⊕ (c, 1̃ + c̃),

2 → (0, 2̃) ⊕ (v, 2̃ + ṽ) ⊕ (s, 2̃ + s̃) ⊕ (c, 2̃ + c̃). (B.10)

Here v, s and c of the D4 lattice denote shifts by the fundamental weights ωv, ωs and ωc,

while k̃ in Ã2 means the shift by kω̃1 = k
√

2ω1 and ṽ, s̃ and c̃ denote the shifts by the

vectors

ω̃v =
α̃1

2
=

α1√
2
, ω̃s =

α̃2

2
=

α2√
2
, ω̃c = −α̃1 + α̃2

2
= −α1 + α2√

2
, (B.11)

respectively. A similar analysis shows that the D4 lattice can be decomposed as

D4 → A2 × Ã2. (B.12)
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[16] L.E. Ibáñez, H.P. Nilles and F. Quevedo, Reducing the rank of the gauge group in orbifold

compactifications of the heterotic string, Phys. Lett. B 192 (1987) 332 [INSPIRE].
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