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Spontaneous vortex state and ferromagnetic behavior of type-Ip-wave superconductors
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The mixed phase in type-Il superconductors with equal gpimave pairing is considered using the
Ginzburg-Landau approach. Due to direct spin coupling of the condensate to magnetic field the mixed state
acquires ferromagnetic properties. For sufficiently large Zeeman coupling a spontaneous vortex phase appears
at H=0 and exists and for an arbitrarily large magnetic field. The Meissner phase therefore completely
disappears. Vortices become thinner wikbgrows. There exists a value of Zeeman coupling above which, in
the presence of external magnetic field, a mixed phase might occur even for temperature¥ abdhe
structure of the vortex core is markedly different from the usual f8@163-18208)06137-2

[. INTRODUCTION dard direct methods of measurement of coherence length and
penetration depth. Our study turned out to be interesting in
In the majority of conventional lowi-, superconductors its own right(even with no direct relation to the above ex-
pairing occurs in thes channel. In this case the Cooper pair perimenj, since the vortex-matter physics happens to be
does not have total spin and an external magnetic field influguite nonstandard. The same GL equations might describe
ences superconductors via coupling to orbital motion of theother physical systems. Microscopic derivation of GL equa-
pairs only. Although highF. cuprites are most probably  tions for p-wave pairing has been recently performed by Xu
wave superconductors, direct magnetic coupling to the spiet al® in connection to SIRuQ,.
of the Cooper pair should be still insignificanthe situation Within the framework of the phenomenological GL
might be different in certain cases pfwave paring. The theory nonzero spin of the Cooper pair is taken into account
magnetic field violates time-reversal invariance and is an exby introducing an order parameter of the vector type. It is
tremely effective pair breaker far, d-, and certairp-wave  directly coupled to an internal magnetic field through a
states, but it does not break pairs with parallel spins of con-Zeeman-like term in the free energy. An external magnetic
stituent fermions. field penetrates a type-Il superconductor via creation of vor-
The p-wave pairing is suspected to occur in a recentlytices in the bulk of the sample. Formation of each vortex is
discovered new class of Ru-based superconductoraccompanied by both the energy loss due to vortex line for-
SrLYRu;_,CuOg.2 At the same temperature of about 60 K, mation, and the energy gain due to the energy of the pen-
at which superconductivity sets in, these materials begin tetrating field itself. Now, however, it is also accompanied by
exhibit basic ferromagnetic properties like hysteresis loopan additional energy gain due to direct interaction of the
Experimental observation of a positive remanence suggesfenetrating field with the spin of the condensate. If this in-
the existence of spontaneous magnetization in the absencetefaction is sufficiently strong, the total line energy of a vor-
an external magnetic field. Various conventional sources ofex can become negative and consequently instability devel-
ferromagnetism, independent from but coexisting withops. The usual hexagonal lattice vortex structure will form
superconductivity;®> cannot be ruled out. However, exact even for the system at zero external magnetic field. This state
overlap of superconductivity and ferromagnetism naturallycan be characterized as a spontaneous vortex ‘ststehe
suggests that in these particular materials Cooper pairs miglsame time there appears a ferromagnetic moment of the su-
in fact be magnetic moments and that they themselves aggerconductor associated with the bulk of the condensate that
responsible, at least partially, for overcoming the usual diaprevails over the conventional diamagnetic moment due to
magnetic response of the superconductor. Of course, in prirscreening by supercurrents.
ciple, the critical temperatures of transition to ferromagnetic In Sec. Il we formulate the model and investigate its main
and superconducting states can simply accidentally coinciddeatures. As in heavy-fermion systefiihiere are two quartic
but the “same-mechanism” scenario is nevertheless wortlierms in the GL free energy and there exist two qualitatively
taking a look at. different superconducting states. One has rather conventional
In this paper we explore in some detail this possibility in magnetic behavior and we concentrate on the more interest-
the case of type-ll superconductors using the phenomendng state allowing ferromagnetism. Different typestfT
logical Ginzburg-LandauGL) approach. Superconductors phase diagrams are possible for different strengths of Zee-
obtained by Wu and collaboratdrare believed to be of type man coupling. Anticipating the derivation, we present the
II, similar to high-T. copper oxides, although at present theirdiagrams in Fig. 1. When the direct spin coupling increases,
unusual magnetic properties introduce ambiguities in stanthe magnetic behavior of the superconductor changes dra-
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H more vortices to squeeze in. Conclusions and some generali-
zations are discussed in Sec. VI.

Il. GENERAL PHENOMENOLOGICAL FORMULATION

Within the general framework of the Ginzburg-Landau
approach in unconventional superconducfotbe p-wave
pairing in an isotropic material is described by the order
parametery; that has three complex componerits:1,2,3.

In the absence of magnetic field the free-energy density is

Y 2
Y F:ﬁ(ﬂj(ﬂi)(ajlﬂi)*‘l'lzpotv

D)

Fpot=—ayiy + %(‘pi'ﬁi*)z"' %W/i il

It has the following independent symmetries. The spin rota-
tions, forming group SQ,i(3) act on the index of the order-
4 parameter field, so that it transforms as a vector. Three-
\ dimensional (orbital) space rotations forming different
i : SO,it(3) group, act on spatial coordinates and the electric-
i charge transformations, forming the U(1) group, rotate the
complex phase of the order parameter. Note two independent
quartic terms. This is similar to that of heavy fermions
(where order parameter usually has two componestt$ig-
uid 3He for which the order parameter is more complicated.
The vacuum structure can be studied using methods devel-
oped in these field$®
This free energy has been already considered by Burlach-
o ! kov and Kopnin in connection withp-wave organic
V<V'th <d'ﬁerem St;engthﬂff Zele.g]?n coupling t(?.) g<gf02t, ® .?CZ t superconductors: It is not, strictly speaking, the most gen-
9=gc1, (6) g=0er. The solid lines present lines of transition to g{al possible free energy for tipavave. Recently, an attempt

the Meissner state and the normal state. The dashed line is vortef1 b de to derive the GL f bl
lattice melting line(not calculated in the present papebotted as been made to derive the énergy rom reasonable

lines are boundaries of validity of different approximations used. m'croscop'cal mOdels qescr'b'ng,ﬁuoél' In p”nc'pl_e' for .
strong spin-orbit coupling there is no separate spin rotation

symmetry, just overall rotations. In this case one can add an
additional two terms even for an isotropic supercondutior.
It is sufficient, however, for the purposes of the present paper

S g ! to consider free-energyl) even not assuming weak spin-
ferromagneti¢Fig. 1(c}]. At nonzero magnetic field a mixed orbit coupling. Our results essentially depend only on the

state can exist even beyorid because Zeeman coupling xistence of Zeeman coupling in GL-free energy expansion.

facilitates creation of the Cooper pairs along with the usuaﬁh : . :
; . e Zeeman-like term that will be introduced belfsee Eq.
destruction of the condensgtigs. ib) and Xc)]. For large, (6)] is also allowed by the symmetry considerations in the

blt.ﬂ St'HhOfl\fl‘ quite re%“St'C do_rder of magnltuld?'éof tlhe COU- case of strong spin-orbit coupling as well as for weak break-

E'Tg’ tTe eissner phase |sappeﬁrs comp G[Hig.o(c)]a ing of full rotational symmetry by the crystal field. It is only
elow T, a spontaneous vortex phase appeat$a0 an necessary to have a nonunitatyroken time-reversal sym-

exists for an arbitrarily large magnetic field. metry) superconducting phase with an order parameter that

In Sec. Ill t_h_e model is studied using a Lo_ndo_n approXx-1»s at least two components. This generalization can be eas-
mation. Transition to the normal state is studied in Sec. IV.in made

In Sec. V we find the s.|ngle_—voryex solution numerically. The We use the following convenient parametrization of the
vortex core structure is quite different from that of an usual )

. . order parameter:
Abrikosov vortex in thesswave superconductors. The phase
diagram and the magnetization curve are also qualitatively
calculated and discussed beyond London approximation.
Vortices become thinner wheH grows making room for Y=f(n cosg+im sin ¢), 2

(©

FIG. 1. Phase diagrams of equal sgifwave superconductor

matically: from essentially diamagnetic, even perfectly dia-
magnetic in the Meissner pha$Eig. 1(a)], to essentially
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ﬁZ
Wheref>Q, n a_nd m are a_rbitrary unit vectors and<0¢ Fgradzz—*(l)j b)) (D)™,
< /2. Using this parametrization the homogeneous part of m
the free-energy density takes the form
2
o= — a2+ 21 g @f4(co§2¢+(mn)zsin22¢) Frmagn=g= ~ #SB
pot— — & 2 2 ) magn— g i

3

which can be easily minimized to give the two phases. Inwhere D;=g;—i(e*/cfi)A;, rotA=B. The second term in
phase 1,8,>0, Fmagn is the direct magnetic coupling to spirg;
E—isijkwj* Y carried by the order-parameter field. Of
course, due to this Zeeman-like tefgven in the absence of
n+im , external magnetic fie)d separate spin- and orbital-rotation
= 2 nim,¢=ml4, f =5, (4 symmetry groups are broken down to an overall rotation
group: SQ;in® SOy pit— SQ¢ - In principle, one more in-
dependent gradient invariant is possible:

while in phase 11,8,<0, various vacua are given by

a (D) (D)™ + (D) (D)) * .
:B1+,32' ©®

Y=fe'’n, n=xm; f2

We will not introduce it and instead assume a larger symme-

In phase | both the spin-rotation $}(3) symmetry and  try even in the presence of external magnetic field. It is as-
the superconducting phase U(1) symmetry are broken, but@umed that an external magnetic field is always oriented
diagonal subgroup U(1) survives. It consists of rotations byalong the third ¢) direction: H;=H,=0. In this case the
angle ¢ around the axisixm=| that are accompanied by free energy, Eq(6) is still invariant under two-dimensional
gauge transformationg'’. The vacuum manifold in this spin rotations SQ,i,(2) in thexy plane, in addition to the
phase is isomorphic to §3). In phase Il the superconduct- orbital SQ,,;(2). Theadditional derivative term does not
ing U(1) symmetry is also broken, however the spin rotationrespect this symmetry. We assume its coefficient to be small
SQ,pin(3) is only partially broken down to its SO(2) sub- and thus avoid severe complications of considering noncy-
group. There is an additional unbroken discrete symmetr¥indrically symmetric vortices created by such a term. lIts
that consists of a simultaneous change of the gauge phase Bfluence has been thoroughly studied in the context of
w and change of the sign far. The vacuum manifold in  heavy-fermion superconduct8rand in the present context
phase Il is therefore isomorphic &®U(1)/Z,. From Egs. can be considered later perturbatively, similar to the recent
(4) and (5) it is seen that stability of phases is achieved fortreatment of the anisotropit-wave situatiort*

B1>0 in phase | and foB;+ B,>0 in phase Il. Energy Using the parametrization of E@2) allows us to make
densities of the condensate are-— a?2B8; and several interesting observations. We see ®atf?sin 2¢n
— a?/2(B,+ B,) correspondingly. X m=f?sin 2¢l. In phase | the projection of the spin of a
Gibbs free-energy density in the presence of electromagcooper pairS on the quantization axis determined by the
netic interactions is vectorl is equal to either-1 or — 1, reflecting spontaneous
time-reversal symmetry breaking. In phase Il this projection
) is equal to 0.
FeF +F 4F. . _ BiHi  HP ©6) The gradient and magnetic parts of the free-energy den-
pot™ Tgrad T tmagn g4 T g’ sity take form
2 2

Fgrad=ﬁ—(aif)2+ ﬁ—fz[(ai #)2+coLp(a,n) 2+ sirp(9;m)?
2m* 2m*

2e* ( . ndim—md;n e*)z 2
— 5o Al (nm) g+ sin %T)‘F(E A7, (7)

1 .
Fmagn=8—7732—“f25m 2¢1B, (8)
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B, in units of H.;

0.5 1. 1.5
H, in units of Ha

FIG. 2. Magnetic fieldB as a function of external magnetic fiettl for «=10 and different values of Zeeman coupligg

from which the following equation for the fiel& can be values:i=1,2. This, in general, by no means precludesr
obtained: m to be oriented out of the 1-2 plane.
Two standard approaches are used in the following sec-
tions. The first(Sec. Il) is for almost isolated vortices when

*h i ngim—mag;n e* distance between them=y®,/B is larger than the mag-
2
m*cf (nm) ¢+ sin 2¢ > ~Heh netic penetration length (region 1 ofH-T diagram in Fig.

2). Here an analytic solution for an isolated vortex in the
) London approximation is used to show that a spontaneous
=<EVX(VXA)—MVXU sin 2¢|)>_- (9 vortex state can appear and to construct the magnetization
' curve. Then(Sec. IV) the opposite limit in which the super-
conductivity is very weak, i.ef<1, allows linearization of
the equations and can also be soleegion 3 in Fig. 1.
Finally in Sec. V, a more complicated, but more important,
intermediate regime is consideré@gion 2 in Fig. ). Here
different approximations and numerical methods are neces-

The “supercurrent” Eq(9) shows that superconducting ve-
locity is given(in units of #/m*) by nd;m in phase I, while

it is d; ¢ in phase Il. Next we deduce, after integration along
a closed contour, that the flux is quantized in unitsdgf
=hc/e* (for definiteness we assume theit>0). At this sar
point it is convenient to introduce magnetic penetration Y:
depth\ = (c/e* fy) ym* /47, wheref, should be taken from

Eq. (4) for phase | or from Eq(5) for phase Il, and also ;| oNpON APPROXIMATION: DISAPPEARANCE

cqherence length £é=7#/2am* and dimensionless OF MEISSNER PHASE
Ginsburg-LandaGL) parameter=N\/£.
The equation for the order-parameter fighdreads The London approximation assumes that the vacuum has
the form that is determined by the homogeneous part of the
— i+ By ‘ﬁ)‘/’i’LﬁZWi l//j)lﬁi* free energy(3) almost everywhere except in some singular

points. The approximation is applicable mainly in the case of

the large GL parametet. In the presence of singularities, a
(10) vacuum state can gradually vary into another such s$saile

belonging the vacuum manifold defined eajliand in this

way a vortex is formed. The structure of the vortex core is
It is very bulky to be presented here in the parametrization obutside of range of validity of this approach and will be
Eq. (2). investigated in Sec. V.

Being interested in the magnetic properties of-aave To derive the London equations we take the general vec-
superconductor that arise because of direct Cooper-pair sptor equation for the superconducting current, £®), and
coupling to magnetic field, in the following sections we will substitutess in the form given by Eq(4). This leads to
concentrate on phase | only. Phase Il is quite similar to usual
s-wave superconductors in a sense that the condensate does

2

2m* Djzlﬂl + | Msijkwj Bk: 0.

not carry spin. e*h , e* 1 )
Equations(9) and(10) are difficult to solve analytically in fol ndim— 2= Ai | =| 7 VX(VXA) = ufgVXI |,
the general case and we therefore have to resort to approxi- ('11)

mations. We will consider situations that possess transla-
tional symmetry along axis, the direction of the magnetic
field, and from now on spatial inde will take only two ~ wheref3=a/g;.
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To find the single-vortex solution, we impose, as usualthe most unusual situation in which the ground state of a
cylindrical symmetry and require appropriate behavior as superconductor at zero magnetic field spontaneously be-

—, namely, = (e +ig)explve), or comes inhomogeneous. Another situation of inhomogeneous
_ ground state in the superconducting phase with spontane-
n=gcosve+egsinuve, ously broken time-reversal symmetry was considered in con-
) nection to heavy-fermion systems by Palungial.'® while
m=—g&sinve+e,Ccosve, inhomogeneous ground states of a superconductor described

wheree is azimuthal angle and integerstands for vorticity. ~ PY @ one-component order parameter in the presence of an
I=nxm always points upwards in the direction of external €Xtemal magnetic field were extensively studied by Vos

magnetic field so as to minimize the Zeeman term in thett &

energy(8). This yields the equation for azimuthal component Peculiarity of the London approximation in our case re-
of the vector potentiaR(r): sults in the interesting fact that vortex interaction does not

change at all as compared to the ussaave cas® up to

he* v e 1 A A the values of external field where this approximation ceases
) " . . .

—fo(—— —A|l+—| A+ —— —2) =0. (120 to be valid. To show this we consider the free energy of

m*c \I hC 4m ror collection of vortices separated by distances much larger

) . . than vortex core size. Additional contribution comes from
We observe that this equation that governs the behavior qf,o term — uL [ SBd?x=— uL [f2Bd?x. It is equal to the

a vortex in thep-wave superconductor is essential_ly th_e sam&qial flux through the sample since, within the London ap-
as that for ars-wave superconductor. The solution is well qimation, the vortex core’s contribution to the integral is

known to be ignored. Flux is an additive function of the number of vorti-
vy [\ r ces and thus the_above term does not influence the interac-
Ar)=—|—— Kl(_) } tion between vortices.
2mN [T A As a straightforward consequence of such a lack of the
Multiple vortices are unstable and we thereforewsetL . interaction renormalization, we can get tBeH curve of the

Let us now estimate the line tension of the vortgxin ~ Vortex structure considered in weak fieBls @ o/4m\? from

the present case. Although E32) does not reflect the pres- that of thg usual vortex structure simply by shifting the or-
ence of Zeeman coupling #S,B; of the spin to the mag- dinate axis on theB-H _pIot to the right by some amount
netic field at all, the free energy does depend, of course, oRroportional tou (see Fig. 2 A standard calculatidfi sum-

w. Thus, the energetics changes considerably as compared®ng Upz nearest neighbors €6 for triangular latticg in-
the swave vortex. Providegk>0, the Zeeman term makes teractions and neglecting contributions of the cores gives
an additional negative “bulk” contributiorz; to the usual 2 s

value of vortex line tensiog, .> Summing up the two, one B= 2%, |n4m‘ [H—H (g)]}

obtains NE) G L ot '

In the caseg>g., the line, as expected, crosses Be 0

axis. This means that the Meissner phase completely disap-
where the notatior: = (®/4m\)? was used and a conve- pears and the spontaneous vortex state is formed infsead
nient dimensionless parameter was introduced by last Figs. Ab) and Xc)]. The spontaneously created field, the
equality. Since the relation remanence, is

8V58L+82%80|n K_M(Dofg:&‘o(ln K_g), (13)

-2

17)

e*h 2(1)0{ g—In «
Mm In

= 14 B =
2m*Cg ( ) r \/5)\2 3

holds, g can also be viewed as an effective Lande factor.This field rather therH; has a physical meaning under

However, in the present context, it is just a phenomenologipresent circumstances. Now we turn to the opposite limit of

cal parameter, in the Spirit of the Ginzburg_Landau approachs_ituations in which the order parameter is small Compared to
From Eq.(13) we see that lower critical field becomes its vacuum value.

renormalized and diminishes:

IV. TRANSITION TO NORMAL STATE:

D, ABSENCE OF H, FOR T<T,

4m\?

Hei(9)= (In k—g). (15

The presence of strong Zeeman coupling should signifi-
. o ] ] cantly modify also the transition to the normal state. When
Linear dependence of the lower critical field 9iin Eq.(15)  the order parameter becomes small, the quartic terms in the
comcl|2des_W|th co_nclu3|ons of earlier work by Tokuyasu free-energy equationd) and(6) are negligible compared to
et al™* Ultimately, in the case of the quadratic ones. Simultaneously the magnetization be-
comes small and therefore one can replBcey H in the
linearized equations. If the direction of the magnetic field is

the line tensions, becomes negative and vortices will be X3, the dependence of the order-parameter fielstonas the
created copiously until repulsive interaction between thenform of a plane wave. It is also clear that the equation/fer
overpowers the energy gain due to Zeeman coupling. This idecouples and is the same as the usuahve equation. Its

9=gc1=In «, (16)
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eigenvalues arev,;=H (Ae*/m*c) (1/2+n), wheren is a  traditional swave point of view, is rather natural under
natural number. Dependence ¢f,4, on x;,X, is to be present circumstances. Indeed, from the beginning we as-

found from the following system of equations: sumed the ferromagnetic coupling of the magnetic field to
the condensate that means that the field stimulates formation

2 of Cooper pairs. For the particular pairing considered, pair-

py— (D§+D§)z//i+az//i—i,uHeijdxj:O, (19 ing of p-wave type, the magnetic field is not acting as a

m pair-breaking agent. This by no means indicates that the re-

sistive transition in highly fluctuating material§&inzburg
number not very small occurs atT>T.. As is well
knownZ° the resistive transition is associated with the vortex
dnelting line[dashed line in Figs.(&), 1(b), and Xc)], which
is much lower then the classical line, especially for tempera-
tures close tal;.

At temperatures higher thah, [see Figs. (b) and Xc)]

where D;=d;—i (e*H/2Ac) gjix;, &;; being the antisym-
metric tensor and,i =1,2. This coincides with the nonrela-
tivistic Schralinger equation for a spin 1/2 particle in mag-
netic field. It can be disentangled by changing variables t
Y= xiy, and writing covariant derivative operators via
D.=D,xiD,. The eigenvalues are

* superconductivity appears at some finite field, which can be
a,.=H (1=g+2n), (19 viewed as an analog of conventiorntd}, and is given by the
2m*c same formulg20) with negativea. At fields slightly higher

than this threshold value, magnetization of the sample due to

where definition(14) of g was used. If there are only positive developing superconducting state can be calculated by stan-
eigenvalues for all components of the order parameter, th%

o . ard methodS taking into account nonlinear terms in the
phase transition from a superconducting state to a norm : .
o L equations perturbatively. The result reads
one occurs at the value of an external magnetic field thal

correspond_s to the lowest eigen\_/alue ameng , aps. This (1-g)2 / 2m*ca’ T—T,
argument gives ug;= ¢, =0, while the,_ component de- = > > " 1/
termines the upper critical field 4mBA[2k°—(1—Q) ]\ fie g o)
’ _2m*c « 20 where k= (m*c/he*) B2 and  Ba={((¢iyF)?)!
c2(9)= ror 1-g' (14 )2. Note that the magnetization is positive BT, .

The result(22) is valid in the region 3 on thél-T diagram

If, however, the spectrum started from a negative eigents€€ Fig. 1 and, of course, not in the vicinity of the point
value, then linearization procedure that led us to B  9=9c2=1 itself. Similarly, one can analytically obtain mag-
would have been inconsistent and the quartic terms in th&etization in the case @f<1 andH=<Hg(g), T<T.. Itis
free-energy equatiof) would have to be retained. Physi- again given by the same formu{d2) and it is negative.
cally such a situation means that the phase transition to the The unusual shape of the normal to mixed-state transition
normal state ceases to be of the second ofelezn neglect- line in particular means that far<T, there is noH, at all
ing fluctuations, as we do throughout this wprEither the ~ [Fig. 1(b)]. The vortex density therefore is rising indefinitely
transition becomes of the first order or, more probably, thevith H. How could this happen? It turns out that vortices
vacuum rearranges and the transition disappears altogeth@@come thinner. If one definésquare of coherence length
for any value of magnetic field, no matter how large. Theas a ratio of the coefficient of the derivative term in free
second possibility takes place in our idealized model. energy to that of the quadratic in the order-parameter term, it

To find the transition line, we therefore look for regions would be given by
on theH-T plane where the linearization of GL equation is 2
still consistent and the second-order phase transition to the (T, H)= i _
normal state takes place. Coefficients of the GL equations ’ 2m*[a' (T—T) +uH]
depend on temperature. Let us assume, for simplicity,
the dependence af is linear:a=a'(T,—T), a'>0 [recall
that in our definitionsa is positive in the superconducting
state; see Eqg1) and (4)], while the other coefficients are

(23

th . .

a\t[ follows that for fixed T<T,, the correlation length de-
creases whemd increases. Vortex core size is reduced to
allow more vortices to pass through. We will see in the next

temperature independent. In reality this is true only riar section that even far from the region considered here, vorti-

but necessary modifications for nonlinear behavior can b&®S shrink to minimize the energy loss due to Zeeman cou-
casily accommodated within the same framework ofpI|ng and will find the dependence almost identical to Eq.

. Lo é23). One of the consequences of such behavior is that mag-
Ginzburg-Landau approach. Usually the transition line Startnetization ceases to follow the linear low of E@2) and
at (T.,0) and ends at (Bi,); see solid line in Fig. (g). We

. /. : becomes saturated.
find that the phase transition line starts naturally ,) It is worth noting that the condition for the existence of
and continues to higher fields, but in the case of

superconductivity beyond ., Eq. (21), is weaker than the
9>0er=1 21) condition of the existence of the spontaneous vortex state at
H=0, Eq. (16): gc1=In x>g.,=1. Therefore there exists a
turns to higher temperatures instead of lower dise$id line  possibility that superconductivity in a magnetic field exists
in Figs. 1b) and 1c)]. beyondT. although there is no spontaneous vortex state at
Thus superconductivity at nonzero magnetic field can takéd =0. The phase transition lines in this case are sketched in
place atT>T.. This conclusion, although strange from the Fig. 1(b).
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Having studied two regions of the fields in which analytic netic flux in the units of the elementary fluxan,/27, and
expressions can be obtaingegions 1 and 3 in Fig.)lwe  length in the units of magnetic lengih
now turn to the intermediate regig2 in Fig. 1) in which

different approximations should be made and numerical a? , Qe [ON
methods are required. We also will determine where the bor- F=—0F, f= ,B_f , ASS A
derline between the regions lies. Bk !
(24)
®o
B= b, r=ip.
V. BEYOND THE LONDON APPROXIMATION 27\2

In this section, we first investigate the structure of theTo simplify the notations, tilde marks will be dropped here-
vortex core of an isolated vortex in the presence of Zeemaafter.
coupling. Numerical results confirm the more qualitative For a cylindrically symmetric situation the vortex line en-
conclusions of Sec. lll. Then we present an approximation t@rgy, which is an integral of Eq6) over the wholex-y
the magnetization curve for intermediate fieRi¢region 2in  plane, takes the form
Fig. 1 for which the distance between the vortices is larger

than the vortex size(although smaller than penetration o K2 2o wo o1 2
depth. Since vortices are shrinking when magnetic field SVZSOJ’O pdp 7(1_f oot ;—a
grows, this region covers the entire magnetic field range for
) ! 5
T<T., if g>1 [see Figs. (b) and Xc)]. g - a as ] 25
p p
A. Isolated vortex where the condensation energy was subtracted.

In order to study the vortex core structure we have to C!nzburg-Landau equations take the form
abandon the London approximation within which the fiéld :
is constant away from singular points. Due to cylindrical At E_E) 4 f2 }—a —gff=0;
symmetry of the vortex, the coordinate dependence of vari- P p? p '
ables is restricted to dependence on the distance from the (26)
center of the vortexf(r) andA(r). The vector potential is a 1 2 [
oriented azimuthally. *(f—f3)+gfla+—|—fl——a|] +|—+1|=0,

As in liquid 3He or heavy-fermion superconductors, there p p p

might be various kinds of topologically distinct vortices. The \, ije boundary conditions reafi(0)=a(0)=0, f(s)=1
topological analysis we performed shows that there are soli- ‘alp|,_.=0 ’ ’
p=o Y

tons different from the usual ones considered below. Thé& . o
most interesting one is a Skyrmion of the fig(a) (defini- S_mall p asymptotic beh.a_wor is similar to that of usual
tion of vectorl is given in Sec. l. We will describe them Abrikosov vortex, but modified by the presencegof
elsewhere. We have good reasons to believe that the rather
conventional Abrikosov vortex has lower energy and, since f=cp
we are interested in energetics and neglect fluctuations, we
concentrate on this type of vortex only. Now we consider the (27)
structure of the Abrikosov vortex. B c? 2

With direction ofl|z fixed throughout the volume of the b=b(0)+ 7 (g=1)p"
superconductor, twofold discrete symmetry in the order-
parameter field of phase | is generated. Correspondingly, the Results of numerical integration for the GL parameter
vortex can include two components;(n+im)e'®® and =10 are presented in Fig. 3. The profiles of reduced mag-
~(n—im)e'9®, in the core region. Topological numbeps netic field and order parameter for several valueg aire
andq are not independent however. They satisfy the relatiorshown in Fig. 8a). Our main observation is that the mag-
g=p-+ 2, due to definite transformation properties of the sysnetic field inside the vortex core is affected drastically, but
tem as a whole under global rotations. As a result, in the caseft almost unchanged outside the core. Changes in the be-
of g>0, the presence of both components in the vortex coréavior of f for differentg are less apparent on this scale: the
is obviously energetically unfavorable with respect to thecurves are almost indistinguishable. The order parameter
Zeeman term in Eq6). For a detailed analysis, see Ref. 8. rises linearly and reaches its asymptotic value on the scale of
In addition, there is a possibility of still more complicated coherence length.
core structure in which both phases, | anfsike Eqs(4) and Detailed profiles of the magnetic field inside the core are
(5)], are present inside the core. It was shown in slightlygiven in Fig. 3b). As g grows, the behavior of magnetic
different context! that, at least for larg@,, this situation is  field qualitatively changes. Fay exceeding the critical value
not realized. of 1, see EQq(27), b first rises and only then exponentially

To consider the single-vortex problem, we introduce di-falls off instead of the usual monotonic decrease from the
mensionless variables. Energy density is measured in units d&deginning. This is the response to the Zeeman interaction,
a?l B1k%=go/2m\?. The absolute value of the order param- which induces supercurrents proportional to the gradient of
eter  is given in units of its saturation valuge/3,, mag- the square of the order parameter modulus; seg®q.

p?
1-[«*+(g+1)b(0)] g
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&

g, vortex line tension in units of

0 N 1 N 1 N N 1

g, Zeeman coupling strength

2 T ] FIG. 4. Vortex line tensiory, as a function of Zeeman coupling
:\1 ] strengthg for different values of GL parametex.
225
o 2 ] . . . .
2.00 ] Energy of the vortex is almost a linear functiongflt is
L 3 ] ] given for several values of in Fig. 4. It becomes negative at
175 L ] someg,;. This critical value ofg as a function ok is shown
b ; ] in Fig. 5. The highx estimation equatioll6), g.;=In «, is
1807 ] also shown for comparison.
125 |
5 S~ ] B. Vortex lattice
1.00 ~

. Having studied the two extreme cases of isolated vortices
0.750_; Y Y T Y R Y 05 (region 1 in Fig. 1 and that of overlapping vortices, where
intervortex distancea is about¢ (region 3 in Fig. 1, we now
(b) r/A turn to the interesting intermediate region in betwegra
1,006 <\ (region 2 in Fig. 1. Beyond the London approximation
[ of Sec. lll, interaction between vortices is no longer indepen-
) [ /] dent of the Zeeman coupling. One expects the core size to be
.004 . . .
! affected by magnetic field and the coupling paramgtesee
[ / Eqg. (23), which in turn modifies the interaction energy. Let
1.002 |
Y/
1.000

5

" us introduce core size,=p.\ and assume, for simplicity,
5
%

1

\§ the steplike behavior of. Then the Gibbs free-energy den-
m— sity, using dimensionless variablé®4), reads

3 1 1
! G=b?—b In\ynp?b+ szpgb—zbh—gm Egp'sz‘.
; (28)
0.996 Lan
0.0 0.5 1.0 15 2.0 25 3.0 3.5 4.0
(© r/A

The first two terms represent the usual interaction energy

FIG. 3. Vortex structure fok=10 and different values of Zee- and the vortex energy excluding the Zeeman coupling part. It
man couplingg=0(1), 0.5(2), 1(3),1.254), 1.5(5): (a) Large- IS obtained by the standard method of summing up all the
scale magnetic field and order-parameter variatishsMagnetic ~ Interactions using transition to the reciprocal lattice space;

field in the corej(c) Order-parameter profile close to its saturation See Ref. 18. Then the summation in the reciprocal lattice
value. space is replaced by the largest term at the origin plus the

integral over a disk starting at/a and terminating atr/r .

The way the order parameter approaches its asymptoti€he third term is the energy lost in the core due to melting of
value differs markedly from the conventional monotonic in-the condensatéwhich turns out to be rather insignificant
creasdsee Fig. &)]. It rises linearly, but then surpasses the The fourth term is due to external magnetic field. The last
far asymptotic value of 1 and finally approaches it fromtwo terms represent the Zeeman-coupling contribution and
above. It is worth noting thaft becomes greater than 1 out- are important. They summarize the gain due to the ferromag-
side the core for any nonzero value @f no matter how netism of Cooper pairs. It can be thought of as the homoge-
small. The maximum value of the order parameter increaseseous effectthe fifth term) minus the ferromagnetic energy
with « and may become experimentally detectablexat loss in cores due to vanishing of magnetic moment tkines
=100. sixth term). Coefficients is an unknown quantity of order 1
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Zeeman coupling strength

g

10 20 30 40 50
k, GL parameter

FIG. 5. Critical value of Zeeman coupling strengthy at which spontaneous vortex state develops as a function of GL parareter

that reflects the estimated character of our calculation in thiphysical units. This, in particular, means that fpr1, re-
subsection. It is used later for joining together the two physi-gion 3, wherea~¢&, never extends to temperatures lower

cally distinct regions 2 and 3. thanT,.
The value ofp. is found from the conditiodG/dp.=0 The magnetization curve is found from minimization®f
that gives with respect tdb. It leads to
\ /—2 (29) 1 2b g b 1
Pe™ 2 ' h=b——|n———(1——)——ln .
K“+2gb 4" ?+2gb 2 k’+2gb) 4 g
Equation(29) shows that as magnetic field increases the core (30

shrinks and is similar to Eq23) that we derived in region 3

where there is suppressed superconductivity. The shrinkingarametery can now be determined from the physically
of cores makes room for more vortices to squeeze in antransparent requirement that the expressions for magnetiza-
allows internal magnetic field to increase wheh increases tion (22) and (30) obtained in the regions 3 and 2 corre-
(of course, when the core becomes of microscopic size thepondingly have to coincide dt=b,;. In case ofg<<g.,
whole approach ceases to be applicabfd the same time =1 these regions correspond to regions of an external field
Eq. (29) makes it possible to obtain the boundary value ofwith high and intermediate flux denstfyinside the super-
internal magnetic fieldb,5, below which the approximation conducting sampl&’ We plot the magnetizatiom in region
used in the present subsection is valid. The vortices should as a function oh for =20 and several values gfin Fig.

be well separated in region 2 and we therefore requiré. As g increases the value ¢i.,(g) also increases and at
pcbos=1 and findby=«?/2(1—g), or Bys=H,(9)/2 in  g=g.,=1 it should become infinitésee Sec. I, At larger

in units of Hq

4p M,

1 N N N 1
1. 2.
H, in units of He

FIG. 6. MagnetizatiorM of a vortex lattice as a function of external magnetic fieldn the region 2.«=30 andg=0(1), 0.2(2),
0.4(3),0.6(4),0.8(5), 1(6),1.2(7),1.4(8).
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g, asH grows, magnetization approaches a positive saturaplaced by a more realistic one away frdrg. Similarly, the
tion value, which at high« can be estimated as region of very large fields in which the vortex core becomes
of microscopic size is beyond the reach of the macroscopic
14 i Ginzburg-Landau approach.
Ba An additional issue is the value of the coefficigdy of
the additional term in the free energ$). It might have a
For g larger than critical valueg.; the remanence eak temperature dependence and can even change sign at
b,=b(h=0) exists and it is determined implicitly by Eq. certain temperature. Then the Zeeman-coupling effects de-
(30). scribed here will disappear and usual diamagnetic supercon-
ducting behavior sets in. Whether the resistivity results of
VI. SUMMARY AND DISCUSSION Ref. 3 can be understood that way is not clear to us pres-

In thi the formation of spont tex phase if -
n this paper he formation of Spontaneous vortex phase in Finally, we would like to emphasize that although the

type-ll superconductors with-wave pairing was studied us- ovel superconducting system,8Ru, - ,Cu, 0,3 that moti-

ing the Ginzburg-Landau approach. Due to direct coupling o ated the present research, has low orthorhombic symmetry

the Cooper pair's spin to magnetic field, in certain Case§3bnm a realization of the physical situation proposed by us

condensate acquires ferromagnetic properties. There A€ in principle possible, that is, nonunitary superconducting
three cases depending on the strength of the effective Ze%’hases exist for this crystal symmetry. A weak spin-orbit

man _couplmg,_ measured by_ dlmenglon_less paramgter coupling scheme obviously permits nonunitary phases. So
First, 'fg<g°2_1' the phase diagram IS S'_m'lar to the usualactually does a strong spin-orbit coupling scheme, though
one [Fig. 3], althoughH., grows unlimitedly asg aP-  this is less apparent due to the fact that irreducible represen-
proaches 1. Second, wheR,<g<gq=In «, at magnetic tations of the point grou®,,, of the crystal in question are

field a mixed state can exist even beyo_iﬁg: the direct all one dimensional. Nonunitary phases would correspond in
coupling to magnetic field facilitates creation of the COOperthis case to irreducible representations of the whole space

pairs along with the usual destruction of the condendzitp group Pbnmwith k#0 that are two dimension&?.One of

1r§.b)]' Wh'rl]e ﬁT<T°’ 'II:LCZ dls?ppears. YOFUCGS 'beco]rcn(la our main conclusions about the existence of a spontaneous
r lnn.erhw eg grows. ef_vor_ex core s rrcturel_ls asl O vortex state for sufficiently strong Zeeman coupling remains
ows: the order parameter first increases almost linearly 10 g,y ot |east as far as symmetrical crystalline directions for

value slightly ?‘bo"e Its asymptopc \_/alue. anc_j then gradu.a".ymagnetic field are concerned. On the other hand, an estimate
decreases to it. Internal magnetic field first increases withi

. Ror the value of Zeeman coupling would vary considerably
the core before eventual exponential decrease at penetratioh. Jitferent choices of a microscopic model. Such estima-
depth distance. Third, wheg>g.;, the Meissner phase '

letely di . i h h tions are beyond the scope of our phenomenological ap-
completely disappeafig. 1(c)]. Be OwWT, the vortex phase proach. It is worth noting that Zeeman coupling is believed
appears spontaneously Bt=0, and exists for arbitrarily

L . . to be very small in URt in connection with which it was

large external magnetic field for which the GL macroscopic st considered by Tokuyaset all2

approlach IS applllc(:able. | h | Experimentally, the distinct vortex core structure could be
Below we make several comments on the results pregeqn, using scanning tunneling microscopy technique for high

sented in previous sections. First, there is the strange d're%llue of k. Every spot should be surrounded by a ring. It is

tion of the superconductor-normal phase transition line. OUbehans more difficult to see the decrease of magnetic field at
mean field trea.tment completely neglects fluctuations. | he vortex core using electron tomography or Bitter tech-
strongly fluctuating superconductof§inzburg number not nique

very smal) to which highT. cuprates, especially Ba-Ca-Sr-
Cu-O compounds and similarly layered compounds with Gi
~0.1, and presumably the Ru-based compounds studied in
Ref. 3, belong, the line where the order parameter vanishes
ceases to describe actual phase transition. Instead, a muchWe are grateful to Professor W. Y. Guan and Professor
lower vortex lattice melting line appears. Vortex liquid is not M. K. Wu for discussions and sharing data prior to publica-
a superconductor, as far as conductivity properties are corion and to Professor A. V. Balatsky, Professor H. L. Huang,
cerned. Broad resistive transition in,8Ru, _,Cu,0Og is pre-  Professor R. Joynt, Professor T. K. Lee, Professor T. K. Ng,
sumably associated with meltiffg(see dashed line in Fig. and Professor F. C. Zhang for comments. The work was
1). supported by National Science Council, Republic of China,
Second, disorder can further restrict the vortex lattice rethrough Contract No. NSC87-2811-E002-0002K.) and

gion, and third, the formx(T)=a’ (T—T,.) should be re- No. NSC86-2112-M009-0341B.R.).
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