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Spontaneous vortex state and ferromagnetic behavior of type-IIp-wave superconductors
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The mixed phase in type-II superconductors with equal spinp-wave pairing is considered using the
Ginzburg-Landau approach. Due to direct spin coupling of the condensate to magnetic field the mixed state
acquires ferromagnetic properties. For sufficiently large Zeeman coupling a spontaneous vortex phase appears
at H50 and exists and for an arbitrarily large magnetic field. The Meissner phase therefore completely
disappears. Vortices become thinner whenH grows. There exists a value of Zeeman coupling above which, in
the presence of external magnetic field, a mixed phase might occur even for temperatures aboveTc . The
structure of the vortex core is markedly different from the usual one.@S0163-1829~98!06137-2#
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I. INTRODUCTION

In the majority of conventional low-Tc superconductors
pairing occurs in thes channel. In this case the Cooper pa
does not have total spin and an external magnetic field in
ences superconductors via coupling to orbital motion of
pairs only. Although high-Tc cuprites are most probablyd-
wave superconductors, direct magnetic coupling to the s
of the Cooper pair should be still insignificant.1 The situation
might be different in certain cases ofp-wave paring. The
magnetic field violates time-reversal invariance and is an
tremely effective pair breaker fors-, d-, and certainp-wave
states,2 but it does not break pairs with parallel spins of co
stituent fermions.

The p-wave pairing is suspected to occur in a recen
discovered new class of Ru-based superconduc
Sr2YRu12xCuxO6.3 At the same temperature of about 60
at which superconductivity sets in, these materials begin
exhibit basic ferromagnetic properties like hysteresis lo
Experimental observation of a positive remanence sugg
the existence of spontaneous magnetization in the absen
an external magnetic field. Various conventional sources
ferromagnetism, independent from but coexisting w
superconductivity,4,5 cannot be ruled out. However, exa
overlap of superconductivity and ferromagnetism natura
suggests that in these particular materials Cooper pairs m
in fact be magnetic moments and that they themselves
responsible, at least partially, for overcoming the usual d
magnetic response of the superconductor. Of course, in p
ciple, the critical temperatures of transition to ferromagne
and superconducting states can simply accidentally coinc
but the ‘‘same-mechanism’’ scenario is nevertheless wo
taking a look at.

In this paper we explore in some detail this possibility
the case of type-II superconductors using the phenome
logical Ginzburg-Landau~GL! approach. Superconducto
obtained by Wu and collaborators3 are believed to be of type
II, similar to high-Tc copper oxides, although at present th
unusual magnetic properties introduce ambiguities in s
PRB 580163-1829/98/58~14!/9354~11!/$15.00
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dard direct methods of measurement of coherence length
penetration depth. Our study turned out to be interesting
its own right ~even with no direct relation to the above e
periment!, since the vortex-matter physics happens to
quite nonstandard. The same GL equations might desc
other physical systems. Microscopic derivation of GL equ
tions for p-wave pairing has been recently performed by X
et al.6 in connection to Sr2RuO4.

Within the framework of the phenomenological G
theory nonzero spin of the Cooper pair is taken into acco
by introducing an order parameter of the vector type. It
directly coupled to an internal magnetic field through
Zeeman-like term in the free energy. An external magne
field penetrates a type-II superconductor via creation of v
tices in the bulk of the sample. Formation of each vortex
accompanied by both the energy loss due to vortex line
mation, and the energy gain due to the energy of the p
etrating field itself. Now, however, it is also accompanied
an additional energy gain due to direct interaction of t
penetrating field with the spin of the condensate. If this
teraction is sufficiently strong, the total line energy of a vo
tex can become negative and consequently instability de
ops. The usual hexagonal lattice vortex structure will fo
even for the system at zero external magnetic field. This s
can be characterized as a spontaneous vortex state.7 At the
same time there appears a ferromagnetic moment of the
perconductor associated with the bulk of the condensate
prevails over the conventional diamagnetic moment due
screening by supercurrents.

In Sec. II we formulate the model and investigate its ma
features. As in heavy-fermion systems,8 there are two quartic
terms in the GL free energy and there exist two qualitativ
different superconducting states. One has rather conventi
magnetic behavior and we concentrate on the more inter
ing state allowing ferromagnetism. Different types ofH-T
phase diagrams are possible for different strengths of Z
man coupling. Anticipating the derivation, we present t
diagrams in Fig. 1. When the direct spin coupling increas
the magnetic behavior of the superconductor changes
9354 © 1998 The American Physical Society
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matically: from essentially diamagnetic, even perfectly d
magnetic in the Meissner phase@Fig. 1~a!#, to essentially
ferromagnetic@Fig. 1~c!#. At nonzero magnetic field a mixe
state can exist even beyondTc because Zeeman couplin
facilitates creation of the Cooper pairs along with the us
destruction of the condensate@Figs. 1~b! and 1~c!#. For large,
but still of a quite realistic order of magnitude of the co
pling, the Meissner phase disappears completely@Fig. 1~c!#.
Below Tc , a spontaneous vortex phase appears atH50 and
exists for an arbitrarily large magnetic field.

In Sec. III the model is studied using a London appro
mation. Transition to the normal state is studied in Sec.
In Sec. V we find the single-vortex solution numerically. T
vortex core structure is quite different from that of an us
Abrikosov vortex in thes-wave superconductors. The pha
diagram and the magnetization curve are also qualitativ
calculated and discussed beyond London approximat
Vortices become thinner whenH grows making room for

FIG. 1. Phase diagrams of equal spinp-wave superconducto
with different strength of Zeeman couplingg: ~a! g,gc2, ~b! gc2

,g,gc1 , ~c! g.gc1. The solid lines present lines of transition
the Meissner state and the normal state. The dashed line is v
lattice melting line~not calculated in the present paper!. Dotted
lines are boundaries of validity of different approximations used
-
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more vortices to squeeze in. Conclusions and some gene
zations are discussed in Sec. VI.

II. GENERAL PHENOMENOLOGICAL FORMULATION

Within the general framework of the Ginzburg-Landa
approach in unconventional superconductors,9 the p-wave
pairing in an isotropic material is described by the ord
parameterc i that has three complex components:i 51,2,3.
In the absence of magnetic field the free-energy density

F5
\2

2m*
~] jc i !~] jc i !* 1Fpot ,

~1!

Fpot52ac ic i* 1
b1

2
~c ic i* !21

b2

2
uc ic i u2.

It has the following independent symmetries. The spin ro
tions, forming group SOspin(3) act on the index of the order
parameter field, so that it transforms as a vector. Thr
dimensional ~orbital! space rotations forming differen
SOorbit(3) group, act on spatial coordinates and the elect
charge transformations, forming the U(1) group, rotate
complex phase of the order parameter. Note two indepen
quartic terms. This is similar to that of heavy fermion
~where order parameter usually has two components! or liq-
uid 3He for which the order parameter is more complicate
The vacuum structure can be studied using methods de
oped in these fields.8,10

This free energy has been already considered by Burla
kov and Kopnin in connection withp-wave organic
superconductors.11 It is not, strictly speaking, the most gen
eral possible free energy for thep wave. Recently, an attemp
has been made to derive the GL energy from reason
microscopical models describing Sr2RuO4.6 In principle, for
strong spin-orbit coupling there is no separate spin rota
symmetry, just overall rotations. In this case one can add
additional two terms even for an isotropic superconducto13

It is sufficient, however, for the purposes of the present pa
to consider free-energy~1! even not assuming weak spin
orbit coupling. Our results essentially depend only on
existence of Zeeman coupling in GL-free energy expans
The Zeeman-like term that will be introduced below@see Eq.
~6!# is also allowed by the symmetry considerations in t
case of strong spin-orbit coupling as well as for weak bre
ing of full rotational symmetry by the crystal field. It is onl
necessary to have a nonunitary~broken time-reversal sym
metry! superconducting phase with an order parameter
has at least two components. This generalization can be
ily made.

We use the following convenient parametrization of t
order parameter:

c5 f ~n cosf1 im sin f!, ~2!

tex
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where f .0, n and m are arbitrary unit vectors and 0<f
<p/2. Using this parametrization the homogeneous par
the free-energy density takes the form

Fpot52a f 21
b1

2
f 41

b2

2
f 4~cos22f1~mn!2sin22f!,

~3!

which can be easily minimized to give the two phases.
phase I,b2.0,

c5 f
n1 im

A2
, n'm,f5p/4, f 25

a

b1
, ~4!

while in phase II,b2,0, various vacua are given by

c5 f eifn, n56m; f 25
a

b11b2
. ~5!

In phase I both the spin-rotation SOspin(3) symmetry and
the superconducting phase U(1) symmetry are broken, b
diagonal subgroup U(1) survives. It consists of rotations
angleu around the axisn3m[ l that are accompanied b
gauge transformationseiu. The vacuum manifold in this
phase is isomorphic to SO(3). In phase II the superconduc
ing U(1) symmetry is also broken, however the spin rotat
SOspin(3) is only partially broken down to its SO(2) sub
group. There is an additional unbroken discrete symme
that consists of a simultaneous change of the gauge phas
p and change of the sign forn. The vacuum manifold in
phase II is therefore isomorphic toS2^ U(1)/Z2. From Eqs.
~4! and ~5! it is seen that stability of phases is achieved
b1.0 in phase I and forb11b2.0 in phase II. Energy
densities of the condensate are2 a2/2b1 and
2 a2/2(b11b2) correspondingly.

Gibbs free-energy density in the presence of electrom
netic interactions is

F5Fpot1Fgrad1Fmagn2
BiHi

4p
1

Hi
2

8p
, ~6!
f

n

t a
y

n

ry
by

r

g-

Fgrad5
\2

2m*
~Djc i !~Djc i !* ,

Fmagn5
Bi

2

8p
2mSiBi ,

whereDi[] i2 i (e* /c\)Ai , rot A5B. The second term in
Fmagn is the direct magnetic coupling to spinSi

[2 i« i jkc j* ck carried by the order-parameter field. O
course, due to this Zeeman-like term~even in the absence o
external magnetic field!, separate spin- and orbital-rotatio
symmetry groups are broken down to an overall rotat
group: SOspin^ SOorbit→SOrot . In principle, one more in-
dependent gradient invariant is possible:8

~Djc i !~Dic j !* 1~Dic i !~Djc j !* .

We will not introduce it and instead assume a larger symm
try even in the presence of external magnetic field. It is
sumed that an external magnetic field is always orien
along the third (z) direction: H15H250. In this case the
free energy, Eq.~6! is still invariant under two-dimensiona
spin rotations SOspin(2) in thexy plane, in addition to the
orbital SOorbit(2). Theadditional derivative term does no
respect this symmetry. We assume its coefficient to be sm
and thus avoid severe complications of considering non
lindrically symmetric vortices created by such a term.
influence has been thoroughly studied in the context
heavy-fermion superconductors8 and in the present contex
can be considered later perturbatively, similar to the rec
treatment of the anisotropicd-wave situation.14

Using the parametrization of Eq.~2! allows us to make
several interesting observations. We see thatS5 f 2sin 2fn
3m[ f 2sin 2f l. In phase I the projection of the spin of
Cooper pairS on the quantization axis determined by th
vector l is equal to either11 or 21, reflecting spontaneou
time-reversal symmetry breaking. In phase II this project
is equal to 0.

The gradient and magnetic parts of the free-energy d
sity take form
Fgrad5
\2

2m*
~] i f !21

\2

2m*
f 2F ~] if!21cos2f~] in!21sin2f~] im!2

2
2e*

\c
Ai S ~nm!] if1sin 2f

n] im2m] in

2 D1S e*

\cD 2

Ai
2G , ~7!

Fmagn5
1

8p
B22m f 2sin 2f lB, ~8!
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FIG. 2. Magnetic fieldB as a function of external magnetic fieldH for k510 and different values of Zeeman couplingg.
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from which the following equation for the fieldA can be
obtained:

e* \

m* c
f 2S ~nm!] if1sin 2f

n] im2m] in

2
2

e*

\c
Ai D

5S 1

4p
¹3~¹3A!2m¹3~ f 2sin 2f l! D

i

. ~9!

The ‘‘supercurrent’’ Eq.~9! shows that superconducting ve
locity is given~in units of \/m* ) by n] im in phase I, while
it is ] if in phase II. Next we deduce, after integration alo
a closed contour, that the flux is quantized in units ofF0
[hc/e* ~for definiteness we assume thate* .0). At this
point it is convenient to introduce magnetic penetrat
depthl[ (c/e* f 0)Am* /4p, wheref 0 should be taken from
Eq. ~4! for phase I or from Eq.~5! for phase II, and also
coherence length j[\/A2am* and dimensionless
Ginsburg-Landau~GL! parameterk[l/j.

The equation for the order-parameter fieldc reads

2ac i1b1~c jc j* !c i1b2~c jc j !c i*

2
\2

2m*
Dj

2c i1 im« i jkc jBk50. ~10!

It is very bulky to be presented here in the parametrization
Eq. ~2!.

Being interested in the magnetic properties of ap-wave
superconductor that arise because of direct Cooper-pair
coupling to magnetic field, in the following sections we w
concentrate on phase I only. Phase II is quite similar to us
s-wave superconductors in a sense that the condensate
not carry spin.

Equations~9! and~10! are difficult to solve analytically in
the general case and we therefore have to resort to app
mations. We will consider situations that possess tran
tional symmetry alongz axis, the direction of the magneti
field, and from now on spatial indexi will take only two
f

in

al
oes

xi-
a-

values:i 51,2. This, in general, by no means precludesn or
m to be oriented out of the 1-2 plane.

Two standard approaches are used in the following s
tions. The first~Sec. III! is for almost isolated vortices whe
distance between thema5AF0 /B is larger than the mag
netic penetration lengthl ~region 1 ofH-T diagram in Fig.
2!. Here an analytic solution for an isolated vortex in t
London approximation is used to show that a spontane
vortex state can appear and to construct the magnetiza
curve. Then~Sec. IV! the opposite limit in which the super
conductivity is very weak, i.e.,f !1, allows linearization of
the equations and can also be solved~region 3 in Fig. 1!.
Finally in Sec. V, a more complicated, but more importa
intermediate regime is considered~region 2 in Fig. 1!. Here
different approximations and numerical methods are nec
sary.

III. LONDON APPROXIMATION: DISAPPEARANCE
OF MEISSNER PHASE

The London approximation assumes that the vacuum
the form that is determined by the homogeneous part of
free energy~3! almost everywhere except in some singu
points. The approximation is applicable mainly in the case
the large GL parameterk. In the presence of singularities,
vacuum state can gradually vary into another such state~still
belonging the vacuum manifold defined earlier! and in this
way a vortex is formed. The structure of the vortex core
outside of range of validity of this approach and will b
investigated in Sec. V.

To derive the London equations we take the general v
tor equation for the superconducting current, Eq.~9!, and
substitutec in the form given by Eq.~4!. This leads to

e* \

m* c
f 0

2S n] im2
e*

\c
Ai D5S 1

4p
¹3~¹3A!2m f 0

2¹3 lD
i

,

~11!

where f 0
25a/b1.
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To find the single-vortex solution, we impose, as usu
cylindrical symmetry and require appropriate behavior ar
→`, namely,c5(ex1 iey)exp(ivw), or

n5excosvw1eysin vw,

m52exsin vw1eycosvw,

wherew is azimuthal angle and integerv stands for vorticity.
l[n3m always points upwards in the direction of extern
magnetic field so as to minimize the Zeeman term in
energy~8!. This yields the equation for azimuthal compone
of the vector potentialA(r ):

\e*

m* c
f 0

2S v
r

2
e*

\c
AD1

1

4pS Ä1
Ȧ

r
2

A

r 2D 50. ~12!

We observe that this equation that governs the behavio
a vortex in thep-wave superconductor is essentially the sa
as that for ans-wave superconductor. The solution is we
known to be

A~r !5
vF0

2pl Flr 2K1S r

l D G .
Multiple vortices are unstable and we therefore setv51.

Let us now estimate the line tension of the vortex«V in
the present case. Although Eq.~12! does not reflect the pres
ence of Zeeman coupling2mSiBi of the spin to the mag-
netic field at all, the free energy does depend, of course
m. Thus, the energetics changes considerably as compar
the s-wave vortex. Providedm.0, the Zeeman term make
an additional negative ‘‘bulk’’ contribution«Z to the usual
value of vortex line tension«L .15 Summing up the two, one
obtains

«V[«L1«Z'«0ln k2mF0f 0
25«0~ ln k2g!, ~13!

where the notation«05(F0/4pl)2 was used and a conve
nient dimensionless parameterg was introduced by las
equality. Since the relation

m5
e* \

2m* c
g ~14!

holds, g can also be viewed as an effective Lande fact
However, in the present context, it is just a phenomenolo
cal parameter, in the spirit of the Ginzburg-Landau approa

From Eq. ~13! we see that lower critical field become
renormalized and diminishes:

Hc1~g!5
F0

4pl2
~ ln k2g!. ~15!

Linear dependence of the lower critical field ong in Eq. ~15!
coincides with conclusions of earlier work by Tokuya
et al.12 Ultimately, in the case of

g>gc15 ln k, ~16!

the line tension«V becomes negative and vortices will b
created copiously until repulsive interaction between th
overpowers the energy gain due to Zeeman coupling. Th
l,

l
e
t

of
e

n
to

r.
i-
h.

is

the most unusual situation in which the ground state o
superconductor at zero magnetic field spontaneously
comes inhomogeneous. Another situation of inhomogene
ground state in the superconducting phase with sponta
ously broken time-reversal symmetry was considered in c
nection to heavy-fermion systems by Palumboet al.,16 while
inhomogeneous ground states of a superconductor desc
by a one-component order parameter in the presence o
external magnetic field were extensively studied by V
et al.17

Peculiarity of the London approximation in our case r
sults in the interesting fact that vortex interaction does
change at all as compared to the usuals-wave case15 up to
the values of external field where this approximation cea
to be valid. To show this we consider the free energy
collection of vortices separated by distances much lar
than vortex core size. Additional contribution comes fro
the term2mL*SBd2x52mL* f 2lBd2x. It is equal to the
total flux through the sample since, within the London a
proximation, the vortex core’s contribution to the integral
ignored. Flux is an additive function of the number of vor
ces and thus the above term does not influence the inte
tion between vortices.

As a straightforward consequence of such a lack of
interaction renormalization, we can get theB-H curve of the
vortex structure considered in weak fieldsB'F0/4pl2 from
that of the usual vortex structure simply by shifting the o
dinate axis on theB-H plot to the right by some amoun
proportional tom ~see Fig. 2!. A standard calculation18 sum-
ming upz nearest neighbors (z56 for triangular lattice! in-
teractions and neglecting contributions of the cores gives

B5
2F0

A3l2F ln
4pl2

3F0
@H2Hc1~g!#G22

.

In the caseg.gc1 the line, as expected, crosses theB50
axis. This means that the Meissner phase completely di
pears and the spontaneous vortex state is formed instead@see
Figs. 1~b! and 1~c!#. The spontaneously created field, th
remanence, is

Br5
2F0

A3l2F ln
g2 ln k

3 G22

. ~17!

This field rather thenHc1 has a physical meaning unde
present circumstances. Now we turn to the opposite limit
situations in which the order parameter is small compared
its vacuum value.

IV. TRANSITION TO NORMAL STATE:
ABSENCE OF H c2 FOR T<Tc

The presence of strong Zeeman coupling should sign
cantly modify also the transition to the normal state. Wh
the order parameter becomes small, the quartic terms in
free-energy equations~1! and~6! are negligible compared to
the quadratic ones. Simultaneously the magnetization
comes small and therefore one can replaceB by H in the
linearized equations. If the direction of the magnetic field
x̂3 , the dependence of the order-parameter field onx3 has the
form of a plane wave. It is also clear that the equation forc3
decouples and is the same as the usuals-wave equation. Its
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eigenvalues arean35H (\e* /m* c) (1/21n), wheren is a
natural number. Dependence ofc1 ,c2 on x1 ,x2 is to be
found from the following system of equations:

\2

2m*
~D 1

21D 2
2!c i1ac i2 imH« i j c j50, ~18!

where Dj5] j2 i (e* H/2\c) « j i xj , « i j being the antisym-
metric tensor andj ,i 51,2. This coincides with the nonrela
tivistic Schrödinger equation for a spin 1/2 particle in ma
netic field. It can be disentangled by changing variables
c65c16 ic2 and writing covariant derivative operators v
D65D16 iD2. The eigenvalues are

an65H
\e*

2m* c
~16g12n!, ~19!

where definition~14! of g was used. If there are only positiv
eigenvalues for all components of the order parameter,
phase transition from a superconducting state to a nor
one occurs at the value of an external magnetic field
corresponds to the lowest eigenvalue amongan6 , an3. This
argument gives usc35c150, while thec2 component de-
termines the upper critical field

Hc2~g!5
2m* c

\e*

a

12g
. ~20!

If, however, the spectrum started from a negative eig
value, then linearization procedure that led us to Eq.~18!
would have been inconsistent and the quartic terms in
free-energy equation~6! would have to be retained. Phys
cally such a situation means that the phase transition to
normal state ceases to be of the second order~even neglect-
ing fluctuations, as we do throughout this work!. Either the
transition becomes of the first order or, more probably,
vacuum rearranges and the transition disappears altog
for any value of magnetic field, no matter how large. T
second possibility takes place in our idealized model.

To find the transition line, we therefore look for region
on theH-T plane where the linearization of GL equation
still consistent and the second-order phase transition to
normal state takes place. Coefficients of the GL equati
depend on temperature. Let us assume, for simplicity,
the dependence ofa is linear:a5a8(Tc2T), a8.0 @recall
that in our definitionsa is positive in the superconductin
state; see Eqs.~1! and ~4!#, while the other coefficients ar
temperature independent. In reality this is true only nearTc ,
but necessary modifications for nonlinear behavior can
easily accommodated within the same framework
Ginzburg-Landau approach. Usually the transition line sta
at (Tc,0) and ends at (0,Hc2); see solid line in Fig. 1~a!. We
find that the phase transition line starts naturally at (Tc,0)
and continues to higher fields, but in the case of

g.gc251 ~21!

turns to higher temperatures instead of lower ones@solid line
in Figs. 1~b! and 1~c!#.

Thus superconductivity at nonzero magnetic field can t
place atT.Tc. This conclusion, although strange from th
o
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e
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e
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ts

e

traditional s-wave point of view, is rather natural unde
present circumstances. Indeed, from the beginning we
sumed the ferromagnetic coupling of the magnetic field
the condensate that means that the field stimulates forma
of Cooper pairs. For the particular pairing considered, p
ing of p-wave type, the magnetic field is not acting as
pair-breaking agent. This by no means indicates that the
sistive transition in highly fluctuating materials~Ginzburg
number not very small! occurs at T.Tc . As is well
known,20 the resistive transition is associated with the vort
melting line@dashed line in Figs. 1~a!, 1~b!, and 1~c!#, which
is much lower then the classical line, especially for tempe
tures close toTc .

At temperatures higher thanTc @see Figs. 1~b! and 1~c!#
superconductivity appears at some finite field, which can
viewed as an analog of conventionalHc2 and is given by the
same formula~20! with negativea. At fields slightly higher
than this threshold value, magnetization of the sample du
developing superconducting state can be calculated by s
dard methods15 taking into account nonlinear terms in th
GL equations perturbatively. The result reads

M5
~12g!2

4pbA@2k22~12g!2#
S H1

2m* ca8

\e*

T2Tc

g21 D ,

~22!

where k5 (m* c/\e* )Ab1/2p and bA5^(c ic i* )2&/
^c ic i* &2. Note that the magnetization is positive atT.Tc .
The result~22! is valid in the region 3 on theH-T diagram
~see Fig. 1! and, of course, not in the vicinity of the poin
g5gc251 itself. Similarly, one can analytically obtain mag
netization in the case ofg,1 andH&Hc2(g), T,Tc . It is
again given by the same formula~22! and it is negative.

The unusual shape of the normal to mixed-state transi
line in particular means that forT,Tc there is noHc2 at all
@Fig. 1~b!#. The vortex density therefore is rising indefinite
with H. How could this happen? It turns out that vortic
become thinner. If one defines~square of! coherence length
as a ratio of the coefficient of the derivative term in fr
energy to that of the quadratic in the order-parameter term
would be given by

j2~T,H ![
\2

2m* @a8~T2Tc!1mH#
. ~23!

It follows that for fixed T,Tc , the correlation length de
creases whenH increases. Vortex core size is reduced
allow more vortices to pass through. We will see in the n
section that even far from the region considered here, vo
ces shrink to minimize the energy loss due to Zeeman c
pling and will find the dependence almost identical to E
~23!. One of the consequences of such behavior is that m
netization ceases to follow the linear low of Eq.~22! and
becomes saturated.

It is worth noting that the condition for the existence
superconductivity beyondTc , Eq. ~21!, is weaker than the
condition of the existence of the spontaneous vortex stat
H50, Eq. ~16!: gc1. ln k.gc251. Therefore there exists
possibility that superconductivity in a magnetic field exis
beyondTc although there is no spontaneous vortex state
H50. The phase transition lines in this case are sketche
Fig. 1~b!.



tic

ica
o

he
a

ve
t

e
n
ld
fo

t

a
ar
t

re
e
o
h

th
c

, w
th

e
er
, t

io
ys
a
o
he
8.
d

tl

di
ts

-

e-

n-

al

ter
ag-

-
ut
be-

he
eter
le of

re
c

y
the
ion,
t of

9360 PRB 58A. KNIGAVKO AND B. ROSENSTEIN
Having studied two regions of the fields in which analy
expressions can be obtained~regions 1 and 3 in Fig. 1!, we
now turn to the intermediate region~2 in Fig. 1! in which
different approximations should be made and numer
methods are required. We also will determine where the b
derline between the regions lies.

V. BEYOND THE LONDON APPROXIMATION

In this section, we first investigate the structure of t
vortex core of an isolated vortex in the presence of Zeem
coupling. Numerical results confirm the more qualitati
conclusions of Sec. III. Then we present an approximation
the magnetization curve for intermediate fieldsB ~region 2 in
Fig. 1! for which the distance between the vortices is larg
than the vortex size~although smaller than penetratio
depth!. Since vortices are shrinking when magnetic fie
grows, this region covers the entire magnetic field range
T,Tc , if g.1 @see Figs. 1~b! and 1~c!#.

A. Isolated vortex

In order to study the vortex core structure we have
abandon the London approximation within which the fieldf
is constant away from singular points. Due to cylindric
symmetry of the vortex, the coordinate dependence of v
ables is restricted to dependence on the distance from
center of the vortex:f (r ) andA(r ). The vector potential is
oriented azimuthally.

As in liquid 3He or heavy-fermion superconductors, the
might be various kinds of topologically distinct vortices. Th
topological analysis we performed shows that there are s
tons different from the usual ones considered below. T
most interesting one is a Skyrmion of the fieldl(x) ~defini-
tion of vector l is given in Sec. II!. We will describe them
elsewhere. We have good reasons to believe that the ra
conventional Abrikosov vortex has lower energy and, sin
we are interested in energetics and neglect fluctuations
concentrate on this type of vortex only. Now we consider
structure of the Abrikosov vortex.

With direction of liz fixed throughout the volume of th
superconductor, twofold discrete symmetry in the ord
parameter field of phase I is generated. Correspondingly
vortex can include two components,;(n1 im)eipw and
;(n2 im)eiqw, in the core region. Topological numbersp
andq are not independent however. They satisfy the relat
q5p12, due to definite transformation properties of the s
tem as a whole under global rotations. As a result, in the c
of g.0, the presence of both components in the vortex c
is obviously energetically unfavorable with respect to t
Zeeman term in Eq.~6!. For a detailed analysis, see Ref.
In addition, there is a possibility of still more complicate
core structure in which both phases, I and II@see Eqs.~4! and
~5!#, are present inside the core. It was shown in sligh
different context21 that, at least for largeb2 , this situation is
not realized.

To consider the single-vortex problem, we introduce
mensionless variables. Energy density is measured in uni
a2/b1k25«0/2pl2. The absolute value of the order param
eterc is given in units of its saturation valueAa/b1, mag-
l
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netic flux in the units of the elementary fluxonF0/2p, and
length in the units of magnetic lengthl:

F[
a2

b1k2
F̃, f 2[

a

b1
f̃ 2, A[

F0

2pl
a,

~24!

B[
F0

2pl2
b, r[lr.

To simplify the notations, tilde marks will be dropped her
after.

For a cylindrically symmetric situation the vortex line e
ergy, which is an integral of Eq.~6! over the wholex-y
plane, takes the form

«V5«0E
0

`

rdrFk2

2
~12 f 2!21 ḟ 21 f 2S 1

r
2aD 2

2g f2S ȧ1
a

r D1S ȧ1
a

r D 2G , ~25!

where the condensation energy was subtracted.
Ginzburg-Landau equations take the form

S ä1
ȧ

r
2

a

r2D 1 f 2S 1

r
2aD2g f ḟ50;

~26!

k2~ f 2 f 3!1g fS ȧ1
a

r D2 f S 1

r
2aD 2

1S ḟ

r
1 f̈ D 50,

while boundary conditions readf (0)5a(0)50, f (`)51,
ȧ1a/rur5`50.

Small r asymptotic behavior is similar to that of usu
Abrikosov vortex, but modified by the presence ofg:

f 5crF12@k21~g11!b~0!#
r2

8 G ,
~27!

b5b~0!1
c2

2
~g21!r2.

Results of numerical integration for the GL parame
k510 are presented in Fig. 3. The profiles of reduced m
netic field and order parameter for several values ofg are
shown in Fig. 3~a!. Our main observation is that the mag
netic field inside the vortex core is affected drastically, b
left almost unchanged outside the core. Changes in the
havior of f for differentg are less apparent on this scale: t
curves are almost indistinguishable. The order param
rises linearly and reaches its asymptotic value on the sca
coherence length.

Detailed profiles of the magnetic field inside the core a
given in Fig. 3~b!. As g grows, the behavior of magneti
field qualitatively changes. Forg exceeding the critical value
of 1, see Eq.~27!, b first rises and only then exponentiall
falls off instead of the usual monotonic decrease from
beginning. This is the response to the Zeeman interact
which induces supercurrents proportional to the gradien
the square of the order parameter modulus; see Eq.~9!.
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The way the order parameter approaches its asymp
value differs markedly from the conventional monotonic
crease@see Fig. 3~c!#. It rises linearly, but then surpasses t
far asymptotic value of 1 and finally approaches it fro
above. It is worth noting thatf becomes greater than 1 ou
side the core for any nonzero value ofg, no matter how
small. The maximum value of the order parameter increa
with k and may become experimentally detectable atk
5100.

FIG. 3. Vortex structure fork510 and different values of Zee
man couplingg50(1), 0.5(2), 1(3),1.25(4), 1.5(5): ~a! Large-
scale magnetic field and order-parameter variations;~b! Magnetic
field in the core;~c! Order-parameter profile close to its saturati
value.
tic

es

Energy of the vortex is almost a linear function ofg. It is
given for several values ofk in Fig. 4. It becomes negative a
somegc1. This critical value ofg as a function ofk is shown
in Fig. 5. The highk estimation equation~16!, gc15 ln k, is
also shown for comparison.

B. Vortex lattice

Having studied the two extreme cases of isolated vorti
~region 1 in Fig. 1! and that of overlapping vortices, wher
intervortex distancea is aboutj ~region 3 in Fig. 1!, we now
turn to the interesting intermediate region in between,j!a
!l ~region 2 in Fig. 1!. Beyond the London approximatio
of Sec. III, interaction between vortices is no longer indep
dent of the Zeeman coupling. One expects the core size t
affected by magnetic field and the coupling parameterg, see
Eq. ~23!, which in turn modifies the interaction energy. L
us introduce core sizer c[rcl and assume, for simplicity
the steplike behavior off . Then the Gibbs free-energy den
sity, using dimensionless variables~24!, reads

G5b22b lnAhrc
2b1

1

4
k2rc

2b22bh2gb1
1

2
grc

2b2.

~28!

The first two terms represent the usual interaction ene
and the vortex energy excluding the Zeeman coupling par
is obtained by the standard method of summing up all
interactions using transition to the reciprocal lattice spa
see Ref. 18. Then the summation in the reciprocal lat
space is replaced by the largest term at the origin plus
integral over a disk starting atp/a and terminating atp/r c .
The third term is the energy lost in the core due to melting
the condensate~which turns out to be rather insignificant!.
The fourth term is due to external magnetic field. The l
two terms represent the Zeeman-coupling contribution
are important. They summarize the gain due to the ferrom
netism of Cooper pairs. It can be thought of as the homo
neous effect~the fifth term! minus the ferromagnetic energ
loss in cores due to vanishing of magnetic moment there~the
sixth term!. Coefficienth is an unknown quantity of order 1

FIG. 4. Vortex line tension«V as a function of Zeeman couplin
strengthg for different values of GL parameterk.
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FIG. 5. Critical value of Zeeman coupling strengthgc1 at which spontaneous vortex state develops as a function of GL parameterk.
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that reflects the estimated character of our calculation in
subsection. It is used later for joining together the two phy
cally distinct regions 2 and 3.

The value ofrc is found from the conditiondG/drc50
that gives

rc5A 2

k212gb
. ~29!

Equation~29! shows that as magnetic field increases the c
shrinks and is similar to Eq.~23! that we derived in region 3
where there is suppressed superconductivity. The shrin
of cores makes room for more vortices to squeeze in
allows internal magnetic fieldb to increase whenh increases
~of course, when the core becomes of microscopic size
whole approach ceases to be applicable!. At the same time
Eq. ~29! makes it possible to obtain the boundary value
internal magnetic fieldb23, below which the approximation
used in the present subsection is valid. The vortices sho
be well separated in region 2 and we therefore requ
rcb2351 and find b235k2/2(12g), or B235Hc2(g)/2 in
is
i-

e

g
d

e

f

ld
e

physical units. This, in particular, means that forg.1, re-
gion 3, wherea'j, never extends to temperatures low
thanTc .

The magnetization curve is found from minimization ofG
with respect tob. It leads to

h5b2
1

4
ln

2b

k212gb
2

g

2S 12
b

k212gb
D 2

1

4
ln h.

~30!

Parameterh can now be determined from the physical
transparent requirement that the expressions for magne
tion ~22! and ~30! obtained in the regions 3 and 2 corr
spondingly have to coincide atb5b23. In case ofg,gc2
51 these regions correspond to regions of an external fi
with high and intermediate flux density15 inside the super-
conducting sample.19 We plot the magnetizationm in region
2 as a function ofh for k520 and several values ofg in Fig.
6. As g increases the value ofHc2(g) also increases and a
g5gc251 it should become infinite~see Sec. IV!. At larger
FIG. 6. MagnetizationM of a vortex lattice as a function of external magnetic fieldH in the region 2.k530 andg50(1), 0.2(2),
0.4(3),0.6(4),0.8(5), 1(6),1.2(7),1.4(8).
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g, asH grows, magnetization approaches a positive satu
tion value, which at highk can be estimated as

ms5
1

16pF ~g21!S 11
1

bA
D2 ln gG .

For g larger than critical valuegc1 the remanence
br[b(h50) exists and it is determined implicitly by Eq
~30!.

VI. SUMMARY AND DISCUSSION

In this paper the formation of spontaneous vortex phas
type-II superconductors withp-wave pairing was studied us
ing the Ginzburg-Landau approach. Due to direct coupling
the Cooper pair’s spin to magnetic field, in certain ca
condensate acquires ferromagnetic properties. There
three cases depending on the strength of the effective
man coupling, measured by dimensionless parameteg.
First, if g,gc251, the phase diagram is similar to the usu
one @Fig. 1~a!#, althoughHc2 grows unlimitedly asg ap-
proaches 1. Second, whengc2,g,gc1. ln k, at magnetic
field a mixed state can exist even beyondTc : the direct
coupling to magnetic field facilitates creation of the Coop
pairs along with the usual destruction of the condensate@Fig.
1~b!#, while at T,Tc , Hc2 disappears. Vortices becom
thinner whenH grows. The vortex core structure is as fo
lows: the order parameter first increases almost linearly
value slightly above its asymptotic value and then gradu
decreases to it. Internal magnetic field first increases wi
the core before eventual exponential decrease at penetr
depth distance. Third, wheng.gc1 , the Meissner phase
completely disappears@Fig. 1~c!#. BelowTc the vortex phase
appears spontaneously atH50, and exists for arbitrarily
large external magnetic field for which the GL macrosco
approach is applicable.

Below we make several comments on the results p
sented in previous sections. First, there is the strange d
tion of the superconductor-normal phase transition line. O
mean field treatment completely neglects fluctuations.
strongly fluctuating superconductors~Ginzburg number not
very small! to which high-Tc cuprates, especially Ba-Ca-S
Cu-O compounds and similarly layered compounds with
;0.1, and presumably the Ru-based compounds studie
Ref. 3, belong, the line where the order parameter vanis
ceases to describe actual phase transition. Instead, a m
lower vortex lattice melting line appears. Vortex liquid is n
a superconductor, as far as conductivity properties are c
cerned. Broad resistive transition in Sr2YRu12xCuxO6 is pre-
sumably associated with melting22 ~see dashed line in Fig
1!.

Second, disorder can further restrict the vortex lattice
gion, and third, the forma(T)5a8 (T2Tc) should be re-
C.
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placed by a more realistic one away fromTc . Similarly, the
region of very large fields in which the vortex core becom
of microscopic size is beyond the reach of the macrosco
Ginzburg-Landau approach.

An additional issue is the value of the coefficientb2 of
the additional term in the free energy~1!. It might have a
weak temperature dependence and can even change si
certain temperature. Then the Zeeman-coupling effects
scribed here will disappear and usual diamagnetic super
ducting behavior sets in. Whether the resistivity results
Ref. 3 can be understood that way is not clear to us p
ently.

Finally, we would like to emphasize that although th
novel superconducting system Sr2YRu12xCuxO6,3 that moti-
vated the present research, has low orthorhombic symm
Pbnm, a realization of the physical situation proposed by
is in principle possible, that is, nonunitary superconduct
phases exist for this crystal symmetry. A weak spin-or
coupling scheme obviously permits nonunitary phases.
actually does a strong spin-orbit coupling scheme, thou
this is less apparent due to the fact that irreducible repre
tations of the point groupD2h of the crystal in question are
all one dimensional. Nonunitary phases would correspon
this case to irreducible representations of the whole sp
group Pbnm with kÞ0 that are two dimensional.23 One of
our main conclusions about the existence of a spontane
vortex state for sufficiently strong Zeeman coupling rema
valid, at least as far as symmetrical crystalline directions
magnetic field are concerned. On the other hand, an estim
for the value of Zeeman coupling would vary considerab
for different choices of a microscopic model. Such estim
tions are beyond the scope of our phenomenological
proach. It is worth noting that Zeeman coupling is believ
to be very small in UPt3, in connection with which it was
first considered by Tokuyasuet al.12

Experimentally, the distinct vortex core structure could
seen using scanning tunneling microscopy technique for h
value ofk. Every spot should be surrounded by a ring. It
perhaps more difficult to see the decrease of magnetic fie
the vortex core using electron tomography or Bitter tec
nique.
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