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Abstract: 
We investigate the optical and electrical characteristics of the GaN-based light emitting diodes (LEDs) 
grown on Micro and Nano-scale Patterned silicon substrate (MPLEDs and NPLEDs). The transmission 
electron microscopy (TEM) images reveal the suppression of threading dislocation density in 
InGaN/GaN structure on nano-pattern substrate due to nanoscale epitaxial lateral overgrowth (NELOG). 
The plan-view and cross-section cathodoluminescence (CL) mappings show less defective and more 
homogeneous active quantum well region growth on nano-porous substrates. From temperature 
dependent photoluminescence (PL) and low temperature time-resolved photoluminescence (TRPL) 
measurement, NPLEDs has better carrier confinement and higher radiative recombination rate than 
MPLEDs. In terms of device performance, NPLEDs exhibits smaller electroluminescence (EL) peak 
wavelength blue shift, lower reverse leakage current and decreases efficiency droop compared with the 
MPLEDs. These results suggest the feasibility of using NPSi for the growth of high quality and power 
LEDs on Si substrates. 
 
Introduction: 
The wide band gap GaN-based semiconductors have received enormous attention for various 
applications, such as short-haul optical communication, traffic and signal lights, back lights for 
liquid-crystal displays, and indoor/outdoor lightings. Typically, GaN-based light emitting diodes 
(LEDs) were grown on sapphire or SiC substrate by heteroepitaxial techniques in a metal-organic 
chemical vapor deposition (MOCVD) system [1]-[3]. However, the low thermal and electrical 
conductivities make sapphire less perfect as a substrate for the GaN epilayers, meanwhile the high 
price and mechanical defects hinder SiC substrate’s acceptability in the LED market. Silicon has been 
considered as an alternative substrate material due to its low manufacturing cost, availability of large 
size wafers, and good thermal and electrical conductivities. Thus, many efforts have been dedicated to 
the realization of GaN based LEDs on Si substrates. Even though good progress has been made, there 
are still several problems when using Si substrate for GaN epitaxial layers. The large lattice mismatch 
between GaN and Si (almost 17%) leads to high threading dislocation densities (TDDs) (around 
108-1010 cm-2) in the subsequent GaN epilayers. The other major problem is the thermal expansion 
coefficient difference (56%) between two materials, which induces a high tensile stress during the 
thermal cycling in MOCVD and often results in cracks and damages of epilayers. To reduce the density 
of cracks and threading dislocations of GaN grown on Si, a number of approaches have been reported, 
such as using AlN multilayer combined with graded AlGaN layer as buffer, epitaxial lateral overgrowth 
of GaN on micro-patterned Si, and nanoheteroepitaxial (NHE) lateral overgrowth of GaN on nanopore 
array Si, etc.. These methods effectively reduce the tensile stress and thus the crystal quality of GaN 
was greatly improved. Recently, our co-workers reported fabrication of GaN-based device structure on 
a nano-scale patterned silicon substrate [4] that shows significant improvement on reduction of TDDs, 
surface morphology and light emission. In the mean time, the optical and electrical properties of 
InGaN/GaN MQWs grown on these patterned silicon substrates have not been fully studied yet. In this 
paper, we examine various optical and electrical characteristics of GaN based LEDs grown on micro 
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In conclusion, the optical and electrical properties of LEDs grown on micro and nano-scale 
patterned Si substrate were investigated. We demonstrated a more homogeneous growth of InGaN/GaN 
active layers under this nano-scale template by plan-view and cross-section CL mapping. From 
temperature dependent PL and low temperature TRPL measurement, NPLEDs has better carrier 
confinement and higher radiative recombination rate than MPLEDs. On the actual device performance, 
NPLEDs exhibits smaller peak wavelength blue shift, lower reverse leakage current and decreases 
efficiency droop compared with the MPLEDs. The results suggest a weaker QCSE due to relaxation of 
strain in the epitaxial layers on nano-scale patterned substrate, which can be really useful for the next 
generation of large area, Si-based heteroepitaxy of GaN related optoelectronic devices. 
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