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Tree/Stack Splitting with Remainder for
Distributed Wireless Medium Access Control with

Multipacket Reception
Rung-Hung Gau, Member, IEEE

Abstract—In this paper, we propose the tree/stack splitting
with remainder algorithm for distributed medium access control
in a wireless network with multipacket reception. In order to
reduce the length of a cycle and increase the network throughput,
when the splitting with remainder algorithm is used, some nodes
that attempt to transmit packets at the beginning of a cycle
might have to postpone their packet retransmissions until the
beginning of the next cycle. We demonstrate that the splitting
with remainder algorithm outperforms the erasure algorithm and
the probe algorithm. For the splitting with remainder algorithm,
we analytically and accurately derive the network throughput
and the average packet delay. We show that our analytical results
are consistent with packet-based simulation results.

Index Terms—Multipacket reception, tree/stack splitting al-
gorithm, medium access control, wireless networks, cross-layer
design.

I. INTRODUCTION

IN THIS paper, we propose a novel algorithm for medium
access control in wireless networks with multipacket recep-

tion [5] [11]. According to the conventional (0, 1, 𝑒) channel
model, when two or more nodes simultaneously send packets
to the access point, a collision occurs and the access point does
not receive/decode any packets. With multipacket reception ca-
pability, when two or more nodes simultaneously send distinct
packets to the access point, an access point could successfully
receive/decode one or more packets. Therefore, in a wireless
network, multipacket reception capability could be used to
increase the throughput without requiring more bandwidth,
which is usually seen as scarce resource. Multipacket reception
can be realized by CDMA multiuser detection techniques [31]
or Successive Interference Cancellation [32]. A multipacket
reception channel is characterized by a matrix. As the classic
splitting algorithm [2] [1], the proposed algorithm can be
implemented in a centralized manner based on a tree or a
distributed manner based on stacks. Gau and Chen [24] analyt-
ically derived the throughput and the average packet delay for
the classic tree/stack splitting algorithm when the channel ma-
trix of multipacket reception is a diagonal matrix. The classic
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tree/stack splitting algorithm is not designed for and therefore
does not work in a wireless network with multipacket recep-
tion when the channel matrix is not a diagonal matrix. While
there are many tree-based medium access control algorithms
for the conventional collision channel (and channels with
capture effects), to the best of our knowledge, in the literature,
there are no distributed medium access control algorithms that
are based on tree splitting and work for an arbitrary channel
matrix of multipacket reception. In this paper, we study three
novel splitting algorithms, each works for a wireless network
with an arbitrary channel matrix of multipacket reception. In
addition, for each of the three algorithms, it is unnecessary to
know/estimate the value of the channel matrix of multipacket
reception. Among the three splitting algorithms, the tree/stack
splitting with remainder algorithm has the best performance
in terms of network throughput and average packet delay.
For the splitting with remainder algorithm, we mathematically
derive the exact values of the network throughput and the
average packet delay. We show that our analytical results are
consistent with packet-based simulation results. In addition,
in this paper, the network throughput and the average packet
delay are functions of the arrival rate of new packets rather
than the offered load [1], which depends on the medium access
control algorithm.

The rest of the paper is organized as follows. In Section
2, related works are introduced. In Section 3, we present
our system models. In Section 4, we introduce three splitting
algorithms for medium access control in wireless networks
with multipacket reception. In Section 5, we include our
analytical results for the splitting with remainder algorithm,
which has the best performance among the three splitting
algorithms. In Section 6, we show packet-based simulation
results and equation-based numerical results. In Section 7, we
discuss how to extend our work to more general cases. Our
conclusions are included in Section 8.

II. RELATED WORK

Medium access control protocols can be classified into
distributed protocols and polling-based protocols. There are
three well-known classes of distributed medium access control
protocols. They are Splitting, Aloha, and CSMA. Gallager [3]
proposed the FCFS splitting algorithm. Garces and Garcia-
Luna-Aceves [9] proposed using a deterministic tree-splitting
algorithm for nodes in a wireless network to compete for the
right to acquire the floor of a particular receiver’s channel.
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Houdt and Blondia [7] proposed combining polling and a
variant of the splitting algorithm for contention resolution in
a wireless access network. The above works used the conven-
tional (0, 1, 𝑒) channel model. Sidi and Cidon [6] analyzed
the performance of the FCFS splitting algorithm in channels
with capture. Qin and Berry [12] proposed using opportunistic
splitting algorithms that exploit channel state information.
Yu and Giannakis [19] developed a medium access control
protocol that exploits successive interference cancellation over
multiple time slots in a tree splitting algorithm. Wang, Yu, and
Giannakis [23] proposed combining the binary exponential
backoff algorithm with a tree algorithm that relies on suc-
cessive interference cancellation. In the above two papers, it
is assumed that the access point knows the identities of all
competing nodes in every time slot. In contrast, we do not
make the assumption. Gore and Karandikar [29] proposed a
FCFS splitting algorithm that adjusts the transmission power
based on quaternary channel feedback. They focused on the
capture effect rather than the general multipacket reception
capability. Yim, Mehta, Molisch, and Zhang [26] proposed
the DPMA (Dual Power Multiple Access) scheme, which is
based on FCFS splitting and uses transmission power control
to limit the reception power levels to two values that facilitate
successive interference cancellation. They studied the case
in which the buffer size is infinity and derived the stable
throughput. In contrast, we study the case in which the
multiple access channel is fully characterized by a matrix and
the buffer size is finite.

Chlamtac and Farago [8] studied the multipacket reception
capability provided by multiple independent collision chan-
nels. Adireddy and Tong [14] studied the use of distributed
channel state information for random access in wireless net-
works with multipacket reception. In particular, they proposed
a variant of slotted Aloha in which the transmission probability
changes with the channel state. Naware, Mergen, and Tong
[15] studied the effect of multipacket reception on stability
and delay of slotted Aloha. Luo and Ephremides [16] studied
the impacts of transmission power control on the performance
of random multiple access with multipacket reception. Gau
[17] [21] analytically derived the saturation throughput and
the non-saturation throughput for slotted Aloha in wireless
networks with multipacket reception. Dua [22] proposed a
user-centric approach for evaluating the performance of slotted
Aloha with multipacket reception in a wireless network in
which the total number of nodes is finite but the buffer size
at each node is infinity. Lotfinezhad, Liang, and Sousa [20]
derived the optimal retransmission probabilities for slotted
Aloha in wireless sensor networks with multipacket recep-
tion. Gau [27] used the Poisson random traffic model for
performance evaluation of the slotted non-persistent CSMA
protocol for wireless networks with multipacket reception.
Celik, Zussman, Khan, and Modiano [28] proposed alternative
backoff mechanisms for medium access control in wireless
networks with multipacket reception capability and spatially
distributed nodes. An introduction on CSMA protocols for
wireless networks with multipacket reception can be found in
[27] [28] and reference therein. Choudhury, Yang, and Vaidya
[4] proposed a multi-hop RTS protocol for medium access
control in wireless ad hoc networks with directional antennas.

Guo, Wang, and Wu [25] studied the capacity of wireless ad
hoc networks with multiple packet reception.

An introduction on polling-based protocols of medium
access control with multipacket reception can be found in
[11] [18] and reference therein. Shad, Todd, Kezys, and Litva
[10] introduced dynamic slot allocation for cellular systems
with antenna arrays to utilize the multipacket reception ca-
pability. Zhao and Tong [11] proposed the MQSR (Multi-
Queue Service Room) protocol for medium access control
in wireless networks with multipacket reception. In addition,
they proposed a dynamic queue protocol [13] that achieves a
performance comparable to that of MQSR with a much lower
computational complexity. Gau and Chen [18] proposed and
analytically evaluated the predictive multicast polling scheme
which is a queue-aware medium access control scheme for
wireless networks with multipacket reception.

III. SYSTEM MODELS

We now state our system models. There are an access point
and 𝑁 ≥ 2 nodes in the wireless network. Time is divided into
time slots of equal length. In addition, the length of a time
slot is one. The 𝑛-th time slot is the time interval [𝑛− 1, 𝑛).
The transmission time of a packet equals a time slot. In a time
slot, a node either sends a packet or does not send any packets.
The multipacket reception channel is fully characterized by a
𝑁 × 𝑁 matrix Λ such that [Λ]𝑖,𝑗 is the probability that the
access point will successfully receive/decode 𝑗 packets in a
time slot given that 𝑖 packets are simultaneously transmitted
in the time slot [5] [11]. Let 𝑧𝑖 be the probability that the
access point does not successfully receive/decode any packets
in a time slot, when 𝑖 nodes simultaneously transmit in the
time slot. Then, 𝑧𝑖 = 1−∑𝑁

𝑗=1[Λ]𝑖,𝑗 = 1−∑𝑖
𝑗=1[Λ]𝑖,𝑗 . Note

that by definition [Λ]𝑖,𝑗 = 0, if 𝑗 > 𝑖.
For each 𝑖, where 1 ≤ 𝑖 ≤ 𝑁 , let {𝜂𝑖(𝑡), 𝑡 ≥ 0} be

a stochastic process such that 𝜂𝑖(𝑡) is the total number of
packets that arrive at node 𝑖 during the time interval [0, 𝑡]. We
assume that 𝜂𝑖(0) = 0, ∀𝑖. Namely, there are no packets in the
network at time zero. In addition, we assume that if 𝑖 ∕= 𝑗, the
two stochastic processes {𝜂𝑖(𝑡), 𝑡 ≥ 0} and {𝜂𝑗(𝑡), 𝑡 ≥ 0} are
statistically independent and identical. As in a typical discrete-
time system, a packet arriving within a time slot cannot be
served until the beginning of the next time slot. Thus, without
loss of essential generality, it is assumed that the arrival time
of a packet is an integer. Let 𝐺𝑖,𝑚 be a random variable
that represents the total number of new packets that arrive
at node 𝑖 at time 𝑚. For each fixed value of 𝑖, it is assumed
that 𝐺𝑖,1, 𝐺𝑖,2, 𝐺𝑖,3, ... are IID (independent and identically
distributed) random variables. Let 𝑓(𝑥) = 𝑃{𝐺𝑖,𝑚 = 𝑥}
be the probability that 𝑥 packets arrive at a node in a time
slot, ∀𝑥, 𝑖,𝑚. In this paper, we focus on the non-trivial case
in which 0 < 𝑓(0) < 1. Let 𝜆 = 𝑁 ⋅ ∑∞

𝑥=0 𝑥 ⋅ 𝑓(𝑥) be
the aggregated arrival rate of new packets in the network.
In subsequent sections, the arrival rate of packets means the
arrival rate of new packets. An admitted packet is retained in
the buffer until successfully transmitted to the access point.
Namely, retransmissions are used whenever appropriate.

As in [11], it is assumed that the access point knows if
the current time slot is idle. There are three types of channel
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feedback from the access point: idle, erasure, and partial
success. When none of the nodes send packets in a time
slot, the channel feedback at the end of the time slot is idle.
When nodes send packets in a time slot but the access point
does not successfully receive/decode any packets at the end
of the time slot, the channel feedback is erasure. To make the
splitting with remainder algorithm compatible with a variety
of physical-layer technologies that could realize multipacket
reception, we assume that in this case the access point only
knows that a group of nodes transmitted packets in the current
time slot. Namely, the access point does not know the size
of the group or the identities of the nodes in the group.
Our analysis in this paper remains applicable when the size
of the group is known but is not used in the splitting with
remainder algorithm. When nodes send packets in a time
slot and the access point successfully receives/decodes one
or more packets at the end of the time slot, the channel
feedback is partial success. In this case, the access point also
broadcasts the list of nodes that have successfully sent packets
to the access point in the current time slot. In addition, to be
compatible with a wide range of physical-layer technologies,
it is assumed that the access point does not know if any other
nodes send but fail to deliver packets to the access point in
the current time slot. Namely, even when the access point
successfully decodes all packets transmitted in a time slot, the
channel feedback is partial success. As in [1], it is assumed
that channel feedback is immediate and always successfully
received by all nodes in the network.

We adopt the convention in queueing theory so that a node
is composed of a server and a queue with maximum size 𝐵.
Therefore, the maximum number of waiting packets at a node
equals (𝐵+1). Let 𝑊 𝑗

𝑛 ∈ {0, 1} be a binary random variable
such that 𝑊 𝑗

𝑛 = 1 if and only if the server at node 𝑗 is
occupied/busy at time 𝑛. A server is said to be occupied by
a packet if the packet is transmitting or the packet is waiting
for being retransmitted. Let 𝑄𝑗

𝑛 be a random variable that
represents the total number of packets in the queue of node
𝑗 at time 𝑛. Then, 0 ≤ 𝑄𝑗

𝑛 ≤ 𝐵. When the splitting with
remainder algorithm is used, the time axis is partitioned into
contention cycles, which will be defined in the next section.
In a contention cycle, a node accepts at most 𝐵 new packets.
Admitted packets that arrive within a contention cycle cannot
occupy the servers until the beginning of the next contention
cycle. At the beginning of a contention cycle, if a node has
waiting packets and the corresponding server is not occupied,
a packet is moved from the queue to the server. In Figure 1,
an example is used to illustrate the above variables. In this
case, there are three nodes in the network, 𝐵 = 1, a server
is represented by an ellipse, and a queue is represented by
a rectangle. At time 𝑇𝑛, all three servers are occupied and
therefore 𝑊 1

𝑇𝑛
= 𝑊 2

𝑇𝑛
= 𝑊 3

𝑇𝑛
= 1. Meanwhile, there are no

packets in the queues of node 1 and node 3 but there is a packet
in the queue of node 2. Thus, 𝑄1

𝑇𝑛
= 𝑄3

𝑇𝑛
= 0 and 𝑄2

𝑇𝑛
= 1.

At node 1, in the time interval [𝑇𝑛, 𝑇𝑛+1], a new packet arrives
but no packets depart. Therefore, 𝑊 1

𝑇𝑛+1
= 𝑄1

𝑇𝑛+1
= 1.

At node 2, in the time interval [𝑇𝑛, 𝑇𝑛+1], no new packets
arrive but a packet departs. In addition, at time 𝑇𝑛+1, a packet
moves from the queue to the server. As a result, 𝑊 2

𝑇𝑛+1
= 1

Fig. 1. An example of changes in queue state and server state.

and 𝑄2
𝑇𝑛+1

= 0. At node 3, in the time interval [𝑇𝑛, 𝑇𝑛+1],
no new packets arrive but a packet departs. Consequently,
𝑊 3

𝑇𝑛+1
= 𝑄3

𝑇𝑛+1
= 0.

IV. SPLITTING ALGORITHMS FOR AN ARBITRARY

CHANNEL MATRIX OF MULTIPACKET RECEPTION

In this section, we introduce three medium access control
algorithms, each works for an arbitrary channel matrix of
multipacket reception and is based on the classic tree/stack
splitting algorithm, which is not designed for wireless net-
works with multipacket reception.

A. The Tree/Stack Splitting with Remainder Algorithm

The (tree/stack) splitting with remainder algorithm is based
on the classic tree/stack splitting algorithm [2] [1]. In partic-
ular, each node has a stack [33] and a pointer [33]. When the
splitting with remainder algorithm is used, the time axis is
partitioned into contention cycles. Let 𝑇𝑛 be the time instance
when the 𝑛-th contention cycle begins. Note that 𝑇1 = 0.
At the beginning of a contention cycle, at each node in the
network, a single element is pushed into the empty stack. In
addition, if the node has waiting packets, the pointer points
to the unique element in the stack. In Figure 2, we show an
example, which will be explained in detail later in the paper.
At the beginning of a time slot, a node with waiting packets
sends a packet if and only if its pointer points to the top
element in its stack. Let 𝑆𝑚 be the total number of nodes
that send packets at time 𝑚. Let 𝑋𝑛 be the total number of
nodes with waiting packets at time 𝑇𝑛. Then, 𝑆𝑇𝑛 = 𝑋𝑛. In
addition, define the order of the 𝑛-th contention cycle to be
𝑋𝑛.
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Fig. 2. An example of stack evolution in a contention cycle.

Within a contention cycle, the stacks evolve according to
the channel feedback from the access point. If the channel
feedback is idle or partial success, each node removes/pops
the top element of its own stack. If the channel feedback at
time 𝑚+1 is erasure, stacks in the network evolve according
to the following procedure. First, each node in the network
removes the top element in its stack and then creates two
new elements. The new elements are called the right element
and the left element, respectively. Second, each node in the
network pushes the two elements into the stack such that the
left element is on top of the right element. Last, each node
that transmitted a packet at time 𝑚 independently tosses a
fair coin to join either the left subgroup or the right subgroup
with equal probabilities. The pointer of each node in the left
subgroup points to the left element in its stack. Similarly, the
pointer of each node in the right subgroup points to the right
element in its stack. A contention cycle terminates once all
the stacks become empty. Note that 𝑇𝑛+1 is the time instance
when the 𝑛-th contention cycle terminates and the (𝑛+ 1)-th
contention cycle begins. Let 𝑌𝑛 = 𝑇𝑛+1 − 𝑇𝑛 be the length
of the 𝑛-th contention cycle.

When the splitting with remainder algorithm is used, some
nodes that transmitted packets at the beginning of a contention
cycle might fail to deliver packets to the access point within
the contention cycle. Let 𝑅𝑚 be the total number of packets
that are successfully received by the access point at time 𝑚.

Define 𝑍𝑛 = 𝑋𝑛 −∑𝑇𝑛+1

𝑚=𝑇𝑛+1𝑅𝑚, ∀𝑛 ≥ 1. 𝑍𝑛 is called the
remainder of the 𝑛-th contention cycle. Note that 𝑍𝑛 is the
total number of nodes that transmit packets at the beginning
of the 𝑛-th contention cycle but fail to deliver packets to the
access point within the time interval [𝑇𝑛, 𝑇𝑛+1]. The 𝑍𝑛 nodes
will retransmit packets in subsequent contention cycles. As
the classic tree/stack splitting algorithm, when the splitting
with remainder algorithm is used, for each type of evolution
of stacks in a contention cycle, there exists a corresponding
splitting tree in which the depth-first-search is used.

We include event-driven pseudo codes for the proposed al-
gorithm in the Appendix. We now use Figure 2 to illustrate the
stack evolution when the splitting with remainder algorithm
is used. In this case, there are three nodes in the network
and each node has waiting packets at time 𝑇𝑛. Therefore, at
time 𝑇𝑛, each node pushes an element into the associated
stack that was empty. In addition, for each node, the pointer
points to the unique element in the stack. Then, all three
nodes send packets during the time interval [𝑇𝑛, 𝑇𝑛 +1]. The
channel feedback at time 𝑇𝑛+1 is erasure, which means that
the access point does not receive/decode any packets at time
𝑇𝑛+1. Upon receiving the channel feedback, each node pops
the top element in its stack. Then, each node creates (based
on the popped element) and pushes the element 𝑅 and the
element 𝐿 into the stack in this order. In addition, for each
node, the pointer points either to the element 𝑅 in the stack
or the element 𝐿 in the stack with equal probabilities. In this
example, the pointer of node 1 points to the element 𝑅, the
pointer of node 2 points to the element 𝐿, and the pointer of
node 3 points to the element 𝑅. Since the element 𝐿 is the
top element in the stack, only node 2 sends packets during the
time interval [𝑇𝑛 + 1, 𝑇𝑛 + 2]. The channel feedback at time
𝑇𝑛+2 is partial success: 2, which means that the access point
successfully receives/decodes a single packet from node 2 at
time 𝑇𝑛+2. Upon receiving the channel feedback, each node
pops the top element in its stack, the element 𝐿. Since node 2
has successfully sent a packet to the access point, the pointer
of node 2 points to NULL, which means that node 2 will
not send any more packets during the 𝑛-th contention cycle.
During the time interval [𝑇𝑛+2, 𝑇𝑛+3], both node 1 and node
3 send packets. The channel feedback at time 𝑇𝑛+3 is partial
success: 3, which means that the access point successfully
receives/decodes a single packet from node 3. Upon receiving
the channel feedback, each node pops the top element in the
stack, which becomes empty at time 𝑇𝑛+3. Therefore, at time
𝑇𝑛+1 = 𝑇𝑛 + 3, the 𝑛-th contention cycle terminates and the
(𝑛+ 1)-th contention cycle begins. In this example, 𝑋𝑛 = 3,
𝑌𝑛 = 𝑇𝑛+1 − 𝑇𝑛 = 3, and 𝑍𝑛 = 𝑋𝑛 − 2 = 1.

The splitting with remainder algorithm is a distributed
protocol, since each node decides if it wants to compete for
channel access in a slot.

B. The Erasure Algorithm and The Probe Algorithm

We now introduce two variants of the splitting with remain-
der algorithm. The first variant is called the erasure algorithm
while the second variant is called the probe algorithm. Both
variants work for an arbitrary channel matrix of multipacket
reception. Each variant is very similar to the splitting with
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Fig. 3. Finite state machine for the system size of a node at the beginning
of a contention cycle.

remainder algorithm except for the response to the channel
feedback partial success. In particular, when the channel
feedback is either idle or erasure, the response of each of
the two variants is identical to that of the splitting with
remainder algorithm (and that of the classic tree/stack splitting
algorithm). For the erasure algorithm, the response when the
channel feedback is partial success is identical to its own
response when the channel feedback is erasure. For the probe
algorithm, when the channel feedback is partial success, all
the stacks in the network remain unchanged. In addition, the
nodes that have successfully delivered packets to the access
point in the current time slot set their pointers to null, while
all other nodes keep their pointers unchanged. Therefore, in
the subsequent time slot, only the nodes that transmit but fail
to deliver packets to the access point in the current time slot
will retransmit. If the channel feedback in the subsequent slot
is idle, all nodes infer that all packet transmissions in the
previous slot are successful. One more slot is used to further
probe the previous channel status. For example, suppose in
the first slot, node 1 and node 2 concurrently transmit packets
but the access point only successfully receives/decodes the
packet from node 1. If the probe algorithm is used, in the
second time slot, only node 2 will retransmit for sure. When
the erasure algorithm or the probe algorithm is used, each
node that transmits at the beginning of a contention cycle will
successfully deliver a packet to the access point within the
contention cycle.

V. ANALYTICAL RESULTS FOR THE SPLITTING WITH

REMAINDER ALGORITHM

In this section, we derive analytical results for the splitting
with remainder algorithm when 𝐵 = 1. Recall that 𝑇𝑛 is the
time instance when the 𝑛-th contention cycle begins. Consider
a node. The system size of a node is defined as the total
number of packets at the node. In Figure 3, we show how

Fig. 4. An illustration of modeling the system evolution based on an
embedded discrete-time Markov chain.

the system size of the node might change from time 𝑇𝑛 to
time 𝑇𝑛+1. In particular, when the system size at time 𝑇𝑛 is
zero, the system size at time 𝑇𝑛+1 will become one if at least
one new packet arrives at the node within the time interval
(𝑇𝑛, 𝑇𝑛+1]. Otherwise, the system size will remain zero. When
the system size at time 𝑇𝑛 is one, there are three types of state
transition. The system size at time 𝑇𝑛+1 will become zero
if within the time interval (𝑇𝑛, 𝑇𝑛+1] the node successfully
transmits a packet to the access point and no new packets
arrive at the node. The system size at time 𝑇𝑛+1 will become
two if within the time interval (𝑇𝑛, 𝑇𝑛+1] the node fails to
deliver a packet to the access point and at least one new packet
arrives at the node. Otherwise, the system size will remain one.
When the system size at time 𝑇𝑛 is two, the system size at
time 𝑇𝑛+1 will become one if the node successfully transmits a
packet to the access point within the time interval (𝑇𝑛, 𝑇𝑛+1].
Otherwise, the system size will remain two.

A. An Embedded Discrete-Time Markov Chain and Its State
Transition Probabilities

Let 𝑋(𝑘)
𝑛 be the total number of nodes with system size 𝑘 at

time 𝑇𝑛. Since there are 𝑁 nodes in the wireless network and
𝐵 = 1, 𝑋(𝑘)

𝑛 ∈ {0, 1, 2, .., 𝑁}, ∀𝑛 ≥ 1, 𝑘 ∈ {0, 1, 2}. We use
Figure 4 to illustrate how we analyze the system evolution
in order to derive the network throughput. First, given the
value of (𝑋

(1)
𝑛 , 𝑋

(2)
𝑛 ), based on the splitting with remainder

algorithm, we can derive the joint probability distribution
function of the random variables 𝑌𝑛 and 𝑍𝑛, where 𝑌𝑛 is
the length and 𝑍𝑛 is the remainder of the 𝑛-th contention
cycle. Next, given the value of (𝑋(1)

𝑛 , 𝑋
(2)
𝑛 , 𝑌𝑛, 𝑍𝑛), we can

derive the joint probability distribution function of the random
variables 𝑋(1)

𝑛+1 and 𝑋(2)
𝑛+1. Note that 𝑋(1)

𝑛+1 + 𝑋
(2)
𝑛+1 ≥ 𝑅𝑛.

Namely, the total number of nodes that transmit packets at
the beginning of the (𝑛 + 1)-th contention cycle is greater
than or equal to the remainder of the 𝑛-th contention cycle. In
addition, some packets that arrived within the 𝑛-th contention
cycle might be transmitted at the beginning of the (𝑛+ 1)-th
contention cycle.
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Recall that 𝑋𝑛 = 𝑋
(1)
𝑛 +𝑋

(2)
𝑛 . Based on the splitting with

remainder algorithm, only the packets that occupy servers
at time 𝑇𝑛 can contend for channel access during the 𝑛-th
contention cycle. Therefore, 𝑃{𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟∣𝑋(1)

𝑛 =

𝑚1, 𝑋
(2)
𝑛 = 𝑚2} = 𝑃{𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟∣𝑋𝑛 = 𝑚1 + 𝑚2}.

Define Φ1(𝑚, 𝑘, 𝑟) = 𝑃{𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟∣𝑋𝑛 = 𝑚},
∀𝑛 ≥ 1. We now derive the value of Φ1(𝑚, 𝑘, 𝑟). First,
Φ1(0, 1, 0) = 1. For a contention cycle of order zero, with
probability one, the length is one and the remainder is zero.
Second, Φ1(𝑚, 1,𝑚 − 𝑘) = [Λ]𝑚,𝑘, ∀𝑚 ≥ 1, 1 ≤ 𝑘 ≤ 𝑚.
Consider a contention cycle of order 𝑚 ≥ 1. With probability
[Λ]𝑚,𝑘, the access point successfully receives 𝑘 ≥ 1 packets
in the first time slot of the contention cycle. If the access
point successfully receives 𝑘 ≥ 1 packets in the first time slot
of the contention cycle, the length of the contention cycle
is one and the corresponding remainder is 𝑚 − 𝑘. Third,
∀𝑚 ≥ 1, 𝑘 ≥ 2, 0 ≤ 𝑟 < 𝑚,

Φ1(𝑚, 𝑘, 𝑟)

= 𝑧𝑚 ×
𝑚∑

𝑛𝑙=0

𝐶𝑚
𝑛𝑙

⋅ (1
2
)𝑚 ⋅

𝑘−2∑
𝑘𝑙=1

𝑟∑
𝑟𝑙=0

Φ1(𝑛𝑙, 𝑘𝑙, 𝑟𝑙)×

Φ1(𝑚− 𝑛𝑙, 𝑘 − 1− 𝑘𝑙, 𝑟 − 𝑟𝑙) (1)

We now elaborate on the above equation. Recall that 𝑧𝑚 in the
above equation is the probability that the access point does not
successfully receive any packets in a time slot given that 𝑚
nodes simultaneously transmit packets in the time slot, ∀𝑚 ≥
1. When 𝑋𝑛 = 𝑚 nodes simultaneously transmit packets at
time 𝑇𝑛, the probability that the channel feedback at time
𝑇𝑛 + 1 is erasure equals 𝑧𝑚. If the channel feedback at time
𝑇𝑛 + 1 is erasure, each of the 𝑋𝑛 nodes joins either the left
subgroup or the right subgroup with equal probabilities. With
probability 𝐶𝑚

𝑛𝑙
⋅ (12 )𝑚, 𝑛𝑙 nodes join the left subgroup, while

𝑚 − 𝑛𝑙 nodes join the right subgroup. Given that there are
𝑛𝑙 nodes in the left subgroup, the probability that the length
of the contention cycle of the left subgroup is 𝑘𝑙 and the
remainder of the contention cycle of the left subgroup is 𝑟𝑙
equals Φ1(𝑛𝑙, 𝑘𝑙, 𝑟𝑙). Similarly, given that there are 𝑚 − 𝑛𝑙
nodes in the right subgroup, the probability that the length of
the contention cycle of the right subgroup is 𝑘 − 1 − 𝑘𝑙 and
the remainder of the contention cycle of the right subgroup is
𝑟 − 𝑟𝑙 equals Φ1(𝑚− 𝑛𝑙, 𝑘 − 1− 𝑘𝑙, 𝑟 − 𝑟𝑙).

Let 𝐹 (1)
𝑛 be a random variable that represents the total

number of nodes, each of system size one at time 𝑇𝑛 but fails
to successfully deliver packets to the access point within the 𝑛-
th contention cycle (𝑇𝑛, 𝑇𝑛+1]. Let 𝐹 (2)

𝑛 be a random variable
that represents the total number of nodes, each of system size
two at time 𝑇𝑛 but fails to successfully deliver packets to
the access point within the 𝑛-th contention cycle (𝑇𝑛, 𝑇𝑛+1].
By definition, 0 ≤ 𝐹

(1)
𝑛 ≤ 𝑋

(1)
𝑛 , 0 ≤ 𝐹

(2)
𝑛 ≤ 𝑋

(2)
𝑛 ,

and 𝑍𝑛 = 𝐹
(1)
𝑛 + 𝐹

(2)
𝑛 . Therefore, max(𝑍𝑛 − 𝑋

(2)
𝑛 , 0) ≤

𝐹
(1)
𝑛 ≤ min(𝑍𝑛, 𝑋

(1)
𝑛 ). Define 𝜙(𝑚1,𝑚2, 𝑟, 𝑟1) = 𝑃{𝐹 (1)

𝑛 =

𝑟1∣(𝑋(1)
𝑛 , 𝑋

(2)
𝑛 ) = (𝑚1,𝑚2), 𝑍𝑛 = 𝑟}, ∀𝑛 ≥ 1. Based on

combinatorics, we have

𝜙(𝑚1,𝑚2, 𝑟, 𝑟1) =
𝐶𝑚1
𝑟1 × 𝐶𝑚2

𝑟−𝑟1∑min(𝑟,𝑚1)
𝑔=max(𝑟−𝑚2,0)

𝐶𝑚1
𝑔 × 𝐶𝑚2

𝑟−𝑔

,

∀max(𝑟 −𝑚2, 0) ≤ 𝑟1 ≤ min(𝑟,𝑚1) (2)

Furthermore, as long as 𝑃{𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟, (𝑋
(1)
𝑛 , 𝑋

(2)
𝑛 ) =

(𝑚1,𝑚2)} > 0, based on symmetry, we have

𝑃{𝐹 (1)
𝑛 = 𝑟1∣𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟, (𝑋(1)

𝑛 ,

𝑋(2)
𝑛 ) = (𝑚1,𝑚2)}

= 𝑃{𝐹 (1)
𝑛 = 𝑟1∣𝑍𝑛 = 𝑟, (𝑋(1)

𝑛 , 𝑋(2)
𝑛 ) = (𝑚1,𝑚2)},

∀𝑘 ≥ 1 (3)

The above equation states that given the value of
(𝑋

(1)
𝑛 , 𝑋

(2)
𝑛 , 𝑍𝑛), the random variable 𝐹

(1)
𝑛 is statistically

independent of the random variable 𝑌𝑛, the length of the 𝑛-th
contention cycle.

Define Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2) = 𝑃{(𝑋(1)
𝑛+1, 𝑋

(2)
𝑛+1) =

(𝑛1, 𝑛2)∣𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟, (𝑋
(1)
𝑛 , 𝑋

(2)
𝑛 ) = (𝑚1,𝑚2)}, ∀𝑛 ≥ 1.

In addition, define Θ𝑎,𝑏,𝑛 = ∣{𝑗∣𝑗 ∈ {1, 2, 3, .., 𝑁},𝑊 𝑗
𝑇𝑛

+

𝑄𝑗
𝑇𝑛

= 𝑎,𝑊 𝑗
𝑇𝑛+1

+ 𝑄𝑗
𝑇𝑛+1

= 𝑏}∣, ∀𝑎, 𝑏 ∈ {0, 1, 2}, 𝑛 ≥ 1.
These random variables will be used to derive the value of
Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2). Note that Θ𝑎,𝑏,𝑛 represents the total
number of nodes, each has 𝑎 waiting packets at the beginning
of the 𝑛-th contention cycle but has 𝑏 waiting packets at
the beginning of the (𝑛 + 1)-th contention cycle. Define
𝑞 = 1 − 𝑓(0) and 𝜂(𝑘) = (1 − 𝑞)𝑘 = (𝑓(0))𝑘. Namely, for
each fixed node, 𝜂(𝑘) is the probability that no packets arrive
at the node in 𝑘 time slots. Based on Figure 3, we now derive
the probability mass functions for Θ𝑎,𝑏,𝑛’s. First,

𝑃{Θ0,1,𝑛 = ℎ∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2), 𝑌𝑛 = 𝑘,

𝐹 (1)
𝑛 = 𝑟1, 𝐹

(2)
𝑛 = 𝑟2}

= 𝑃{Θ0,1,𝑛 = ℎ∣𝑋(0)
𝑛 = 𝑁 −𝑚1 −𝑚2, 𝑌𝑛 = 𝑘}

= 𝐶𝑁−𝑚1−𝑚2

ℎ ⋅ (1− 𝜂(𝑘))ℎ ⋅ (𝜂(𝑘))𝑁−𝑚1−𝑚2−ℎ (4)

Recall that a node with system size zero at time 𝑇𝑛 will
become a node with system size one at time 𝑇𝑛+1 if and
only if at least one packet arrives within 𝑌𝑛 time slots. Thus,
we have the above equation.

Second,

𝑃{Θ1,0,𝑛 = ℎ∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2), 𝑌𝑛 = 𝑘,

𝐹 (1)
𝑛 = 𝑟1, 𝐹

(2)
𝑛 = 𝑟2}

= 𝑃{Θ1,0,𝑛 = ℎ∣𝑋(1)
𝑛 − 𝐹 (1)

𝑛 = 𝑚1 − 𝑟1, 𝑌𝑛 = 𝑘}
= 𝐶𝑚1−𝑟1

ℎ ⋅ (𝜂(𝑘))ℎ ⋅ (1− 𝜂(𝑘))𝑚1−𝑟1−ℎ (5)

A node with system size one at time 𝑇𝑛 will become a node
with system size zero at time 𝑇𝑛+1 if and only if within the
𝑛-th contention cycle, the node successfully transmits a packet
to the access point and no new packets arrive at the node.

Similarly,

𝑃{Θ1,2,𝑛 = ℎ∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2), 𝑌𝑛 = 𝑘,

𝐹 (1)
𝑛 = 𝑟1, 𝐹

(2)
𝑛 = 𝑟2}

= 𝑃{Θ1,2,𝑛 = ℎ∣𝐹 (1)
𝑛 = 𝑟1, 𝑌𝑛 = 𝑘}

= 𝐶𝑟1
ℎ ⋅ (1− 𝜂(𝑘))ℎ ⋅ (𝜂(𝑘))𝑟1−ℎ (6)
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We now derive the value of Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2).

Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2)

= 𝑃{(𝑋(1)
𝑛+1, 𝑋

(2)
𝑛+1) = (𝑛1, 𝑛2)∣𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟,

(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2)}

=

min(𝑟,𝑚1)∑
𝑟1=max(𝑟−𝑚2,0)

𝑃{𝐹 (1)
𝑛 = 𝑟1∣𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟,

(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2)} ×
𝑃{(𝑋(1)

𝑛+1, 𝑋
(2)
𝑛+1) = (𝑛1, 𝑛2)∣𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟,

(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2), 𝐹
(1)
𝑛 = 𝑟1}

=

min(𝑟,𝑚1)∑
𝑟1=max(𝑟−𝑚2,0)

𝑃{𝐹 (1)
𝑛 = 𝑟1∣𝑍𝑛 = 𝑟,

(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2)} ×
𝑃{(𝑋(1)

𝑛+1, 𝑋
(2)
𝑛+1) = (𝑛1, 𝑛2)∣𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟,

(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2), 𝐹
(1)
𝑛 = 𝑟1} (7)

The first equality is based on the definition of Φ2(⋅). The
second equality is based on that 𝑃{𝑌 = 𝑦∣𝑋 = 𝑥} =∑

𝑧 𝑃{𝑍 = 𝑧∣𝑋 = 𝑥} × 𝑃{𝑌 = 𝑦∣𝑍 = 𝑧,𝑋 = 𝑥}, for
discrete random variables 𝑋 , 𝑌 , and 𝑍 . The third equality is
based on equation 3.

Based on Figure 3, 𝑋(1)
𝑛+1 = Θ0,1,𝑛 + (𝑋

(1)
𝑛 − Θ1,0,𝑛 −

Θ1,2,𝑛)+Θ2,1,𝑛, 𝑋(2)
𝑛+1 = 𝐹

(2)
𝑛 +Θ1,2,𝑛, and Θ2,1,𝑛 = 𝑋

(2)
𝑛 −

𝐹
(2)
𝑛 . Then, based on equation 7, we have

Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2)

=

min(𝑟,𝑚1)∑
𝑟1=max(𝑟−𝑚2,0)

𝜙(𝑚1,𝑚2, 𝑟, 𝑟1)×

𝑃{Θ1,2,𝑛 = 𝑛2 − 𝑟 + 𝑟1,Θ0,1,𝑛 −Θ1,0,𝑛 =

𝑛1 −𝑚1 + 𝑛2 −𝑚2∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2),

𝑌𝑛 = 𝑘, 𝐹 (1)
𝑛 = 𝑟1, 𝐹

(2)
𝑛 = 𝑟 − 𝑟1} (8)

Conditioning on (𝑋
(1)
𝑛 , 𝑋

(2)
𝑛 , 𝑌𝑛, 𝐹

(1)
𝑛 , 𝐹

(2)
𝑛 ), the three ran-

dom variables, Θ0,1,𝑛, Θ1,0,𝑛, and Θ1,2,𝑛, are statistically
independent, ∀𝑛 ≥ 1. Therefore, based on equation 8, we
have

Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2)

=

min(𝑟,𝑚1)∑
𝑟1=max(𝑟−𝑚2,0)

𝜙(𝑚1,𝑚2, 𝑟, 𝑟1)×

𝑃{Θ1,2,𝑛 = 𝑛2 − 𝑟 + 𝑟1∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) =

(𝑚1,𝑚2), 𝑌𝑛 = 𝑘, 𝐹 (1)
𝑛 = 𝑟1, 𝐹

(2)
𝑛 = 𝑟 − 𝑟1} ×

𝑚1−𝑟1∑
𝜃=0

[𝑃{Θ1,0,𝑛 = 𝜃∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2),

𝑌𝑛 = 𝑘, 𝐹 (1)
𝑛 = 𝑟1, 𝐹

(2)
𝑛 = 𝑟 − 𝑟1} ×

𝑃{Θ0,1,𝑛 = 𝜃 + 𝑛1 −𝑚1 + 𝑛2 −𝑚2∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 )

= (𝑚1,𝑚2), 𝑌𝑛 = 𝑘, 𝐹 (1)
𝑛 = 𝑟1, 𝐹

(2)
𝑛 = 𝑟 − 𝑟1}]

(9)

Note that we have derived the values of all the terms in the
right-hand side of the above equation.

Let Ω = {(𝑖, 𝑗)∣𝑖, 𝑗 ≥ 0, 𝑖+ 𝑗 ≤ 𝑁}. It can be proved that
the discrete-time stochastic process {(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 )}∞𝑛=1 is a

discrete-time Markov chain (DTMC) [30] with the finite state
space Ω. We now derive the state transition probabilities for
the DTMC {(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 )}∞𝑛=1.

𝑃{(𝑋(1)
𝑛+1, 𝑋

(2)
𝑛+1) = (𝑛1, 𝑛2)∣(𝑋(1)

𝑛 , 𝑋(2)
𝑛 ) =

(𝑚1,𝑚2)}

=

∞∑
𝑘=1

𝑚1+𝑚2∑
𝑟=0

𝑃{𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟∣(𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) =

(𝑚1,𝑚2)} × 𝑃{(𝑋(1)
𝑛+1, 𝑋

(2)
𝑛+1) = (𝑛1, 𝑛2)∣

𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟, (𝑋(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2)}

=
∞∑
𝑘=1

𝑚1+𝑚2∑
𝑟=0

Φ1(𝑚1 +𝑚2, 𝑘, 𝑟)×

Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2) (10)

Define the steady-state probability distribution of the
discrete-time Markov chain {(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 )}∞𝑛=1 as follows:

𝑣(𝑚1,𝑚2) = lim
𝑛→∞𝑃{(𝑋

(1)
𝑛 , 𝑋(2)

𝑛 ) = (𝑚1,𝑚2)},
∀𝑚1,𝑚2 ≥ 0,𝑚1 +𝑚2 ≤ 𝑁 (11)

It can be proved that the DTMC {(𝑋(1)
𝑛 , 𝑋

(2)
𝑛 )}∞𝑛=1 is

irreducible, aperiodic, and positive-recurrent. Therefore, the
steady-state probability distribution 𝑣(𝑚1,𝑚2) exists. In ad-
dition, 0 < 𝑣(𝑚1,𝑚2) < 1, ∀𝑚1,𝑚2 ≥ 0,𝑚1 + 𝑚2 ≤
𝑁 . Given the state transition probabilities of the DTMC
{(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 )}∞𝑛=1, we can derive the steady-state probability

distribution by solving the associated stationary equations
[30].

B. The Network Throughput

Let 𝑙(𝑘) = 𝐸[𝑌𝑛∣𝑋(1)
𝑛 +𝑋

(2)
𝑛 = 𝑘] be the expected value

of the length of the 𝑛-th contention cycle, given that 𝑘 nodes
concurrently transmit at the beginning of the 𝑛-th contention
cycle, ∀𝑛 ≥ 1. Note that the value of 𝐸[𝑌𝑛∣𝑋(1)

𝑛 +𝑋
(2)
𝑛 = 𝑘]

is independent of the value of 𝑛. When 𝑋(1)
𝑛 + 𝑋

(2)
𝑛 = 0,

𝑌𝑛 = 1 for sure. Thus, 𝑙(0) = 1. When 1 ≤ 𝑘 ≤ 𝑁 , similar
to equation 1, we have the following recursive equation:

𝑙(𝑘) = 1 + 𝑧𝑘

𝑘∑
𝑚=0

𝐶𝑘
𝑚 ⋅ (1

2
)𝑘 ⋅ [𝑙(𝑚) + 𝑙(𝑘 −𝑚)] (12)

Recall that 𝑧𝑘 in the above equation is the probability that the
access point does not successfully receive any packets in a
time slot given that 𝑘 nodes simultaneously transmit packets
in the time slot, ∀𝑘 ≥ 1. Note that when 𝑘 ≥ 1 nodes transmit
packets at the beginning of a cycle and the channel feedback
of the first time slot of the cycle is erasure, the 𝑘 nodes will
be randomly partitioned into two subgroups.

We now use theory of regenerative processes [30] to derive
the network throughput as follows. Let 𝐴𝑛 be the 𝑛-th time
instance when the 𝑛-th contention cycle of order zero begins.
When the splitting with remainder algorithm is used, at the
beginning of each contention cycle of order zero, the system
statistically regenerates itself. Namely, the network evolution
from time 𝐴𝑛 is statistically identical to that from time zero.
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Thus, 𝐴2 − 𝐴1, 𝐴3 − 𝐴2, 𝐴4 − 𝐴3, ... are IID random
variables. Namely, {𝐴𝑛}∞𝑛=1 is a renewal process [30]. Let
𝐸[𝐿] = 𝐸[𝐴𝑛+1 − 𝐴𝑛] be the expected length of a renewal
interval. In order to calculate the value of 𝐸[𝐿], we create an
auxiliary continuous-time stochastic process {𝐺(𝑡), 𝑡 ≥ 0} as
follows.𝐺(𝑡) = 𝑋𝑛 = 𝑋

(1)
𝑛 +𝑋

(2)
𝑛 , if 𝑡 ∈ [𝑇𝑛, 𝑇𝑛+𝑌𝑛). Since

{(𝑋(1)
𝑛 , 𝑋

(2)
𝑛 )}∞𝑛=1 is a DTMC and 𝑌𝑛 statistically depends

only on (𝑋
(1)
𝑛 , 𝑋

(2)
𝑛 ), the continuous-time stochastic process

{𝐺(𝑡), 𝑡 ≥ 0} is a semi-Markov process [30]. Then, based on
[30],

𝐸[𝐿] =

𝑁∑
𝑚1=0

𝑁−𝑚1∑
𝑚2=0

𝑣(𝑚1,𝑚2)

𝑣(0, 0)
⋅ 𝑙(𝑚1 +𝑚2) (13)

We now elaborate on the above equation. Let 𝐶(𝑚1,𝑚2)
be the expected value of the total number of contention
cycles that begins with system state (𝑚1,𝑚2) in the renewal
interval [𝐴𝑛, 𝐴𝑛+1], ∀𝑚1,𝑚2. Since {(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 )}∞𝑛=1 is a

DTMC, 𝑣(𝑚1,𝑚2)
𝑣(0,0) = 𝐶(𝑚1,𝑚2)

𝐶(0,0) , ∀𝑚1,𝑚2. Since 𝐴𝑛 is the
starting time of the 𝑛-th contention cycle that begins with state
(0, 0), during a renewal cycle [𝐴𝑛, 𝐴𝑛+1), there is a unique
contention cycle that begins with state (0, 0) and therefore
𝐶(0, 0) = 1. Thus, on average, there are 𝑣(𝑚1,𝑚2)

𝑣(0,0) contention
cycles that begins with state (𝑚1,𝑚2) in [𝐴𝑛, 𝐴𝑛+1]. The
average length of a contention cycle that begins with state
(𝑚1,𝑚2) equals 𝑙(𝑚1 +𝑚2). Thus, the average length of a
renewal cycle equals

∑𝑁
𝑚1=0

∑𝑁−𝑚1

𝑚2=0
𝑣(𝑚1,𝑚2)
𝑣(0,0) ⋅ 𝑙(𝑚1+𝑚2).

Recall that 𝑅𝑚 is the total number of packets that are
successfully received by the access point at time 𝑚. Let 𝜆𝐷
be the network throughput. In particular, 𝜆𝐷 is defined to
be lim𝑛→∞

𝐸[
∑𝑛

𝑚=1 𝑅𝑚]

𝑛 . Define 𝑢(𝑚) = 𝐸[𝑋
(1)
𝑛 + 𝑋

(2)
𝑛 −

𝑍𝑛∣𝑋(1)
𝑛 +𝑋

(2)
𝑛 = 𝑚]. Recall that 𝑍𝑛 is the remainder of the

𝑛-th contention cycle. In addition, 𝑋(1)
𝑛 + 𝑋

(2)
𝑛 is the total

number of nodes that send packets at the beginning of the 𝑛-
th contention cycle. According to the splitting with remainder
algorithm, 𝑢(𝑚) is the expected value of the total number
of packets that are successfully received by the access point
within the 𝑛-th contention cycle, given that 𝑋(1)

𝑛 +𝑋
(2)
𝑛 = 𝑚.

We now derive the value of 𝑢(𝑚). First, it is clear that
𝑢(0) = 0. On the other hand, ∀1 ≤ 𝑚 ≤ 𝑁 ,

𝑢(𝑚) = 𝑧𝑚 ×
𝑚∑

𝑘=0

𝐶𝑚
𝑘 × (

1

2
)𝑚 × [𝑢(𝑘) + 𝑢(𝑚− 𝑘)]

+

𝑚∑
𝑗=1

[Λ]𝑚,𝑗 × 𝑗 (14)

We now elaborate on the above equation. Recall that 𝑧𝑚 is the
probability that the access point does not successfully receive
any packets in a time slot given that 𝑚 nodes simultaneously
transmit packets in the time slot, ∀𝑚 ≥ 1. When 𝑋𝑛 = 𝑚,
with probability 𝑧𝑚, the first channel feedback in the 𝑛-th
contention cycle is erasure. In this case, each of the 𝑚 nodes
either joins the left subgroup or the right subgroup. With
probability 𝐶𝑚

𝑘 ⋅ (12 )𝑚, 𝑘 nodes join the left subgroup, while
(𝑚−𝑘) nodes join the right subgroup. On average, the nodes
in the left subgroup successfully deliver 𝑢(𝑘) packets to the
access point within the 𝑛-th contention cycle. Similarly, the
nodes in the right subgroup successfully deliver 𝑢(𝑚 − 𝑘)

packets to the access point within the 𝑛-th contention cycle.
On the other hand, when 𝑋𝑛 = 𝑚, with probability [Λ]𝑚,𝑗 ,
in the first time slot of the 𝑛-th contention cycle, the access
point successfully receives 𝑗 ≥ 1 packets.

When the splitting with remainder algorithm is used, at
the beginning of each contention cycle of order zero, the
system statistically regenerates itself. Therefore, {𝑅𝑛}∞𝑛=1

is a regenerative process with respect to the renewal pro-
cess {𝐴𝑛}∞𝑛=1. In a regenerative cycle (𝐴𝑛, 𝐴𝑛+1], on av-
erage, there are 𝑣(𝑚1,𝑚2)

𝑣(0,0) contention cycles, each begins
with state (𝑚1,𝑚2). In a contention cycle that begins with
state (𝑚1,𝑚2), on average, the access point successfully
receives 𝑢(𝑚1 + 𝑚2) packets from (𝑚1 + 𝑚2) nodes.
Therefore, on average, the access point successfully receives∑𝑁

𝑚1=0

∑𝑁−𝑚1

𝑚2=0
𝑣(𝑚1,𝑚2)⋅𝑢(𝑚1+𝑚2)

𝑣(0,0) packets in a regenerative
cycle. According to the theory of regenerative processes, the
network throughput equals the expected value of the total
number of successfully received packets at the access point
in a regenerative cycle divided by the expected value of the
length of a regenerative cycle. Thus, we have the following
formula for calculating the network throughput.

𝜆𝐷 =
1

𝐸[𝐿]

𝑁∑
𝑚1=0

𝑁−𝑚1∑
𝑚2=0

(
𝑣(𝑚1,𝑚1)

𝑣(0, 0)
) ⋅ 𝑢(𝑚1 +𝑚2) (15)

C. The Average System Size and The Average Packet Delay

Recall that 𝑁 is the total number of nodes in the wireless
network. Let 𝑊𝑛 be a random variable that represents the
total number of busy/occupied servers in the network at
time 𝑛. In particular, 𝑊𝑛 =

∑𝑁
𝑗=1𝑊

𝑗
𝑛. When the splitting

with remainder algorithm is used, at the beginning of each
contention cycle that begins with state (0, 0), the system
statistically regenerates itself. Therefore, the stochastic process
{𝑊𝑛}∞𝑛=0 is a regenerative process with respect to the renewal
process {𝐴𝑛}∞𝑛=1. Let 𝐸[𝑊 ] be the long-term average number
of busy servers in the network in a time slot. In particular,

𝐸[𝑊 ] = lim𝑛→∞
𝐸[

∑𝑛−1
𝑚=0 𝑊𝑚]
𝑛 .

Let 𝛼(𝑛) be an integer such that 𝑋𝛼(𝑛) = 𝑋
(1)
𝛼(𝑛)+𝑋

(2)
𝛼(𝑛) =

𝑛. Namely, the order of the 𝛼(𝑛)-th contention cycle equals
𝑛. Let 𝑠1(𝑛) be the average number of busy servers dur-
ing a contention cycle of order 𝑛. In particular, 𝑠1(𝑛) =

1
𝐸[𝑌𝛼(𝑛)]

⋅ 𝐸[∑𝑇𝛼(𝑛)+1−1

𝑚=𝑇𝛼(𝑛)
𝑊𝑚] = 1

𝑙(𝑛) ⋅ 𝐸[∑𝑇𝛼(𝑛)+1−1

𝑚=𝑇𝛼(𝑛)
𝑊𝑚].

Define 𝜉(𝑘, 𝑟) = 𝐸[𝑍𝑛 = 𝑟∣𝑋𝑛 = 𝑘], ∀𝑛 ≥ 1. Recall
that Φ1(𝑘, 𝑦, 𝑟) = 𝐸[𝑌𝑛 = 𝑦, 𝑍𝑛 = 𝑟∣𝑋𝑛 = 𝑘], ∀𝑛 ≥ 1.
Then, 𝜉(𝑘, 𝑟) =

∑∞
𝑦=1 Φ1(𝑘, 𝑦, 𝑟). We now derive the value

of 𝑠1(𝑚). First, 𝑠1(0) = 0. This is due to that when 𝑋𝑛 = 0,
𝑌𝑛 = 1 and 𝑊𝑇𝑛 = 0 for sure. In addition, ∀1 ≤ 𝑚 ≤ 𝑁 , we
have

𝑠1(𝑚) ⋅ 𝑙(𝑚)

= 𝑚 ⋅ 1 + 𝑧𝑚
𝑚∑

𝑘=0

𝐶𝑚
𝑘 ⋅ (1

2
)𝑚 ⋅ {[𝑠1(𝑘) ⋅ 𝑙(𝑘) +

(𝑚− 𝑘) ⋅ 𝑙(𝑘)] + [𝑠1(𝑚− 𝑘) ⋅ 𝑙(𝑚− 𝑘) +
𝑘∑

𝑟=0

𝜉(𝑘, 𝑟) ⋅ 𝑟 ⋅ 𝑙(𝑚− 𝑘)]} (16)

We now elaborate on the above equation. By definition,
𝑠1(𝑚) ⋅ 𝑙(𝑚) is the expected value of the sum of the number
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of busy/occupied servers over a contention cycle of order 𝑚.
By definition, the total number of busy servers in the first time
slot of a contention cycle of order𝑚 is𝑚. Recall that 𝑧𝑚 is the
probability that the access point does not successfully receive
any packets in a time slot given that 𝑚 nodes simultaneously
transmit packets in the time slot, ∀𝑚 ≥ 1. With probability
𝑧𝑚, the first channel feedback in a contention cycle of order
𝑚 is erasure. In this case, a contention cycle contains two
time intervals, in addition to the first time slot. The two time
intervals are called the left time interval and the right time
interval, respectively. With probability 𝐶𝑚

𝑘 ⋅ (12 )𝑚, there are
𝑘 nodes in the left subgroup and (𝑚 − 𝑘) nodes in the right
subgroup. Given that there are 𝑘 nodes in the left subgroup and
(𝑚−𝑘) nodes in the right subgroup, the expected value of the
sum of the number of busy servers over the left time interval
of the contention cycle equals 𝑠1(𝑘)𝑙(𝑘) + (𝑚 − 𝑘)𝑙(𝑘). In
addition, with probability 𝜉(𝑘, 𝑟), the remainder of the splitting
with remainder algorithm associated with the left subgroup
equals 𝑟. Therefore, the expected value of the sum of the total
number of busy servers over the right time interval of the
contention cycle equals 𝑠1(𝑚− 𝑘)𝑙(𝑚− 𝑘) +∑𝑘

𝑟=0 𝜉(𝑘, 𝑟) ⋅
𝑟 ⋅ 𝑙(𝑚− 𝑘).

According to theory of regenerative processes, the expected
value of the number of busy servers in the network in a time
slot equals the expected value of the sum of the number of
busy servers over a regenerative cycle divided by the expected
value of the length of a regenerative cycle. Thus, similar to
the derivation of the network throughput, we have

𝐸[𝑊 ] =
1

𝐸[𝐿]

𝑁∑
𝑚1=0

𝑁−𝑚1∑
𝑚2=0

{(𝑣(𝑚1,𝑚2)

𝑣(0, 0)
)×

𝑠1(𝑚1 +𝑚2)× 𝑙(𝑚1 +𝑚2)} (17)

Let 𝐸[𝑄] be the expected value of the total number of
waiting packets in the 𝑁 queues of the network in a time
slot. Let 𝑠2(𝑛) be the average queue size at a node during
a contention cycle of order 𝑛, when the queue size of the
node at the beginning of the contention cycle is zero. We now
derive the value of 𝑠2(𝑛). First, 𝑠2(0) = 0. This is due to that
when 𝑋𝑚 = 0, 𝑌𝑚 = 1 for sure. Define 𝑔(𝑚, 𝑘) = 𝑃{𝑌𝑛 =
𝑘∣𝑋𝑛 = 𝑚}, ∀𝑛 ≥ 1. Then, 𝑔(𝑚, 𝑘) =

∑𝑚
𝑟=0 Φ1(𝑚, 𝑘, 𝑟),

∀𝑚, 𝑘. Recall that for a node, 𝑞 is the probability that at least
one new packet arrives at the node within a time slot. Consider
a tagged node with queue size zero at time 𝑇𝑛. 𝑔(𝑚, 𝑦) is the
probability that the length of a contention cycle of order 𝑚
equals 𝑦. For the tagged node, (1− 𝑞)𝑘−1 ⋅𝑞 is the probability
that the earliest packet arrival time after time 𝑇𝑛 is 𝑇𝑛 + 𝑘.
Given that 𝑌𝑛 = 𝑦 and the earliest packet arrival time after
time 𝑇𝑛 is 𝑇𝑛 + 𝑘, the sum of queue size over the 𝑛-th
contention cycle is (𝑦 − 𝑘). Therefore,

𝑠2(𝑚) ⋅ 𝑙(𝑚) =

∞∑
𝑦=1

𝑔(𝑚, 𝑦)

𝑦−1∑
𝑘=1

[(1− 𝑞)𝑘−1 ⋅ 𝑞]×

(𝑦 − 𝑘), ∀1 ≤ 𝑚 ≤ 𝑁 (18)

When 𝐵 = 1, there are at most two waiting packets at
a node. If there are two waiting packets at a node at the
beginning of a contention cycle, the queue size of the node is
always one within the contention cycle. According to theory of
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Fig. 5. The throughput of the splitting algorithms for channel 1, 10 nodes.
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Fig. 6. The average system size of the splitting algorithms for channel 1,
10 nodes.

regenerative processes, the expected value of the queue size
in a time slot equals the expected value of the sum of the
queue size over a regenerative cycle divided by the expected
value of the length of a regenerative cycle. Thus, similar to
the derivation of the network throughput, we have

𝐸[𝑄]

=
1

𝐸[𝐿]

𝑁∑
𝑚1=0

𝑁−𝑚1∑
𝑚2=0

{(𝑣(𝑚1,𝑚2)

𝑣(0, 0)
)× [(𝑁 −𝑚2)×

𝑠2(𝑚1 +𝑚2)× 𝑙(𝑚1 +𝑚2) +

𝑚2 × 1× 𝑙(𝑚1 +𝑚2)]} (19)

Let 𝐸[𝐷] be the average system delay. The system delay of
a packet is the total amount of time that a packet stays in the
system. Note that the system delay includes the queueing delay
and the retransmission delay. Then, according to the well-
known Little’s formula [30], we have 𝐸[𝐷] = 𝐸[𝑊 ]+𝐸[𝑄]

𝜆𝐷
.
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Fig. 7. The average system delay of the splitting algorithms for channel 1,
10 nodes.
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Fig. 8. The throughput of the splitting algorithms for channel 2, 10 nodes.

VI. NUMERICAL AND SIMULATION RESULTS

We wrote one C program to derive numerical results based
on the equations in the paper and three C programs to perform
packet-based simulation for the three tree-based algorithms.
For each simulation instance, there are one million contention
cycles. In addition, we wrote a C program to perform packet-
based simulation for the slotted Aloha algorithm with retrans-
mission probability equals 1

𝑁 , where 𝑁 is the total number
of nodes in the network. For illustration purposes, we studied
the cases in which 𝑁 = 10, 𝐵 = 1, and 𝑓(1) = 1 − 𝑓(0).
Recall that Λ is the channel matrix. We first study the case
when [Λ]1,1 = 0.9, [Λ]2,1 = 0.8, [Λ]2,2 = 0.1, [Λ]3,1 = 0.7,
[Λ]3,2 = 0.1, [Λ]3,3 = 0.1, and 𝑧𝑖 = 1, ∀𝑖 ≥ 4. In this case,
when three nodes concurrently transmit packets, most likely,
the access point will successfully receive only one packet and
the channel feedback will be partial success.

In Figure 5, we show the network throughput for the three
tree-based algorithms and the slotted Aloha algorithm. As
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Fig. 9. The average system size of the splitting algorithms for channel 2,
10 nodes.
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Fig. 10. The average system delay of the splitting algorithms for channel 2,
10 nodes.

shown in the figure, for the network throughput, our equation-
based numerical results are consistent with packet-based sim-
ulation results. When the aggregated packet arrival rate is no
greater than 1.2, in terms of throughput, the splitting with
remainder algorithm outperforms the slotted Aloha algorithm.
Among the three tree-based algorithms, regardless of the
aggregated packet arrival rate, the splitting with remainder
algorithm always has the largest throughput, while the erasure
algorithm always has the smallest throughput. For example,
when the total arrival rate of new packets is 0.8, the throughput
for the splitting with remainder algorithm is about 0.618,
the throughput for the probe algorithm is about 0.525, the
throughput for the erasure algorithm is about 0.346, and the
throughput for the slotted Aloha algorithm is about 0.5449.
We now explain why the splitting with remainder algorithm
is superior to the other two tree-based algorithms. Consider
a time slot in which the channel feedback is partial success.
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Since 𝑧𝑖 = 1, ∀𝑖 ≥ 4, we know for sure that at most three
nodes send packets in the time slot. Note that partial success
implies that the access point successfully receives at least one
packet. Suppose that in fact only a node sends a packet in
the time slot. In this case, when the erasure algorithm is used,
each node will waste two time slots before reducing the stack
size by one. When the probe algorithm is used, each node
will waste one time slot before reducing the stack size by
one. In contrast, when the splitting with remainder algorithm
is used, each node immediately reduces the stack size. When
the aggregated packet arrival rate is small, it is very likely
that only one node sends a packet in a time slot. Therefore,
the splitting with remainder algorithm outperforms the erasure
algorithm and the probe algorithm, when the network load is
small.

In Figure 6, we show the average system size for the three
tree-based algorithms. In particular, when the total arrival rate
of new packets is greater than or equal to 1.0, the average
system size of the splitting with remainder algorithm is larger
than that of the probe algorithm. On the other hand, when the
total arrival rate of new packets is less than 1.0, the average
system size of the splitting with remainder algorithm is smaller
than that of the probe algorithm. In Figure 7, we show the
average packet delay for the three tree-based algorithms. In
particular, among the three tree-based algorithms, the splitting
with remainder algorithm always has the smallest expected
value of packet delay, when the total arrival rate is less than
2.0. As shown in the figure, for the average packet delay, our
equation-based numerical results are consistent with packet-
based simulation results.

We also study the case when [Λ]1,1 = 0.9, [Λ]2,1 = 0.1,
[Λ]2,2 = 0.8, [Λ]3,1 = 0.1, [Λ]3,2 = 0.1, [Λ]3,3 = 0.7, and
𝑧𝑖 = 1, ∀𝑖 ≥ 4. In comparison with the previous channel
matrix, this channel matrix is more similar to a diagonal
matrix with rank three. In Figure 8, we show the network
throughput for the three tree-based algorithms and the slotted
Aloha algorithm. When the aggregated packet arrival rate is
no greater than 3.0, in terms of throughput, the splitting with
remainder algorithm outperforms the slotted Aloha algorithm.
For example, when the total arrival rate of new packets is 1.4,
the throughput for the splitting with remainder algorithm is
about 1.048, the throughput for the probe algorithm is about
0.666, the throughput for the erasure algorithm is about 0.480,
and the throughput for the slotted Aloha algorithm is about
0.7624. In Figure 9, we show the average system size for
the three tree-based algorithms. In Figure 10, we show the
average packet delay for the three tree-based algorithms. For
this channel matrix, among the three tree-based algorithms,
the splitting with remainder algorithm always has the largest
network throughput, the smallest average system size, and the
smallest expected value of packet delay.

VII. DISCUSSIONS

In this section, we analyze the computational complexity of
the proposed splitting with remainder algorithm. In addition,
we discuss how to extend the above work to more general
cases.

otherwise

1 2

30

otherwise

otherwise otherwise

A successful
transmission

A successful
transmission
& & no new

packet arrivals

new packet
arrivals

A successful
transmission
& & no new

packet arrivals

No successful
transmissions & &
new packet arrivals

No successful
transmissions & &
new packet arrivals

Fig. 11. Finite state machine for the system size of a node at the beginning
of a contention cycle, when 𝐵 = 2.

A. Computational Complexity

We now analyze the computational complexity of the
proposed splitting with remainder algorithm. Note that the
proposed algorithm is a distributed algorithm. In particular,
each node listens to the channel feedback from the access
point but two nodes do not exchange any control messages.
A packet of channel feedback is composed of two parts. The
first part represents the class of the channel feedback, while the
second part is used only when the channel feedback is partial
success. In particular, the second part is composed of 𝑁 bits
such that the 𝑖-th bit is set to one if and only if the access
point has successfully received a packet from node 𝑖. There
are three classes of channel feedback and ⌈log2(3)⌉ = 2.
Therefore, the length of a channel feedback packet is (𝑁 +2)
bits. For a node, it takes 𝑂(1) time to create an element,
to pop an element from the stack, to push an element into
the stack, or to update the stack pointer. Therefore, given
the channel feedback, it takes a node 𝑂(1) time to update
the stack and the pointer. Let 𝐻𝑖,𝑡 be a random variable that
represents the total number of elements in the stack of node
𝑖 at time 𝑡. In general, 𝐻𝑖,𝑡 is unbounded. We now show that
𝐸[𝐻𝑖,𝑡] <∞, ∀𝑖, 𝑡. According to the splitting with remainder
algorithm, 𝐻𝑖,𝑡+1 − 𝐻𝑖,𝑡 ≤ 1. Let 𝑐(𝑡) be the integer such
that 𝑇𝑐(𝑡) ≤ 𝑡 < 𝑇𝑐(𝑡)+1. Then, 𝐻𝑖,𝑡 ≤ 𝑌𝑐(𝑡). Recall that
𝑙(𝑚) < ∞ is the average length of a contention cycle of
order 𝑚. Then, 𝐸[𝐻𝑖,𝑡] ≤ max𝑚:1≤𝑚≤𝑁 𝑙(𝑚). Since 𝑙(𝑚) is
an increasing function of 𝑚, 𝐸[𝐻𝑖,𝑡] ≤ 𝑙(𝑁) < ∞. Namely,
the average space requirement is upper bounded by 𝑙(𝑁).

B. When 𝐵 = 2

We now study the case when 𝐵 = 2. In Figure 11, we show
how the system size of a node (in terms of total number of
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waiting packets) might change from time 𝑇𝑛 to time 𝑇𝑛+1,
when 𝐵 = 2. Let 𝑋(𝑘)

𝑛 be the total number of nodes, each
has 𝑘 packets at time 𝑇𝑛, ∀𝑛 ≥ 1, 𝑘 ∈ {0, 1, 2, .., 𝐵+1}. Let
Z+ be the set composed of all non-negative integers. Similar
to the case in which 𝐵 = 1, it can be proved that when
𝐵 = 2, {(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 , 𝑋

(3)
𝑛 )}∞𝑛=1 is a discrete-time Markov

chain with a finite state space Ω1,2 = {(𝑥1, 𝑥2, 𝑥3)∣𝑥1 +
𝑥2 + 𝑥3 ≤ 𝑁, 𝑥1, 𝑥2, 𝑥3 ∈ Z+}. Following the proce-
dures in section V.A and making necessary modifications,
in principle, we can derive the state transition probabilities
for the DTMC {(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 , 𝑋

(3)
𝑛 )}∞𝑛=1. Due to limit of

space, we have to leave the lengthy details as future work.
Define 𝑣(2)(𝑚1,𝑚2,𝑚3) = lim𝑛→∞ 𝑃{(𝑋(1)

𝑛 , 𝑋
(2)
𝑛 , 𝑋

(3)
𝑛 ) =

(𝑚1,𝑚2,𝑚3)}, ∀(𝑚1,𝑚2,𝑚3) ∈ Ω1,2. Let 𝜆
(2)
𝐷 be

the network throughput, when 𝐵 = 2. Define 𝑁 =∑
(𝑚1,𝑚2,𝑚3):(𝑚1,𝑚2,𝑚3)∈Ω1,2

𝑣(2)(𝑚1,𝑚2,𝑚3) × 𝑢(𝑚1 +

𝑚2 +𝑚3) and 𝐷̂ =
∑

(𝑚1,𝑚2,𝑚3):(𝑚1,𝑚2,𝑚3)∈Ω1,2

𝑣(2)(𝑚1,𝑚2,𝑚3)×𝑙(𝑚1+𝑚2+𝑚3). Then, similar to equation
13 and equation 15, we have 𝜆(2)𝐷 = 𝑁

𝐷̂
. Note that 𝑙(𝑘) has

been derived in equation 12 and 𝑢(𝑘) has been derived in
equation 14.

C. Heterogeneous Source Traffic

We now study the case in which 𝐵 = 1 but the nodes
are classified into two types according to their packet arrival
rates. Let 𝜆1 and 𝜆2 be two distinct positive real numbers.
In particular, for a type-𝑖 node, the arrival rate of new
packets equals 𝜆𝑖, ∀𝑖 ∈ {1, 2}. Let 𝑁𝑖 be the total number
of nodes in class 𝑖, ∀𝑖 ∈ {1, 2}. Let 𝑋(𝑖,𝑘)

𝑛 be the total
number of type-𝑖 nodes, each has 𝑘 packets at time 𝑇𝑛,
∀𝑛 ≥ 1, 𝑖 ∈ {1, 2}, 𝑘 ∈ {0, 1, 2, .., 𝐵 + 1}. Then, it can
be proved that {(𝑋(1,0)

𝑛 , 𝑋
(1,1)
𝑛 , 𝑋

(1,2)
𝑛 , 𝑋

(2,1)
𝑛 , 𝑋

(2,2)
𝑛 )}∞𝑛=1

is a discrete-time Markov chain with a finite state space
Ω2,1 = {(𝑥1,0, 𝑥1,1, 𝑥1,2, 𝑥2,1, 𝑥2,2)∣𝑥1,0 + 𝑥1,1 + 𝑥1,2 =
𝑁1, 𝑥2,1 + 𝑥2,2 ≤ 𝑁2, 𝑥1,0, 𝑥1,1, 𝑥1,2, 𝑥2,1, 𝑥2,2 ∈ Z+}. In
addition, for a node, the state transition diagram is similar
to that in Figure 3. Note that when the arrival rates of new
packets for all the nodes are identical, the state of the network
at the beginning of a contention cycle is represented by a two-
dimensional vector. In contrast, when the nodes are classified
into two types according to their packet arrival rates, the
state of the network at the beginning of a contention cycle is
represented by a five-dimensional vector. Thus, if the Gauss-
Seidel method is used to solve the stationary equation, the
computational complexity for throughput calculation is at least
𝑂((𝑁2

1 ⋅ 𝑁2
2 )

2) = 𝑂((𝑁1 ⋅ 𝑁2)
4). Therefore, it may be

desired to have low-complexity algorithms that produce good
approximations.

D. On Deriving Approximations with Lower Computational
Complexity

In this subsection, we outline an approach for deriving
approximations for the network performance with lower com-
putational complexity, when the splitting with remainder al-
gorithm is used and 𝐵 ≥ 2. Recall that 𝑋𝑛 is the total
number of nodes with waiting packets at the beginning of

the 𝑛-th contention cycle and 𝑍𝑛 is the remainder of the 𝑛-
th contention cycle. Let Ξ𝑛 be the total number of waiting
packets in the queues of the nodes in the network at the
beginning of the 𝑛-th contention cycle. Let 𝑞𝑛 and 𝑟𝑛 be the
integers such that Ξ𝑛 = 𝑞𝑛 ⋅𝑋𝑛 + 𝑟𝑛 and 0 ≤ 𝑟𝑛 < 𝑋𝑛. To
efficiently derive approximations for the network performance,
it is assumed that the system is homogenized at the beginning
of each contention cycle. As a result, at the beginning of the
𝑛-th contention cycle, among the 𝑋𝑛 nonempty nodes, there
are 𝑟𝑛 nodes, each has 𝑞𝑛 +1 waiting packets. In addition, at
the beginning of the 𝑛-th contention cycle, there are (𝑋𝑛−𝑟𝑛)
nodes, each has 𝑞𝑛 waiting packets. The state at the beginning
of the 𝑛-th contention cycle is represented by (𝑋𝑛,Ξ𝑛).

We now derive relations between (𝑋𝑛,Ξ𝑛) and
(𝑋𝑛+1,Ξ𝑛+1). Let 𝑀0,𝑛 be the total number of new
packets that arrive at the 𝑁 − 𝑋𝑛 nodes, each was empty
at the beginning of the 𝑛-th contention cycle, during the
𝑛-th contention cycle. Let 𝑀1,𝑛 be the total number of new
packets that arrive at the 𝑋𝑛 nodes, each had waiting packets
at the beginning of the 𝑛-th contention cycle, during the 𝑛-th
contention cycle. Then,

𝑋𝑛+1 = 𝑍𝑛 +min(𝑋𝑛 − 𝑍𝑛,Ξ𝑛 +𝑀1,𝑛) +

min(𝑁 −𝑋𝑛,𝑀0,𝑛) (20)

We now elaborate on the above equation. The 𝑍𝑛 nodes that
transmit packets at the beginning of the 𝑛-th contention cycle
but fail to deliver packets to the access point during the 𝑛-
th contention cycle will compete for channel access at the
beginning of the (𝑛 + 1)-th contention cycle. Therefore, we
have the first term in the right-hand side of the equation.
The second term is due to that for the 𝑋𝑛 − 𝑍𝑛 nodes that
successfully deliver packets to the access point during the 𝑛-th
contention cycle, packets will be moved from the queues to
the servers at the end of the 𝑛-th contention cycle, as long as
there are enough packets in the queues. Note that Ξ𝑛 +𝑀1,𝑛

is the total number of packets in the queues of the 𝑋𝑛 nodes
just before the end of the 𝑛-th contention cycle. The third
term is due to that for the 𝑁 − 𝑋𝑛 nodes that are empty at
the beginning of the 𝑛-th contention cycle, packets will be
moved from the queues to the servers at the end of the 𝑛-th
contention cycle, as long as enough new packets arrive at the
𝑁 − 𝑋𝑛 nodes during the 𝑛-th contention cycle. Note that
𝑀0,𝑛 is the total number of packets that arrive at the 𝑁 −𝑋𝑛

nodes during the 𝑛-th contention cycle.
In addition, since 𝑋𝑛 + Ξ𝑛 is the total number of packets

in the network at the beginning of the 𝑛-th contention cycle,
𝑀0,𝑛 + 𝑀1,𝑛 is the total number of new packet arrivals
during the 𝑛-th contention cycle, and 𝑋𝑛 − 𝑍𝑛 is the total
number of packets that depart from the network during the
𝑛-th contention cycle, we have 𝑋𝑛+1 + Ξ𝑛+1 = 𝑋𝑛 + Ξ𝑛 +
𝑀0,𝑛 +𝑀1,𝑛 − (𝑋𝑛 − 𝑍𝑛). Thus,

Ξ𝑛+1 = Ξ𝑛 +𝑀0,𝑛 +𝑀1,𝑛 + 𝑍𝑛 −𝑋𝑛+1 (21)

It can be proved that the discrete-time stochastic process
{(𝑋𝑛,Ξ𝑛)}∞𝑛=1 is a discrete-time Markov chain with the
finite state space Ω = {(𝑥, 𝜉)∣𝑥 ∈ {0, 1, 2, .., 𝑁}, 𝜉 ∈
{0, 1, 2, .., 𝑁𝐵}}. Thus, ∣Ω∣ = (𝑁 + 1) ⋅ (𝑁𝐵 + 1) =
𝑂(𝑁2 ⋅ 𝐵). When 𝐵 ≥ 2 and 𝑁 is much larger than
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𝐵, 𝑂(𝑁2𝐵) is much smaller than 𝑂(𝑁𝐵+1). Based on
the discrete-time Markov chain {(𝑋𝑛,Ξ𝑛)}∞𝑛=1, with minor
modifications, many results in the previous sections could be
reused to calculate the approximated values for the network
throughput and the average packet delay for the splitting with
remainder algorithm when 𝐵 ≥ 2.

VIII. CONCLUSION

In this paper, we have proposed the tree/stack splitting with
remainder algorithm for distributed medium access control in
a wireless network with multipacket reception. In order to re-
duce the length of a cycle and increase the network throughput,
when the splitting with remainder algorithm is used, some
nodes that attempt to transmit packets at the beginning of
a cycle might have to postpone their packet retransmissions
until the beginning of the next cycle. We have demonstrated
that the splitting with remainder algorithm outperforms the
probe algorithm and the erasure algorithm. For the splitting
with remainder algorithm, we have analytically and accurately
derived the network throughput and the average packet delay.
We have shown that our analytical results are consistent with
packet-based simulation results. The model and analytical
results developed in this paper could be used to numerically
obtain the optimal throughput of the network. Future works in-
clude designing an adaptive algorithm in which parameters can
be dynamically adjusted to achieve the optimal throughput.
Another direction of future research is combining transmission
power control with the splitting with remainder algorithm
to further improve the network performance. Furthermore,
changing the probability for a node to join the left subgroup
based on the knowledge of the channel matrix and the channel
feedback is also a promising direction for future research.
In the discussion section, we have shown the first steps to
extend our analysis to two other cases. We plan to work out
all the details in the near future. It is expected that when the
buffer size is greater than two, the computational complexity
to derive exact results is high. Therefore, another direction
of future research is to design low-complexity algorithms to
derive good approximations for the cases in which the buffer
size is large.

APPENDIX

A. Event-Driven Pseudo Codes for The Splitting with Remain-
der Algorithm

1) onContentionCycleBegin() {
2) element=createStackElement();
3) if (thisNodeHasWaitingPackets()==true) {
4) push(element); UpdateStackPointer(TOP); // points to

the unique element in the stack
5) }
6) else {
7) push(element); UpdateStackPointer(NULL); // points

to NULL
8) }
9) createEvent(aSlotBegins);

10) }
11)
12) onSlotBegin() {

13) if (stackPointerPointsToTopElement()==true) trans-
mitPacket();

14) }
15)
16) onReceiveChannelFeedback(int feedback) {
17) if (feedback==idle) {
18) // after poping, the pointer always points to the top

element in the stack
19) popElementAndUpdateStackPointer();
20) }
21) else if (feedback==partial success) {
22) popElementAndUpdateStackPointer();
23) }
24) else {
25) topElement=popElementAndUpdateStackPointer();
26) splitTopElement(topElement,leftElement,

rightElement);
27) push(rightElement);
28) push(leftElement);
29) if (fairCoinTossing()==HEAD) { // HEAD appears

with probability 0.5
30) UpdateStackPointer(TOP); // point to the leftEle-

ment
31) }
32) else {
33) UpdateStackPointer(TOP2); // point to the rightEle-

ment
34) }
35) }
36) if (stackIsEmpty()==true)
37) createEvent(aContentionCycleBegins);
38) }

B. Definitions of Variables

For the convenience of readers, we summarize the defini-
tions of key variables used in the above analysis as follows.
𝑁 : total number of nodes in the network excluding the

access point
Λ: a 𝑁 ×𝑁 matrix such that [Λ]𝑖,𝑗 is the probability that

the access point will successfully receive/decode 𝑗 packets in
a time slot given that 𝑖 packets are simultaneously transmitted
in the time slots
𝑧𝑖: the probability that the access point does not successfully

receive/decode any packets in a time slot, when 𝑖 nodes
simultaneously transmit in the time slot
𝑓(𝑥): the probability that 𝑥 packets arrive at a node in a

time slot
𝜆: the aggregated packet arrival rate in the network
𝐵: the buffer size at a node (a node has at most (𝐵 + 1)

waiting packets)
𝑊 𝑗

𝑛: a binary random variable such that 𝑊 𝑗
𝑛 = 1 if and

only if the server at node 𝑗 is occupied/busy at time 𝑛
𝑄𝑗

𝑛: a random variable that represents the total number of
packets in the queue of node 𝑗 at time 𝑛
𝑇𝑛: the time instance when the 𝑛-th contention cycle begins
𝑋𝑛: the total number of nodes with waiting packets at time

𝑇𝑛, which is also the order of the 𝑛-th contention cycle
𝑌𝑛: the length of the 𝑛-th contention cycle
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𝑅𝑚: the total number of packets that are successfully
received by the access point at time 𝑚
𝑍𝑛: the remainder of the 𝑛-th contention cycle (𝑍𝑛 = 𝑋𝑛−∑𝑇𝑛+1

𝑚=𝑇𝑛+1𝑅𝑚)

𝑋
(𝑘)
𝑛 : the total number of nodes with system size 𝑘 at time

𝑇𝑛 (the total number of nodes, each has 𝑘 waiting packets at
time 𝑇𝑛)
Φ1(𝑚, 𝑘, 𝑟) = 𝑃{𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟∣𝑋𝑛 = 𝑚}
𝐹

(1)
𝑛 : a random variable that represents the total number

of nodes, each has one waiting packet at time 𝑇𝑛 but fails
to successfully deliver packets to the access point within the
𝑛-th contention cycle
𝐹

(2)
𝑛 : a random variable that represents the total number of

nodes, each has two waiting packets at time 𝑇𝑛 but fails to
successfully deliver packets to the access point within the 𝑛-th
contention cycle
𝜙(𝑚1,𝑚2, 𝑟, 𝑟1) = 𝑃{𝐹 (1)

𝑛 = 𝑟1∣(𝑋(1)
𝑛 , 𝑋

(2)
𝑛 ) =

(𝑚1,𝑚2), 𝑍𝑛 = 𝑟}
Φ2(𝑚1,𝑚2, 𝑘, 𝑟, 𝑛1, 𝑛2) = 𝑃{(𝑋(1)

𝑛+1, 𝑋
(2)
𝑛+1) =

(𝑛1, 𝑛2)∣𝑌𝑛 = 𝑘, 𝑍𝑛 = 𝑟, (𝑋
(1)
𝑛 , 𝑋

(2)
𝑛 ) = (𝑚1,𝑚2)}

Θ𝑎,𝑏,𝑛: the total number of nodes, each has 𝑎 waiting
packets at the beginning of the 𝑛-th contention cycle but has
𝑏 waiting packets at the beginning of the (𝑛+1)-th contention
cycle.
𝑞 = 1− 𝑓(0)
𝜂(𝑘) = (𝑓(0))𝑘

𝑣(𝑚1,𝑚2) = lim𝑛→∞ 𝑃{(𝑋(1)
𝑛 , 𝑋

(2)
𝑛 ) = (𝑚1,𝑚2)}

𝑙(𝑘): the expected value of the length of the 𝑛-th contention
cycle, given that 𝑘 nodes concurrently transmit at the begin-
ning of the 𝑛-th contention cycle
𝐴𝑛: the 𝑛-th time instance when the 𝑛-th contention cycle of

order zero begins (the time instance when the 𝑛-th regenerative
cycle begins)
𝐸[𝐿] = 𝐸[𝐴𝑛+1 −𝐴𝑛]
𝜆𝐷: the network throughput
𝑢(𝑚): the expected value of the total number of packets

that are successfully received by the access point within the
𝑛-th contention cycle, given that 𝑋(1)

𝑛 +𝑋
(2)
𝑛 = 𝑚

𝑊𝑛 =
∑𝑁

𝑗=1𝑊
𝑗
𝑛

𝐸[𝑊 ]: the long-term average number of busy servers in the
network per time slot
𝑠1(𝑛): the average number of busy servers during a con-

tention cycle of order 𝑛
𝜉(𝑘, 𝑟) = 𝐸[𝑍𝑛 = 𝑟∣𝑋𝑛 = 𝑘]
𝐸[𝑄]: the expected value of the total number of waiting

packets in the 𝑁 queues of the network in a time slot
𝑠2(𝑛): the average queue size at a node during a contention

cycle of order 𝑛, when the queue size of the node at the
beginning of the contention cycle is zero.
𝑔(𝑚, 𝑘) = 𝑃{𝑌𝑛 = 𝑘∣𝑋𝑛 = 𝑚}
𝐸[𝐷]: average system delay for a packet (the expected value

of the total amount of time a packet spends in the system until
it is successfully received by the access point)
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