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Abstract. Fourier volume rendering (FVR) is a volume rendering
method based on the Fourier slice theorem. With an n × n × n volume
data, the FVR algorithm requires O(n2 log n) time to generate a result.
Because it requires time less than O(n3) does, FVR is preferred for
designing a real-time rendering algorithm with a preprocessing step.
We improve upon our previous work. We demonstrate that a B-spline
is significantly more useful when designing a transfer function. To de-
sign an appropriate transfer function with a spline function, additional
control points are required. However, the memory space required for
the proposed method increases in linear proportion to the number of
control points. We show that the set of control points can be clustered
into groups, ensuring the memory required is linearly proportional to
the number of groups. The proposed technique supports real-time
rendering after adjusting the transfer function for FVR. © 2011 SPIE
and IS&T. [DOI: 10.1117/1.3653264]

1 Introduction
Visualization is a technique that generates images, anima-
tions, or figures, enabling users to understand and analyze a
data set. Volume rendering is among the visualization tech-
niques commonly used for scientific data or medical vol-
ume images. Volume visualization techniques can be divided
into two types, surface rendering and direct volume ren-
dering. Surface rendering requires geometric primitives to
construct the isosurfaces that represent the set of points of a
selected constant value. These isosurfaces are then rendered
using a shading algorithm. Lorensen and Cline1 proposed the
marching cube method. In this approach, 15 primitive types
of polygons were defined to create isosurfaces from a unit
cube.

Unlike surface rendering, direct volume rendering pro-
duces rendered images by imitating x rays passing through
an object. The 2-D projections are obtained by integrating the
voxel values on the lines along the view direction. The inte-
gral is an optical model proposed by Max.2 Among the pre-
viously proposed direct volume rendering methods, texture-
based volume rendering is considered the most efficient.3 In
this method, the volume data are considered a 3-D texture.
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A set of proxy polygons parallel to the view plane are con-
structed to sample voxels from the 3-D texture. During the
sampling stage, the transfer function converts each voxel to
a color and opacity value to enhance the region of interest.
Finally, the proxy polygons are drawn using the α blending
method on the frame buffer. To improve the rendered result,
the number of proxy polygons should be increased, improv-
ing the sampling rate. This also increases the rendering time.

Another direct volume rendering method is Fourier vol-
ume rendering (FVR).4–6 FVR is based on the Fourier slice
theorem. Assuming that the Fourier transform of volume data
is available, the inverse Fourier transform of a slice from the
frequency domain, which passes through the origin and is
perpendicular to the view direction, is the projection of the
volume along the view direction. This projection is the exact
result of direct volume rendering. Using FVR, because only
the inverse Fourier transform of a slice must be calculated,
a volume of n3 voxels can be rendered in O(n2 log n) time,
providing the Fourier transform of the volume is available.
Literature regarding the FVR method is scarce. Malzbender6

designed several filters to reduce the artifacts caused by the
resampling in the frequency domain. Levoy5 presented three
shading models for FVR, including depth cueing, directional
lighting, and specular reflections. Combined with Levoy’s
shading model, Entezari et al.7 used the spherical harmonic
function to approximate cubic illumination shading for FVR.

To enhance the region of interest, designing an appropriate
transfer function is vital. Numerous practical and effective
transfer functions have been proposed. For example, Engel
et al.8 proposed the preintegrated 2-D transfer function to
improve the rendering quality. Kindlmann et al.9 used the
surface curvature to determine the contour thickness for non-
photorealistic volume rendering. Lum and Ma10 proposed the
lighting transfer function to enhance the boundary surfaces
of the region of interest. Caban and Rheingans11 designed
a transfer function that considered the texture of a feature.
Additionally, Correa and Ma developed a number of mul-
tidimensional transfer functions for various purposes.12–14

To conveniently modify a transfer function, Wu and Qu15

devised three operations for combining transfer functions.
Zhou and Takatsuka16 utilized the contour tree and residue
flow model to automatically generate a harmonic color trans-
fer function.
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For any volume rendering algorithm that processes vol-
ume data in a spatial domain, the transfer function can be ap-
plied to the volume and calculate the rendered result within
the same time bound. However, for FVR with frequency do-
main data, rerendering the volume after applying a transfer
function within the same O(n2 log n) time bound is chal-
lenging. A naive approach would be to employ one of the
following two methods: apply the transfer function to the
volume data and recompute the Fourier transform, or im-
plement the convolution operation in the frequency domain.
The time required for both approaches exceeds O(n2 log n).
To improve the re-rendering time after the application of
a transfer function, Nagy et al.17 proposed designing a bi-
nary classification transfer function for FVR. They used the
Fourier series of a step function to eliminate unwanted voxels.
Cheng and Ching18 improved on Nagy’s method by employ-
ing the linear combination property of the Fourier transform
and the Bézier curve equation to design a continuous transfer
function.

This study further improves the method developed by
Cheng and Ching,18 demonstrating that the curve equation
defined using the B-spline is more useful for controlling the
shape of the spline curve. In this approach, the memory re-
quired is dependent on the number of control points. Using
additional control points enables the flexible design trans-
fer function, but restricts the use of graphic processing unit
(GPU) due to the memory limitation. To reduce the required
memory space, this study clusters the control points into
groups. The control points in the same group either share
identical shading factors or their shading factors can be ob-
tained through polynomial interpolation. Therefore, the re-
quired memory space is linearly proportional to the number
of groups.

This paper is organized as follows. In Sec. 2, we briefly
describe the preliminaries of FVR. Section 3 details the pro-
cess of designing a B-spline curve as the transfer function.
The method to reduce the required memory by clustering
control points is presented in Sec. 4. The results are shown
in Sec. 5, and Sec. 6 contains a summary and discussion.

2 Preliminaries
In this section, we briefly describe a number of preliminaries
of FVR.

2.1 Fourier Slice Theorem
Figure 1 shows the Fourier slice theorem19 in 2-D space.
Given function f(x, y) in a spatial domain [Fig. 1(a)], let
pθ (x′) be the projection of f(x, y) in direction θ , where

x ′ = x cos θ + y sin θ, (1)

and

y′ = −x sin θ + y cos θ. (2)

Let F(u, v) be the Fourier transform of f(x, y) [Fig. 1 (b)],
and Pθ (u′) be the 1-D Fourier transform of pθ (x′). Pθ (u′) is a
line segment with orientation θ in F(u, v) passing through the
origin. Using the Fourier slice theorem, the projection of f(x,
y) along orientation θ can be obtained by taking the inverse
Fourier transform of Pθ (u′).

v

u

)'(uP

F(u, v)

)b()a(

Fig. 1 2-D Fourier slice theorem (a) in the spatial domain; pθ (x′) is
the projection of f(x, y) along θ + π /2 (b) in the frequency domain;
the line segment, Pθ (u′), is the 1-D Fourier transform of pθ (x′).

The Fourier slice theorem holds in 3-D space (Fig. 2). Let
F(u, v, w) be the Fourier transform of 3-D volume f (x, y, z).
Given the view direction v, the projection Pv(x, y) is the pro-
jection along v. Using the Fourier slice theorem, Pv(x, y) is
obtained by taking the inverse Fourier transform of Pv(u′, v ′),
where Pv(u′, v ′) is the frequency signals in a 2-D plane pass-
ing through the origin in F(u, v, w).

The FVR method can be summarized in Eq. (3). Given
the volume data f(x), x ∈ R3, we define �v as an operator
that performs FVR from the viewing direction v. The FVR
of f(x) from v can be presented as:

I = �v[ f (x)]

= FT−1
2 [FT3[ f (x)]δv]. (3)

In the first part of Eq. (3), I is the projection of f(x) from
the viewing direction v; in the second part, δv restricts the
spectrum of the 3-D Fourier transform, FT3, to a plane
passing through the origin and perpendicular to v. We then
take the 2-D inverse Fourier transform, FT−1

2 , to obtain the
projection I.

2.2 Linear Combination Property of the Fourier
Transform and the Shading Model

Let f(x)=a · A(x) + b · B(x) where A(x) and B(x) are two
integrable functions. The Fourier transform, FT, possesses
the linear combination property, as shown in Eq. (4),

FT[ f (x)] = FT[a · A(x) + b · B(x)]

= a · FT[A(x)] + b · FT[B(x)], (4)

Fig. 2 The FVR algorithm. In the frequency domain, the 2-D fre-
quency function Pv(u′, v′) passing through the origin of F(u, v, w)
is extracted. The projection pv(x, y) is obtained by taking the 2-D
inverse Fourier transform of Pv(u′, v′).
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where a and b ∈ R are two constants. This property can be
used to efficiently implement the shading model and transfer
function of FVR.

The shading model of FVR proposed by Levoy5 employs
the linear combination property advantage. Let g be a shading
model applied to the volume data f(x). From Eq. (3), the FVR
of the resulting volume can be presented as

I = �v{g[ f (x)]} = FT−1
2 (FT3{g[ f (x)]}δv). (5)

If g[f(x)] can be decomposed into a linear combination of m
terms, then

g[ f (x)] = h0 · g0[ f (x)] + h1 · g1[ f (x)]

+ · · · + hm−1 · gm−1[ f (x)], (6)

where hi is the shading factor. Substituting Eq. (6) into g[f(x)]
in Eq. (5), we obtain

I = �v{h0 · g0[ f (x)] + h1 · g1[ f (x)]

+ · · · + hm−1 · gm−1[ f (x)]}
= FT −1

2 [(h0FT3{g0[ f (x)]}
+ h1 · FT3{g1[ f (x)]}
+ · · · + hm−1 · FT3{gm−1[ f (x)]})δv]

= h0 · �v{g0[ f (x)]} + h1 · �v{g1[ f (x)]}
+ · · · + hm−1 · �v{gm−1[ f (x)]}

=
m−1∑
i=0

hi · �v(gi [ f (x)]). (7)

In Eq. (7), the rendered result is the summation of m weighted
FVR results. Therefore, recomputing the 3-D Fourier trans-
form is not required if �vgi[f(x)], i = 0, 1, . . . , m − 1, in
Eq. (7) are available.

2.3 Bézier Curve Transfer Function
Cheng and Ching applied the shading model and used a
Bézier curve as the transfer function.18 For completeness,
we briefly describe the method in this subsection. A Bézier
curve defined by m control points is shown as follows:

B(u) =
m−1∑
i=0

wi bi,m−1(u), (8)

where u and wi ∈ R, and

bi,m−1(u) =
(

m − 1
i

)
(1 − u)m−i−1ui . (9)

As shown in Fig. 3, a Bézier curve is defined in the uw co-
ordinate system, where the u-axis corresponds to the voxel
value and the w-axis corresponds to the shading weight of the
voxel value. The Bézier curve consists of m control points,
pi = (ui, wi), i = 0, 1, . . . , m − 1, ui = u0 + ih and
h = 1/(m − 1). By adjusting wi, we edit the transfer func-
tion. Combining Eqs. (8), (5), and (7) FVR with a Bézier
curve transfer function is written as

I = FT−1
2

(
FT3

{
m−1∑
i=0

wi bi,m−1[ f (x)]

}
δv

)

Fig. 3 A spline with m control points can be used to present the
transfer function. The shape of a spline curve can be modified by
changing the height of the control points using a GUI system.

= FT−1
2

({
m−1∑
i=0

wi FT3(bi,m−1[ f (x)])

}
δv

)

=
m−1∑
i=0

wi�v(bi,m−1[ f (x)]). (10)

According to Eq. (10), the FVR of a volume after applying
the Bézier curve transfer function of m control points is the
summation of m weighted FVR results.

Viola et al.20 presented an implementation of FVR using
GPU with the advantage of parallel computing to accelerate
FVR computation.

3 B-spline Transfer Function
One disadvantage of the Bézier curve transfer function is its
inability to enable good localized control of the curve shape.
Modifying a control point may alter the shape of a significant
portion of the Bézier curve. Compared to the Bézier curve, a
B-spline21 is more useful in controlling the curve shape.

A k-degree B-spline is defined as follows:

R(u) =
m−1∑
i=0

wiri,k(u), (11)

where

ri,k(u) = si,k(u)∑m−1
j=0 s j,k(u)

(12)

and si, k(u) is the B-spline basis function. Let a nondecreasing
sequence T = {ti|ti ≤ ti + 1, i = 1, . . . , l − 1} be the knot
vector. si, k(u) is recursively defined as

si,k(u) = u − ti
ti+k − ti

si,k−1(u) + ti+k+1 − u

ti+k+1 − ti+1
si+1,k−1(u),

(13)

and

si,0 =
{

1 if ti ≤ u < ti+1,

0 otherwise.
(14)

Given the volume data f(x), taking Eq. (11) as the transfer
function, and applying FVR to the resulting volume, we have

I = �v{R[ f (x)]}. (15)
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Fig. 4 Seven control points are clustered into four groups. In this
case, only four copies of volume data are required.

Substituting Eq. (11) into Eq. (15), and according to
Eq. (7), we have

I = FT−1
2

(
FT3

{
m−1∑
i=0

wiri,k[ f (x)]

}
δv

)

= FT−1
2

[(
m−1∑
i=0

wi FT3{ri,k[ f (x)]}
)

δv

]

=
m−1∑
i=0

wi�v{ri,k[ f (x)]}. (16)

The FVR of a volume after applying the B-spline transfer
function is the summation of the m-weighted FVR results.

4 Increasing the Control Points
Using additional control points enables the transfer function
to be easily shaped to a desired form. Unfortunately, the
memory space requirements are linearly proportional to the

Fig. 5 The rendered results that were obtained using the Bézier curve transfer function. The data set was the CT-scan human chest of 2563

voxels. The left image in the first row depicted lung structure. The image in the right shows the transfer function. We tried to enhance the gray
scale between 0.4 and 0.65. But the gray scale between 0.25 and 0.8 is also enhanced so that the lung capillaries were blurred. The left image
in the second row shows the bone structures through enhancing the gray scale between 0.9 and 1.0.
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number of control points. Consequently, the volume data may
not fit into the GPU memory. To overcome this problem, we
propose to increase the number of control points, but then
cluster the control points into groups. Control points in the
same group will either share identical shading factors or their
shading factors can be obtained through interpolation. The
memory required then depends on the number of groups,
which are manageable in size.

Given n control points in q clusters, the i’th cluster con-
tains mi control points with the weight wi, and the formula
of the spline curve is provided as follows:

R(u) =
q−1∑
i=0

mi −1∑
j=0

wiα j rî(p j ),k(u), (17)

where αj is a constant and î(p j ) is the index of the control
point p j . Applying Eq. (17) to Eq. (7), we have

q−1∑
i=0

wi�v

⎧⎨
⎩

mi −1∑
j=0

α j rî(p j ),k[ f (x)]

⎫⎬
⎭ . (18)

The control points in the same cluster share the same shad-
ing weight; thus, only one copy of the volume data is
stored in the GPU memory. In Fig. 4, the curve consists
of eight control points. We can cluster the eight control
points into four groups, G0 = {p0}, G1 = {p1, p3, p5}, G2
= {p2, p4} and G3 = {p6, p7}. In this case, only four copies
of the volume data are required.

If the weight of a control point can be obtained by inter-
polation from the weights of other control points, then the
control point can be clustered into a group. Given a sequence
of control points pc, 0 ≤ i ≤ c ≤ j < m, the weight of the con-
trol point pd , i < d < j, can be obtained through polynomial
interpolation

wd =
j∑

c=i,c �=d

wclc(ud ). (19)

In Eq. (19), lc is an interpolation basis function, such as linear
interpolation, spline interpolation, or Lagrange interpolation.
For the ease of explanation, we assume only one control point
is obtained through interpolation. However, generalizing to

Fig. 6 The same volume data are used as in Fig. 5. The rendered results were obtained using the B-spline transfer function. The first row shows
lung structure and second shows bone structure. Using the B-spline transfer function was easier to control the curve shape. The lung capillaries
were more clearly shown in the rendered result compared to the result in Fig. 5.
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more than one control point is not difficult. Applying the
transfer function to a volume, Eq. (16) becomes

I = wd�v{rd,k[ f (x)]} +
m−1∑

c=0,c �=d

wc�v{rc,k[ f (x)]}

=
j∑

c=i,c �=d

wclc(u)�v{rd,k[ f (x)]} +
m−1∑

c=0,c �=d

wc�v{rc,k[ f (x)]}

=
j∑

c=i,c �=d

wi�v{lc(u)rd,k[ f (x)] + rc,k[ f (x)]}

+
∑

0≤c<i

wc�v{rc,k[ f (x)]} +
∑

j<c<m

wc�v{rc,k[ f (x)]}.

(20)

The simplest polynomial interpolation is linear interpolation,
given three control points pi = (ui , wi ), p j = (u j , w j ) and

pd = (ud , wd ), where ui < ud < uj. The weight wd can be
obtained by

wd = (1 − β)wi + βw j , (21)

where β = (ud − ui)/(uj − ui). Applying the transfer func-
tion to the volume, Eq. (16) becomes

I = wi�v{ri,k[ f (x)]} + wd�v{rd,k[ f (x)]}
+ w j�v{r j,k[ f (x)]}

= wi�v{ri,k[ f (x)]} + w j�v{r j,k[ f (x)]}
+ [(1 − β)wi + βw j ]�v{rd,k[ f (x)]}

= wi�v{ri,k[ f (x)] + (1 − β)rd,k[ f (x)]}
+ w j�v{r j,k[ f (x)] + βrd,k[ f (x)]}. (22)

Equation (22) shows that recomputing the Fourier transform
of the volume data is not required if the weights of the control
points are modified.

Fig. 7 The same volume data are used as in Fig. 5. The rendered results were obtained using the B-spline transfer function defined by 20
control points. The control points were clustered into six groups, G0–5. The first row shows lung structure, the gray scale between 0.4 and 0.65
was enhanced. The second row shows bone structure, the gray scale between 0.7 and 1.0 was enhanced. Compared to the results that are
shown in Fig. 6, the lung capillaries and backbone structure were further enhanced.
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Fig. 8 Chapel Hill CT Head with 2563 voxels. The results were obtained using the B-spline transfer function. The first row shows the rendered
results that were obtained using a B-spline transfer function of six control points. The second and third rows show the rendering results obtained
using a B-spline transfer function of 16 control points. These 16 control points were clustered into six groups, G0–5. In the second row, the soft
tissue structures were rendered through enhancing G1, G2, and G4. On the third row, the boundaries between each structures were rendered
through enhancing G1, G3, and G5.
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5 Results
We developed a graphical user interface (GUI) software sys-
tem with the proposed transfer function for FVR. Using the
developed software system, users can easily modify the trans-
fer function and change the view direction. Our implemen-
tation environment was as follows:

1. CPU: Pentium 4, 2.4 GHz

2. Memory: 2 GB

3. GPU: nVidia GeForce 8800 GT

4. Video memory: 768 MB

5. Viewport size: 512 × 512 pixel

To evaluate the performance, we used two sets of volume data
of different size, 1283 and 2563, with the B-spline transfer
functions defined by one, four, and six control points. We
measured the rendering time and preprocessing time, which
included computing a 3-D FFT. The performance of different
cases is shown in Table 1. Because modern GPUs support

Table 1 Computing time of two cases using the B-spline as a transfer
function.

Data size (voxel) 1283 2563

No. control points 6 4 1 6 4 1

Memory required (MB) 96 64 16 768 512 128

Preprocessing (s) 18.1 12.1 3 167.4 109 8.7

Frame rate (fps) 64.1 65.8 66.46 59.2 62.41 66.26

parallel computing, increasing the volume size and number
of control points slightly affect the frame rate. However, the
preprocessing time is linearly proportional to the volume size
and the number of control points.

This study presents the rendered results using several data
sets. The first data set was CT-scan human chest volume

Fig. 9 The Orange with 2563 voxels. The results were obtained using a B-spline transfer function of 15 control points. We clustered 13 control
points that are expressed by blue circles into six groups, G0–5. Two points, pa and pb (expressed by black squares), were obtained through
interpolation. Their vertical positions were linearly interpolated from G0 and G5. In the top row, we mainly enhanced the weight of G2 to render
the peel. The bottom row shows the results of the orange pulp. The gray scale of the pulp is between 0.3 to 0.5, the weight of G4 and G5 was
enhanced to render the orange pulp.
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data. The volume size was 2563 voxels. The rendered results
obtained using the Bézier curve and the B-spline transfer
functions defined by six control points are shown in Figs. 5
and 6, where the images on the left show the rendered result
obtained by applying the transfer functions that are shown
on the right. The transfer functions in the first and second
rows of both figures were designed to depict lung and bone
structure, respectively. As shown in Fig. 6, using B-spline as
the transfer function can significantly enhance lung capillar-
ies. The result in Fig. 7 show that using a transfer function
with greater control points can achieve better rendering. This
study used a B-spline transfer function with 20 control points
clustered into six groups. In a comparison of the images
shown in Figs. 6 and 7, the lung capillaries were significantly
enhanced.

We also tested the three sets of volume data (see Ref. 22)
commonly used in most volume rendering literature. In
Fig. 8, the input is the Chapel Hill CT Head with 2563 voxels.

The rendered image in the first row is obtained by applying
the B-spline transfer function of six control points. The im-
ages in the second and third rows are obtained by applying
the B-spline transfer function with 18 control points clus-
tered into six groups, G0–5. The second row shows the soft
tissue structures, and the third row shows the boundaries of
the soft tissue and bone structures. To render the soft tissue
structures (gray scales between 0.125 and 0.4), we enhanced
the weights of G1, G2, and G4. To render the boundaries of
each structure, we enhanced the weights of G1, G3, and G5.

Figure 9 shows the FVR results of an orange with 2563

voxels. We used a B-spline transfer function with 15 control
points, and clustered 13 control points (blue circles) into
six groups, G0–5. The weights of the two points pa and pb
were obtained from G0 and G5 through linear interpolation.
The top row shows the results of the peel structure and the
bottom row shows the rendered results of the pulp structure.
To render the peel, we substantially enhanced the weight

Fig. 10 Engine block with 2563 voxels. The results were obtained using a B-spline transfer function of 20 control points. We clustered 18 control
points that were expressed by blue circles into six groups, G0–5. Two points pa and pb expressed by black squares were obtained by interpolation.
The vertical position of pa was linearly interpolated from G0 and G1 and the vertical position of pb was linearly interpolated from G3 and G4. The
top and bottom rows show the rendered results of two different portions in the engine.
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Fig. 11 The same volume data are used as in Fig. 10. The rendered results were obtained using a Bézier curve transfer function (top row) and
a B-spline transfer (bottom row). The number of control points was 50. p0 to p4 can be moved to adjust the curve. The other 45 control points
were clustered in a group G0. The B-spline transfer function could enhance the regions of interest, whereas the Bézier curve transfer function
could not. The main reason is because the B-spline provides a much localized control of the curve. This figure demonstrates that B-spline curve
transfer function is much useful than the Bézier curve transfer function.

of G2. The weights of G1 and G3 were slightly enhanced
to smooth change the gray scale in the rendered result. To
render the orange pulp, we enhanced the weights of G4 and
G5. Changing the vertical position of G5 can also change the
vertical positions of pa and pb, ensuring the smooth change
of the gray scale in the rendered results.

Data for the final test from an engine with 2563 voxels.
The results are shown in Figs. 10 and 11. In Fig. 10, we used
the B-spline transfer function of 20 control points, where 18
control points expressed by blue circles were clustered into
six groups, G0–5. The two control points pa and pb, expressed
by black squares, were obtained through interpolation. The
vertical position of pa is linearly interpolated by G0 and G1
and the vertical position of pb is linearly interpolated by
G3 and G4. The top row shows the results of the interior
structure. To depict the interior structure of the engine, we
enhanced only G1 and G2. To render the hardest portion of
the engine, G5 was primary enhanced; the rendered results

are shown in the bottom row. In Fig. 11, the top row shows the
rendered result of applying the Bézier curve transfer function
of 50 control points. The heights of the five control points,
p0 to p4, could be changed to adjust the curve shape. The
other 45 control points were clustered in a group G0. As
shown in Fig. 11, sliding p0 to p2 upward cannot raise the
curve to the desired position. Moving p3 and p4 upward only
produces a bump on the curve. By contrast, using the B-
spline transfer function, we can generate the desired shape
of the transfer function. With numerous control points each
controlling a small portion of the curve shape, the B-spline
transfer function is significantly more useful compared to the
Bézier transfer function.

6 Conclusions and Discussion
This paper shows that the O(n2 log n) rendering time can
be maintained by applying a transfer function defined by
B-spline. We also show that the B-spline is significantly
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more useful compared to the Bézier curve when designing
a transfer function.

However, one disadvantage of the proposed method is the
significant amount of memory required. A user can more
easily design a curve shape if more control points are used.
However, the memory required increases in linear proportion
to the number of control points, and the GPU memory is lim-
ited. Currently, commercially available GPUs can process a
volume of 2563 if six control points are used. When addi-
tional control points are required, the control points can be
clustered into groups if they possess the same weight or their
weight can be obtained through interpolation. Each group
requires a copy of the volume to ensure the required memory
can be maintained at a manageable size.

One limitation of the proposed method is that transfer
functions containing a negative value are not allowed. We aim
to examine this issue is our future research. Additionally, we
also aim to design an efficient sampling method for extracting
a slice of the frequency domain volume. We observed that the
computing time required for sampling a slice of the frequency
domain data is longer than that required to perform the inverse
2-D Fourier transform. A more efficient sampling method is
required to improve the overall performance.
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