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Automatic construction of CSG solids from a
single isometric drawing

M. C. WU and M. S. LIN

Abstract. This paper presents an algorithm for constructing a
3D workpiece in CSG (constructive solid geometry) represen-
tation from a single 2D isometric drawing. Currently, the
concerned workpieces are limited to simple rectilinear poly-
hedra where any two faces or edges are either parallel or
perpendicular to each other, however, the shape of con-
structed workpiece can further be modi® ed by the application
of wireframe-based approach of variational geometry. Com-
pared to previous relevant work, the proposed algorithm is
distinguished by its capability to deal with degenerate 2D line
drawings; that is, problems where two distinct edges are
projected on to one line can be solved.

1. Introduction

The application of CAD/CAM systems have been
recognized as effective tools for enhancing the produc-
tivity of factories. Solid modellers, designed to represent
a workpiece in computational form, are essentially the
core of CAD/CAM systems. CSG (constructive solid
geometry) and BREP (boundary representation) are
two major representation schemes in solid modellers,
which have been widely used in developing CAD/CAM
software. However, the manual description of a work-
piece in BREP is quite time consuming and error-prone
(Requicha 1980), and about 50% of users feel uncom-
fortable with the use of CSG as a scheme for describing
solids (Yoshiura et al. 1984). Therefore, developing a
user-friendly input scheme for solid modellers has been
a signi® cant research topic in CAD/CAM areas.

Traditionally, designers have adopted engineering
drawings as the standard communication medium in
describing a workpiece, in which the three-view draw-
ings (front, top and side views) are most popularly used.
Many researchers therefore aimed to develop algo-
rithms for converting three-view drawings into a solid
model, either in CSG or BREP (Wang and Grinstein,

1993). However, adopting the three-view drawings to
construct a solid is inherently de® cient in three aspects.

First, the information contained in the three-view
drawings may be incomplete in describing a 3D solid.
That is, a set of three-view drawings may be used to infer
more than one 3D solid (Guja and Nagendra 1989). In
the discipline of engineering graphics, the three ortho-
graphic projection views, though most widely used, only
constitute part of the engineering drawings. Other
drawings, such as pictorial views, auxiliary views, and
sectional views are generally used to aid the description
of a workpiece (French et al. 1986). However, these
drawings have seldom been considered as a part of the
input scheme for solid modellers in previous research.

Second, the three orthographic views do not readily
enable designers to directly describe their design inten-
tion. In the conceptual design stage, most designers
tend to use pictorial views such as isometric, oblique
or perspective projection views (Tu 1992). When the
conceptual design work has been completed, the pictor-
ial views are then expressed in detail by giving their
three orthographic projection views with dimensioning.

Third, the procedure of manually converting pictorial
views to the three orthographic views is time-consuming
and error-prone because the three orthographic views
are not ìntuitive’ in showing the 3D shape of the
workpiece. Manual conversion errors, such as missing
out lines or erroneously adding extra lines on certain
views, would result in a set of three-views which cannot
represent a valid solid.

From the above discussion, it is quite natural to
consider pictorial views as an essential part of the
input scheme for solid modellers. That is, algorithms
for converting the pictorial views of a workpiece into its
CSG or BREP are demanded. However, pictorial views
involve three classes: axonometric projection, oblique
projection and perspective projection views; axono-
metric projection is further divided into three types:
isometric projection, dimetric projection and trimetric
projection (French et al. 1986). Among these pictorial
drawings, isometric views are quite popular.
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This paper presents an algorithm for converting the
isometric view of a workpiece into its CSG. Currently, the
workpieces concerned are limited to simple rectilinear
polyhedra; that is, any two faces or edges on the solid are
either parallel or perpendicular to each other. Like the
three-view drawings, the information contained in a
single isometric view may not be suf® cient to describe
a unique solid. That is, one isometric view may map to
more than one or even an in® nite number of solids. In
this algorithm, we generate only one solid which tends
to have the least number of surface intersections on the
hidden part of the workpiece. Note that the shape of a
constructed 3D rectilinear solid can further be embel-
lished by the application of a variational geometry
approach (Han 1993) so that inclined faces and hole
features can be created.

2. Relevant research

Research relevant to the reconstruction of a 3D solid
from its 2D line drawing(s) or projection(s) has been
reported in several ® elds such as CAD, arti ® cial intelli-
gence and a computer vision. A thorough survey was
given by Wang and Grinstein (1993), in which previous
studies are essentially characterized by two criteria: the
number of 2D line drawing(s) available (single-view or
multi-view), and the internal representation (CSG or
BREP) of the reconstructed solid.

The reconstruction of a 3D solid from the three-view
(multi-view) drawings in general has been claimed to be
a research issue in the CAD area. The main purpose of
solving such a problem is to facilitate the input process
of a solid modeller. Idesawa (1973) was the pioneer to
investigate this topic, and his algorithm was developed
to generate polyhedral solids in BREP. Along the BREP
track, much research work was subsequently proposed
to either enhance the robustness of the reconstruction
process or extend the applicable workpiece domain
(Lafue 1976, 1978, Markowsky and Wesley 1980,
Wesley and Markowsky 1981, Preiss 1981, 1984, Haralick
et al. 1982, Sakurai and Gossard 1983, Yoshiura et al.

1984, Richards and Onwubola 1986, Iwata et al. 1988,
Gujar et al. 1989, Muller and Richter 1990). Several
studies proposed algorithms for constructing CSG
solids (Aldefeld 1983, Aldefeld and Richter 1984, Ho
1986, Chen and Perng 1988, Chen et al. 1992).

In the ® eld of arti® cial intelligence and computer
vision, the work of reconstructing a 3D polyhedral solid
from a single 2D line drawing can be traced back to
Guzman’s work (1968). Later, Huffman (1971) and
Clowes (1971) independently developed a famous label-
ling scheme for junctions which provides the necessary
conditions for physically realizing a 2D line drawing.
Sugihara (1986) developed a linear algebraic approach
which ® rst provides the necessary and suf® cient

conditions for the physical realization of a 2D line
drawing. In his work, a polyhedra object in BREP can
be ef® ciently constructed with the aid of the Huffman ±
Clowes labelling scheme. With the same labelling
scheme, Wang and Grinstein (1989) and Wang (1992)
developed methods for the construction of polyhedra in
CSG from a single 2D projection.

Note that in the single-view approach, most work
assumes that the 3D object to be reconstructed is
viewed from a general position; that is, any two distinct
edges should not overlap on their projections. The
assumption of a general position is to eliminate degen-
erate cases. Further, it implies that the solid to be
reconstructed is an existing one. However, in designing
a new workpiece using the isometric view, engineers
would ® nd that two distinct edges may quite easily have
an overlap on their projections, if a particular dimen-
sion value is desirable (Figure 1). Surely, a small rotation
on the workpiece would eliminate the edge overlapping
problem. However, in the design stage, where the 2D
line drawing is created by designers instead of being
obtained from the projection of an existing 3D solid,
such a rotation is impossible. Therefore, the problem of
overlapping edges on a 2D line drawing should not be
ignored in the sense of providing a user-friendly input
scheme for solid modellers.

This paper presents a new algorithm for constructing
a CSG rectilinear polyhedron from a single-view

M. C. Wu and M . S. Lin2

Figure 1. Degenerate cases which show that the projections of
two distinct edges may overlap.
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isometric drawing. Compared to previous relevant work,
this algorithm can deal with the degenerate cases which
have been ignored in the single-view approach, and the
constructing primitives for representing a rectilinear
CSG polyhedron is not limited to rectangular blocks
(Wang and Grinstein 1989).

3. Notation and characteristics of isometric drawings

Isometric projection is a type of orthographic projec-
tion in which only one projection plane is used, and the
projected object has been turned so that its three faces,
mutually perpendicular in the 3D world, can be shown
on the 2D projection to obtain a pictorial effect
(French et al. 1986). The isometric projections of the
X , Y , and Z coordinate axes are called isometric axes, with
their angles being 30Ê, 90Ê, and 150Ê, respectively, with
respect to the horizontal line. Each edge on an isometric
projection is foreshortened equally to about 82% of its
original length. Therefore, the term isometric drawing has
been de® ned to be one which keeps 100% true length of
edges by scaling up the isometric projection (French et
al. 1986). In this research, the input is an isometric
drawing represented in IGES format (Zeid 1991).

3.1. Notation

De® nition: A directed edge denoted by V iV j is a ® nite
length vector on an isometric drawing, where V i is the
starting vertex and V j is the ending one. Alternatively,
Vi Vj denotes a ray or a semi-in® nite line.

De® nition: A closed loop comprises a set of sequentially
connected edges, with the last edge connecting to the
® rst one so as to form an enclosed region, which is
represented by L (V1 , V2 , . . . , Vn ) where Vi is a vertex on

the loop. Alternatively, if the last edge does not connect
to the ® rst one, the set of edges is known as an open loop,
represented by ÃL(V1 , V2 , . . . , Vn ).

De® nition: A closed loop is called a simple loop if its
enclosed region contains no edge, such as loop
L (V13, V12, V11, V10) in Figure 2(a); otherwise it is known
as a non-simple loop, e.g. loop L (V13 , V12 , V11 , V9 , V8 , V10) in
the same ® gure.

De® nition: An edge is known as an exterior edge if it
serves as a part of the boundary separating the free
space and an isometric drawing such as edge V13V12 in
Figure 2(a); otherwise it is known as an interior edge, e.g.
V11V10 in the same ® gure.

3.2. Characteristics of simple loops

For a simple loop on an isometric drawing, there are
two noteworthy characteristics. First, if a simple loop
contains edges with three types of slopes, its bounding
region cannot be a complete face in the 3D world. As
stated, the workpieces are rectilinear ones, each edge
therefore should be parallel to one axis of the 3D
coordinate system. This implies that there exist only
three types of edges on a workpiece and only two types
of edges on a face. The isometric projection of a face, if
not hidden at all, would contain only two types of edges.
Should it contain three types of edges, such as loop
L (V1, V2 , V3) in Figure 2(a), its bounding region would
not be a complete face in the 3D world.

Second, on an isometric drawing, an exterior edge
belongs to only one simple loop and an interior edge
belongs to two simple loops. As shown in Figure 2(a),
exterior edge V13V12 belongs only to loop L(V13 ,
V12 , V11 , V10), and interior edge V10V11 belongs to two
simple loops, L(V13 , V12 , V11 , V10) and L (V10 , V11 , V9 , V8).

The rationale can be explained below. An edge on a
3D workpiece has only two neighbouring faces; its
isometric projection should have two neighbouring
faces or have only one if the other is completely
hidden. An exterior edge can have only one neigh-
bouring face visible; if its two neighbouring faces are
both visible, this edge cannot be a boundary of the
isometric drawing. Therefore, an exterior edge belongs
to only one simple loop. Alternatively, on an isometric
drawing, the whole region bounded by exterior edges is
separated into several subregions. An interior edge is
the boundary of two subregions and therefore belongs
to two simple loops.

3.3. Hidden effects on isometric drawings

The isometric projection of a 3D workpiece may result
in some hidden phenomenon; that is, the projection of
a face or an edge is partially or wholly hidden by that

Construction of CSG solids from a single isometric drawing 3

Figure 2. Relationship between 2D and 3D coordinates of a vertex.
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of some other geometric entities. Some terms relevant
to the hidden effects are de® ned below: overlaid edges,
partially visible edges, partially visible faces, completely visible
faces and almost invisible faces.

An overlaid edge is a 2D line segment which denotes a
portion commonly shared by the projections of two
distinct edges. As shown in Figure 1(b), line segment
V3V6 is an overlaid edge which is commonly shared by
two distinct projections (V3V6 and V1V7).

A partially visible edge is the portion of an edge projec-
tion which has been partially hidden on the isometric
drawing. For example, edge V1V3 (Figure 2(a)) is a
partially visible edge if we consider V1V16 (Figure 3) as
its original form in the 3D world.

A partially visible face is a bounded region on an
isometric drawing, whose inverse projection is not a
complete face in the 3D world (Figure 2(a)) the
region bounded by loop L(V3 , V1 , V2) is a partially visible
face; its original form in 3D world may be a face
bounded by a loop L(V1 , V2 , V15 , V16) as shown in
Figure 3. In the 3D world edge V2V3 is not a part of
this face; the other two edges V1V3 and V1V2 are really on
the face and form an open loop ÃL (V1 , V2 , V3) which is
known as the corresponding partially visible loop of the face.

A completely visible face is a bounded region on an
isometric drawing, whose inverse projection is a
complete face in the 3D world; that is, the face
projection is not hidden at all. An example is the
face bounded by loop L (V13 , V12, V11, V10) in Figure 2(a).
The corresponding loop of such a face is known as a
completely visible loop.

An almost invisible face is one which is wholly hidden
except some of its bounding edges when the isometric
projection is applied. As shown in Figure 2(a) the con-
nection of edges V2V4 and V4V5 denotes that a face
containing these two edges, like the one bounded by
loop L (V2 , V4 , V5 , V15) in Figure 3, should exist in the 3D
world, even though it is almost invisible in the 2D world.
To characterize this type of face, its corresponding open
loop, such as ÃL (V2 , V4 , V5) is known as an almost invisible loop.

The visibility of faces can be determ ined by a simple
rule. That is, a workpiece face should have its outward

normal pointing in the - X , - Y , and + Z axis direc-
tions if its isometric projection is to be completely or
partially visible (Figure 1(b)). Conversely, a workpiece
face with its outward normal pointing in the opposite
directions (i.e. + X , + Y , - Z directions) will be com-
pletely invisible or almost invisible. That is, the out-
ward normal of a face bounded by either a partially
visible loop, a completely visible loop, or an almost
invisible loop can be determined from the two types of
its comprising edges.

In the following discussion, completely visible and
partially visible faces are both termed as visible
faces, because at least part of their isometric projections
are visible. For ease of presentation, faces and their
corresponding loops are sometimes taken as synonyms.

4. System framework of the algorithm

The system framework of the proposed algorithm is
shown in Figure 4. The input to the system is the
isometric drawing of a workpiece, a set of 2D line
segments or edges (Figure 5(a)) represented in IGES
format where the 2D coordinate of each vertex and the
neighbouring relationships between vertices and edges
can be explicitly determined from the input ® le.

4.1. Two major modules

The algorithm is composed of two major modules.
The ® rst one is designed to ® nd all the visible faces and
to determine the 3D coordinates of vertices on the

M. C. Wu and M . S. Lin4

Figure 3. Original form of a partially visible face.

Figure 4. System framework of the proposed algorithm.
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isometric drawing. In the illustrated example, visible
faces involve faces f 1, f 2, f 3, f 4, f 5 and f 6 (Figure
5(b)).

With the 3D coordinates of vertices having been
determined, the second module aims to ® nd a 3D
sweeping distance for each visible face, and generates a
solid by moving the visible face along its inward normal
with the sweeping distance. The generated solid is
known as a subsolid because it is a subset of the original
workpiece (Figure 5(c)). For visible faces f 1, f 2, . . . and
f 6, their corresponding sweeping distances are d 1,
d 2, . . . and d6, respectively, and the generated subsolids
are as shown in Figure 5(d). Finally, the Boolean union
operation on all the subsolids found is the resulting
workpiece solid model in CSG (Figure 5(e)).

4.2. Three submodules for ® nding visible faces

The module for ® nding visible faces is relatively
complicated and requires further explanation of its
three submodules (Figure 4).

The ® rst one is known as the preprocessing submodule

which is designed for three purposes: (1) determining
the 3D coordinate of each vertex on the isometric
drawing; (2) identifying partially visible and overlaid
edges; and (3) modifying the data structure of the
isometric drawing whenever overlaid edges are
detected. That is, the ® nal data structure of the isometric
drawing should be able to represent an overlaid edge
as two distinct edges to re¯ ect its 3D topological
relationship.

Construction of CSG solids from a single isometric drawing 5

Figure 5. Examples for illustrating procedures of the proposed algorithm.
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The second submodule is known as the loop identi ® ca-
tion submodule which is designed for identifying three
types of loops: (1) completely visible loops; (2) partially
visible loops; and (3) almost invisible loops. The ® rst two
types are identi® ed for the generation of their corre-
sponding subsolids. Almost invisible loops are recog-
nized to aid the reconstruction of partially visible loops.

The third submodule is known as the loop modi® cation
submodule which aims to modify all partially visible and
some almost invisible loops into their expected original
forms without being hidden, which are closed loops and
will be used to generate subsolids.

5. Preprocessing submodule

In the preprocessing submodule, the determination of
3D coordinates of vertices will be presented as below. We
® rst discuss the basic relationship between 2D and 3D
coordinates of a vertex, then depict the characteristics of
those vertices which have multiple inverse projections, and
illustrate the inference method for determining their 3D
coordinates. The derived 3D coordinates are ® nally used in
the identi® cation of overlaid and partially visible edges.

5.1. Relationship between 2D and 3D coordinates of a vertex

As stated, each edge on the isometric drawing must
be parallel to one isometric axis, and the 2D length of an
edge should be exactly equal to its 3D length. These two
properties are used in determining the 3D coordinates
of vertices on an isometric drawing.

In Figure 2, the directed edge v13v12 on the isometric
drawing is parallel to the X isometric axis (X s), with its
2D length equal to +50 units along the + X s axis (alter-
natively, the 2D length of directed edge v12v13 is - 50
units along the + X s axis). Suppose vertex V13 is the
origin of the 3D workpiece coordinate system, we can
infer that the 3D coordinate of vertex V12 is (50, 0, 0).
Likewise, the length of directed edge v12v11 is +20 units
along the + Z s axis; the length of edge v11v10 is - 50 units
along the +X s axis. The 3D coordinates of vertex V11 and
V10 can be determined to be (50, 0, 20), and (0, 0, 20),
respectively.

5.2. M ultiple inverse projections and collinear vertices

Notice that the 3D coordinates of some vertices may be
inferred to be identical even by travelling through differ-
ent paths. For example, vertex V10 in Figure 2(a) can be
directly inferred from vertex V13 , or indirectly by traveling
through the path (V13 ® V12 ® V11 ® V10). By either
path, the two inferred coordinates for vertex V10 are
the same, both being (0, 0, 20).

However, the above situation may not be valid for some
vertices like V3 in this ® gure. The 3D coordinate of vertex
V3 can be inferred by its three neighbouring vertices V1 ,
V2 and V4 . Note that the 3D coordinate of vertex V3 can
be determined to be (20, 50, 20) when inferred from
vertex V1 ; and can be (0, 30, 40) when either inferred
from vertices V2 or V4 (Figure 2(b)).

Two different 3D coordinates being inferred for
vertex V3 indicates that vertex V3 on the isometric view
is the projection of two different points in the 3D world.
Its real situation may be as shown in Figure 3, where
edges V1V16 and V2V4 have no intersection in the 3D
world while their projections intersect at vertex V3 on
the isometric drawing. With respect to edge V2V4 in the
3D world, vertex V3 in fact is an in-between point rather
than an end point of the edge.

To characterize the type of vertices like V3 , a vertex on
the isometric drawing is known as a collinear vertex if it is
collinear with two other vertices and stays in-between
on their connecting edge. Conversely, a vertex other than
a collinear one is known as a non-collinear vertex. Consider-
ing the isometric drawing in Figure 2(a), only vertex V3 is
a collinear one, the other vertices are all non-collinear.

The distinction between collinear and non-collinear
vertices is very important. As shall be proved in
Appendix 1, a collinear vertex may have one or multiple
inverse projections; while a non-collinear vertex has only
one. This property implies that, for a non-collinear vertex,
one of its neighbouring vertices should have a single
inverse projection to ensure that a unique 3D coordinate
for the non-collinear vertex can be obtained. This further
means that a travelling path consisting of vertices with
single inverse projection can always be found between the
origin and a non-collinear vertex. Therefore, 3D coordi-
nates of all non-collinear vertices can be uniquely deter-
mined by applying the inference method stated above.

5.3. Inferring 3D coordinates for collinear vertices

For a collinear vertex, the inference of all its possible
3D coordinates requires the construction of a coordinate
reference tree which is created according to the following
rules. First, create a tree with the concerned collinear
vertex being assigned to the root node. Second, for a
vertex already assigned to the tree, each of its neigh-
bouring vertices, which has not been assigned, should be
given as its children nodes on the tree. The second rule
has to be repeatedly performed until each terminal node
of the tree has been assigned a non-collinear vertex.

Taking the workpiece in Figure 1(b) as an example, the
coordinate reference tree for vertex V3 , a collinear
vertex, can be created as shown in Figure 6(a). Vertex
V3 is the root node at level 1 and its four neighbouring
vertices V1 , V2 , V4 , and V6 are assigned as its children
nodes, at level 2. Since vertex V6 is also a collinear vertex,
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its two neighbouring vertices V5 and V7 should be given as
its children nodes, at level 3. The coordinate reference
tree of vertex V3 now has been created because each
terminal node has been assigned a non-collinear vertex.
From Figure 6(b) we can see that there are two solutions
obtained for the 3D coordinates of vertex V3 . Starting
from non-collinear vertices V2 , V4 and V5 to infer the 3D
coordinates of vertex V3, we can get the ® rst solution,
V 9

3 = (0, 30, 40). The second solution (V 9 9
3 ) can be

derived to be (20, 50, 20) whenever either vertex V1 or
V7 is chosen as the starting point of the inference path.
Notice that vertex V6 , a collinear one, can also be deter-
mined to have two solutions, V

9
6 = (30, 30, 40) and

V 9 9
6 = (50, 50, 20).
Two 3D coordinates being inferred indicates that

vertex V3 has two inverse projections, V
9
3 and V

9 9
3 . Refer-

ring to Figure 6(a) and 6(b), the vertices at level 2 of the
coordinate reference tree can be classi ® ed into two
groups, G 1 = {V2, V4 , V

9
6} and G 2 = {V1 , V

9 9
6 }, where in

the 3D world each one in group G 1 is a neighbour of
vertex V 9

3 and each one in group G 2 is a neighbour of
vertex V 9 9

3 . An edge connecting vertex V 9
3 and any vertex

in group G 1 is called a neighbouring edge of vertex V
9
3 ,

likewise for any member in group G 2 and vertex V 9 9
3 .

5.4. Detecting partially visible and overlaid edges

For a collinear vertex, the number of its 3D neighbour-
ing vertices in a particular group helps determine the
visibility of its neighbouring edges. As shall be proved in
Appendix 2, if a collinear vertex has only one neighbour-
ing vertex in a group, then the unique neighbouring edge
in this group is a partially visible edge; if it has two or more
neighbouring vertices, then the neighbouring edges in
this group are all completely visible edges. These two
characteristics can also be used to detect overlaid edges.

An example of detecting a partially visible edge is
shown in Figure 2(b) where vertex V3 has two inverse
projections, V 9

3 and V 9 9
3 . Vertex V 9

3 has only one neigh-
bouring vertex, therefore edge V3V1 on the isometric
drawing is a partially visible edge. Vertex V

9 9
3 has two

neighbouring vertices, therefore edges V3V4 and V3V2

are completely visible edges; these two edges are colli-
near and can be combined into one, edge V2V4 .

An example of detecting the overlaid edge in Figure
1(b) is shown in Figure 6. For collinear vertex V3 , its
neighbouring vertices can be classi® ed into two groups,
G 1 = {V2 , V4 , V

9
6} and G 2 = {V1 , V

9 9
6 }, the number of

neighbouring vertices in each group is more than one
and therefore its neighbouring edges are all completely
visible. Again for collinear vertex V6 , its neighbouring
vertices can also be classi ® ed into two groups,
F 1 = {V5 , V

9
3} for vertex V

9
6 and F 2 = {V7 , V

9 9
3 } for

vertex V 9 9
6 ; the neighbouring edges in each group like-

wise can all be inferred to be completely visible. That is,
edges V 9 9

3 V 9 9
6 in group G 2 and edge V 9

3V 9
6 in group G 1

are both completely visible. Since these two edges do not
have intersection in the 3D world, but have the same
isometric projection, edge V3V6 on the isometric draw-
ing can therefore be recognized to be an overlaid edge.

5.5. M odi® cation of data structure for overlaid edges

An overlaid edge denotes two distinct edges in the 3D
world; its representation on the isometric drawing
should be modi® ed by splitting this edge into two in
order to facilitate the ® nding of visible faces.

For example, the overlaid edge V3V6 in Figure 1(b)
has two inverse projections (V 9

3V 9
6 and V 9 9

3 V 9 9
6 ) in 3D

world (Figure 6(b)); its neighbouring edges can be
classi® ed into two groups, M 1 = {V2V 9

3 , V4V 9
3 , V5V 9

6}
and M 2 = {V1V 9 9

3 , V7V 9 9
6 } where each member of M 1 is a

neighbouring edge of V 9
3V 9

6 and each member of M 2 is a
neighbouring edge of V 9 9

3 V 9 9
6 . The original data structure

should be modi® ed so that vertices V3 and V4 are split
into four vertices V 9

3 , V 9 9
3 , V 9

4 , and V 9 9
4 while preserving

Construction of CSG solids from a single isometric drawing 7

Figure 6. Coordinate reference tree and the modi® cation of
input data structure for detecting overlaid edges.

D
ow

nl
oa

de
d 

by
 [

N
at

io
na

l C
hi

ao
 T

un
g 

U
ni

ve
rs

ity
 ]

 a
t 0

8:
04

 2
8 

A
pr

il 
20

14
 



their 2D coordinates and clarifying their new connecting
relationships. The data structure after modi® cation would
denote an isometric drawing as shown in Figure 6(c)
where the overlaid edge has been split into two.

6. Loop identi® cation module

The loop identi® cation module is designed to ® nd
three types of loops: completely visible, partially visible,
and almost invisible ones. A completely visible and a
partially visible face are both enclosed by a simple loop
and therefore an algorithm for identifying simple loops is
given ® rst.

6.1. Identifying simple loops

As stated, an exterior edge belongs to only one simple
loop and an interior edge belongs to two simple loops.
With these two characteristics, simple loops can be
detected by creating some travelling paths on the iso-
metric drawing. These travelling paths are established
according to two principles Ð t̀urn-to-the-leftmost’ and
t̀urn-to-the-rightmost’ .

The principle of t̀u rn-to-the-leftmost’ is used to iden-
tify all the exterior edges on an isometric drawing. As
shown in Figure 7(a), vertex V13 which has the lowest y

coordinate value is chosen as the starting point for
travelling the isometric drawing, with a virtual directed

M. C. Wu and M . S. Lin8

Figure 7. Examples of ® nding simple loops and the generation of subsolids.
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edge (V LV 13 ) given as the starting travelling edge where
VL is a virtual vertex to the right of V13 . With respect to
edge V LV 13 , there are three neighbouring directed
edges (V 13V 12 , V 13V 21 , V 13V 14 ) from which to choose
the next to be visited. Among these three, V 13V 14 is the
leftmost one (with the smallest intersection angle with
respect to edge V LV 13 ) and is selected. Then with
respect to directed edge V 13V 14 , there exists only
one neighbour, V 14V 1 , which is chosen as the next to be
visited. Repeatedly performing the principle of t̀urn-to-the-
leftmost’, a closed loop consisting of all exterior edges,
L (V13 , V14 , V1 , V2 , V3 , V9 , V11, V12), can be identi® ed.

The principle of t̀urn-to-the-rightmost’ is used to
identify simple loops on an isometric drawing. By start-
ing from an exterior edge and creating a travelling path
in the way of turn-to-the-rightmost, a simple loop can be
detected. Taking directed edge V 13V 14 in Figure 7(b) as
the starting one, the travelling path created in the
way of t̀u rn-to-the-rightmost’ is a simple loop, L (V13 ,
V14 , V1 , V8 , V17 , V21). Notice that directed edges, V 14V 1 ,
V 1V 8 , V 8V 17 , V 17V 21 , and V 21V 13 are chosen because
each of them is either a unique one or the rightmost one
(with the largest intersection angle with respect to its
preceding directed edge).

When a simple loop is detected, each edge of the loop
should be marked once to denote that it already belongs
to a particular sample loop (Figure 7(b)). The t̀urn-to-
the-rightmost’ principle should be repeatedly per-
formed until each exterior edge has been marked
once. As shown in Figure 7(c), we can see that ® ve
simple loops have been identi® ed and each one is
composed of at least one exterior edge. Notice that
some interior edges in this ® gure are only marked
once or not at all; this indicates that their simple loops
have not been exhaustively identi® ed (an interior edge
belongs to two simple loops).

To characterize these unidenti® ed simple loops, a
procedure for removing edges and resetting edge mark-
ings on the isometric drawing should be taken. That is,
all exterior edges as well as those interior edges which
have been marked twice should be removed from the
isometric drawing (Figure 7(c)), because their belong-
ing to simple loops has been exhaustively recognized.
After that, the marking of the residual edges are reset to
zero (Figure 7(d)).

On the residual drawing, repeating the procedures of
t̀urn-to-the-leftmost’ and t̀urn-to-the-rightmost’, we can

identify four more simple loops from Figure 7(d), and
the ® nal result can further be identi ® ed as a simple loop.
The isometric drawing in Figure 7(a) can be recognized
to have ten simple loops (Figure 7(e)).

6.2. Deleting covering edges from partially visible loops

Some edges on a partially visible face are known as

covering edges because they do not exist on the face in the
3D world and would cover the face when isometric
projection is applied. Examples of covering edges are
like edges V6V7 , V7V8 , V8V9 , and V9V10 with respect to
loop L (V1, V2 , V3 , V4 , V5 , V6 , V7 , V8 , V9 , V10) in Figure 8.
Covering edges on a partially visible face should be
identi® ed and deleted in order to reconstruct the
original form of the face in the 3D world.

A covering edge on a partially visible face can be
identi® ed by using the following two characteristics.
First, a covering edge intersects a partially visible edge
at a collinear vertex, such as edges V7V16 and V18V16 in
Figure 7 where edge V15V16 is a partially visible one. The
rationale of this characteristic will be explained in Appendix
2. Second, a covering edge in the 3D world cannot be on
the plane passing through the partially visible face.

The applications of the second characteristic are
explained below. Considering loop L (V5 , V6 , V7 ,
V16 , V15) in Figure 7(a), a set of three mutually
connecting edges with edge V6V7 as a member,
would involve three sets: (V15V5 , V5V6 , V6V7 ), (V5V6 ,
V6V7 , V7V16 ), (V6V7 , V7V16 , V16V15 ). Each of these sets
has three types of slopes and cannot uniquely determine
a planar face. Therefore, V6V7 cannot be an edge on the
partially visible face in the 3D world, and is recognized as
a covering edge. Similarly, edge V7V16 can also be
identi® ed as a covering edge. The closed loop
L (V16, V15, V5 , V6 , V7) in Figure 7(a) can ® nally be modi-
® ed into an open loop ÃL(V16 , V15 , V5 , V6) which can
uniquely determine a plane.

Intuitively, a covering edge in case of being an interior
edge should belong to two simple loops in the 2D world.
However, one of the neighbouring face (the partially
visible one) does not contain the covering edge in the
3D world. Therefore, a covering edge should be seen as
belonging to only one simple loop instead of two. For
example, edge V6V7 belongs to simple loop
L (V6, V7 , V8 , V1 , V2 , V3 , V4 , V5) only and does not belong
to simple loop L (V16 , V15, V5 , V6 , V7). This characteristic is
very important for identifying almost invisible loops.

Construction of CSG solids from a single isometric drawing 9

Figure 8. An exam ple of a partially visible face containing no
collinear vertex.
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6.3. Identifying almost invisible loops

The identi® cation of almost invisible faces consists of
two steps. First, for each external and covering edge,
determine the normal for the particular neighbouring
face which has been hidden. For example, in Figure
2(a), edge V4V5 belongs to only one simple loop
L (V4 , V5 , V6 , V7). Since edge V4V5 is parallel to the X s

axis, the normals of its two neighbouring faces should be
parallel to either the Ys or the Z s axis. With the face
normal of loop L(V4 , V5 , V6 , V7) being parallel to the Z s

axis, we can infer that the other neighbouring face,
though invisible on the isometric drawing, should have
its normal parallel to the Y s axis.

Second, classify all external and covering edges into
groups by the following criterion. In a group, the com-
prising edges should be mutually connected, and the
normals of their hidden neighbouring faces should be
parallel to each other. That is, these edges should be on a
plane and their connection would form an open loop. As
shown in Figure 2(a), edges V5V6 , V6V9 , V9V11 , and V11V12

would be classi ® ed into one group and their consecutive
connection would form an open loop ÃL (V5 , V6 , V9 ,
V11, V12). The two ending edges of an open loop are
called open edges (i.e. V5V6 and V11V12 ) and the two
ending vertices are known as open vertices (i.e. vertices
V5 and V12).

Notice that an almost invisible loop can be composed
of only one edge. An example is the almost invisible loop
ÃL (V5 , V11 , V6) shown in Figure 9(a), which can be seen as
an edge V5V6 . This edge comprises two line segments, one
(V6V11 ) can be identi® ed as an external edge and the
other (V5V11 ) as a covering edge. This indicates that the
edge should belong to an almost invisible loop. How-
ever, neither of its two neighbouring edges can reside on
its almost invisible face by observing their normals;
therefore the edge itself is an almost invisible loop.

7. Loop modi® cation module

Partially visible loops detected from an isometric
drawing are all open loops which require to be modi® ed
into their original form, closed loops, in order to gen-
erate their corresponding subsolids. We ® rst discuss the
locating constraints of new edges to be added on to a
partially visible loop. Then, three methods for solving
the loop modi® cation problem are given.

7.1. Locating constraints of newly added edges

A partially visible loop has two open edges, to which
new edges should be added in order to form a closed
loop. For the purpose of obtaining a valid solid, new
edges should be created so that the partially visible
loop has its planar and topological characteristics

maintained. That is, a new edge should be connected
to an open vertex and stay on the plane where the
partially visible loop resides. This implies that the slope
of a new edge should be either one of the two types
which are allowed to exist on the partially visible loop.
To describe the locating constraints of new edges, we
de® ne the semi-in® nite line which starts at an open
vertex and passes through a new edge to be their
extended ray, which is intended for depicting the starting
vertex and the slope of a new edge. For example
(Figure 3) V2V 15

- - - - c is an extended ray if V2V15 is consid-
ered as a newly added edge for open loop ÃL (V2 , V1 , V3).

Since an open vertex may either be a collinear or a
non-collinear one, there are two ways in determining

M. C. Wu and M . S. Lin10

Figure 9. (a) constraint plane is de ® ned for determining new
edges which are used to reconstruct the original form of a
partially visible face; (b) one-to-m any mapping; (c) the closest

constraint plane should be chosen.
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the extended ray of a new edge. First, if an open vertex is
a collinear one, the extended ray should be collinear
with the open edge. The reason is that the open edge
connecting a collinear vertex has to be a partially visible
one of which some parts have been hidden. The new edge
therefore has to be collinear with the open edge in order to
reconstruct its original form back. As shown in Figure 7(f ),
the open vertex V16 , a collinear one on the partially
visible loop ÃL (V16 , V15 , V22, V20), should have its extended
ray V16V24

c being collinear with the open edge V16V15 .
Second, if an open vertex is a non-collinear one, it

should have three neighbouring edges with distinct
slopes. And at least two of the three edges would have
been displayed on the isometric drawing; otherwise the
open vertex cannot be visible. The new edge then can be
easily determined to have the particular slope which has
not been displayed. As shown in Figure 7(f ), the open
vertex V20 is a non-collinear one with two neighbouring
edges (V20V22 and V20V19 ) already being displayed on
the isometric drawing. The extended ray V 20V 24

c then
has to be perpendicular to both edges, V20V22 and V20V19 .

7.2. Introduction to three methods for loop modi® cation

According to the type of information referred to in
the loop modi® cation process, there are three methods
provided to modify a partially visible loop. The ® rst one,
with the highest priority, considers only the information
of the partially visible loop. If the ® rst method cannot
modify the partially visible loop into a closed one, then
the second one, which augments the information of its
neighbouring open loops, is tried. The third method, which
refers to the information of some non-neighbouring open
loops, is applied only when the loop modi® cation prob-
lem cannot be solved by the ® rst two methods.

7.3. First method for loop modi® cation

For a partially visible loop, the intersection of its two
extended rays may be a point, an edge, or null. When
there is an intersection, either a point or an edge, the
partially visible loop can be modi® ed into a closed one
by considering only the information of this partially
visible loop.

When the two extended rays intersect at a point, the
loop is modi® ed by adding two new edges, either one is
on an extended ray and ends at the intersection point.
As shown in Figure 7(f ), the two extended rays of
partially visible loop ÃL1 = ÃL (V16, V15, V22 , V20) has an
intersection point, vertex V24 , which can be used to
determine that the two new edges to be added are
V20V24 and V16V24 . Loop ÃL1 then can be modi® ed into
a closed one, L (V15, V22, V20, V24). Notice that, with a new
edge (V16V24 ) added, one of its neighbours, partially

visible loop ÃL (V16 , V15, V5 , V6), now has been converted
into a new form, ÃL (V24, V15, V5 , V6).

When the two extended rays are collinear and there-
fore intersect at an edge, the loop is modi® ed by adding
in the edge which has the two open vertices as its ending
points. As shown in Figure 7(f ), partially visible loop
ÃL2 = ÃL (V24 , V15 , V5 , V6), with the new edge V16V24

having been included, has its two extended rays
(V 6V 24

c and V 24V 6
c ) collinear with each other. Partially

visible loop ÃL2 can be modi® ed into a closed one
L (V24, V15, V5 , V6) by the addition of edge V6V24 , which
has open vertices V6 and V24 as its two ending points.

7.4. Second method for loop modi® cation

The second method for loop modi® cation is devel-
oped for the case when the two extended rays have no
intersection. Its main idea is to derive some new infor-
mation from its neighbouring open loops before modi-
fying the partially visible loop. That is, we ® rst consider
the possibility of modifying the neighbouring open
loops into closed ones, which are originally either
partially visible or almost invisible ones. Then, the newly
added edges, being created through processing the neigh-
bouring loops, would appear as a part of the concerned
partially visible loop. This in turn may help modify the
concerned partially visible loop into a closed one.

As shown in Figure 3, for partially visible loop
ÃL1 = ÃL (V3 , V1 , V2), its two extended rays (V 3V 16

c and
V 2V 15

c ) are parallel and have no intersection; the loop
cannot be modi® ed into a closed one if we consider only
the information of its two extended rays. Referring to
one of its neighbouring open loops, ÃL2 = ÃL (V2 ,
V3 , V4 , V5), an almost invisible one, the two extended
rays of loop ÃL2 intersects at vertex V15 . Loop ÃL2 then can
be modi® ed into a closed one if two new edges (V2V15

and V5V15 ) are added. With the new edge V2V15 added,
the concerned visible loop ÃL1 now has the form of
ÃL (V3, V1 , V2 , V15), which can be modi® ed into a closed
one by applying the ® rst method, because its two
extended rays now have an intersection at vertex V16 .

7.5. Third method for loop modi® cation

The third method for loop modi® cation is designed
for the case where the two extended lines have no
intersection and using the second method cannot
solve the loop modi® cation problem. As shown in
Figure 9(a), partially visible loop ÃL (V5 , V4 , V11) has two
extended rays which have no intersection at all. Of its
three neighbouring loops, only loops ÃL (V11, V4, V3) and
ÃL (V5, V11, V6) are open ones. As we can see in this ® gure,
the two open neighbouring loops cannot be modi® ed
into closed ones by considering only their extended rays;
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M. C. Wu and M . S. Lin12

Figure 10. First testing example of implementation.

(a) (b)

(c) (d)
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Construction of CSG solids from a single isometric drawing 13

(e) (f )

(g) (h)

Figure 10. Ð continued.
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M. C. Wu and M . S. Lin14

Figure 10. Ð continued.

(i) ( j)

(k) (l)
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therefore the ® rst and the second methods stated above
cannot be applied.

For such a partially visible loop, we have to determine
two new vertices, one on each extended ray, in order to
create new edges and modify this loop into a closed one.
Because each new vertex is invisible on the isometric
drawing, this indicates that in the 3D world it has to be
contained in the original form of either a partially visible
face or an almost invisible one. That is, a new vertex
should be the intersection of an extended ray and a
plane, passing through a partially visible loop or an
almost invisible one, which is here known as a constraint
plane because it is used to constrain the length of a new
edge. A new vertex is then the projection of an open
vertex on to a constraint plane.

Consider the case where only one constraint plane
exists. As shown in Figure 8(a), partially visible loop
ÃL (V5 , V4 , V11) has two extended rays, with no intersection
and both pointing in the - Z -axis direction. The two
extended rays intersect the plane passing through the
almost invisible loop ÃL (V1 , V0 , V10) because their normals
are parallel to the Z axis. As the 3D coordinates of all
vertices on the isometric drawing are known, we can
easily compute the projections of vertices V5 and V4 on
to the constraint plane, which in turn are taken as the
new vertices. The two projections or new vertices (V13

and V14) then can be used to create three new edges
( V5V14 , V14V13 , and V13V11 ) and modify the partially
visible loop into a closed one.

Notice that if new edges V5V14 and V11V13 are equally
shortened by a certain length, the partially visible loop
can still be modi® ed into a closed one (Figure 8(b)).
Moreover, one valid 3D solid would also exist for such an
isometric drawing. That is, a valid solid for the isometric
drawing can be seen as the union of two subsolids, one is
the translation of loop L1 = L (Vx , V5 , V6 , V7 , V8, V9, V2)
and the other is that of loop L2 = L (Vx , V5 , V4 , V3). The
translation distance for loop L1 is ® xed (the length of
V1V2); however that of loop L2 can be varied (any length
in between that of V4V11 and V5V14 ). The union of these
two subsolids can generate an in® nite number of valid
solids by varying the translation distance of loop L2 .

In this research, we prefer to construct a solid which
tends to have a minimum number of faces and edges.
Therefore, it is proposed that the open vertices projec-
tions on a constraint plane are chosen as the new
vertices. That is, new edges V5V14 and V13V11 in Figure
8(a) are not shortened, even though valid solids can also
be generated when they are shortened.

For cases where two or more constraint planes exist, it
is suggested that the one which is nearest to the open
vertices be chosen for determining the new vertices. The
other constraint planes, more distant to open vertices,
are not chosen because the new edges created may
pass through the workpiece and stay partly in free
space, which is prohibited. As shown in Figure 8(c),

for partially visible loop ÃL (V5 , V4 , V11), two constraint
planes exist, passing through the almost invisible loops
ÃL (V1, V12, V14) and ÃL (V13 , V0 , V10). The constraint plane
passing through ÃL (V13 , V0 , V10), closer to open vertex V5 ,
is chosen for determining new vertices. Should the other
constraint plane be chosen, a portion of the new edge
(V5Vx ) would exist in the free space (Figure 8(c)).

As previously mentioned, a plane passing through a
partially visible loop may also be used to create new
vertices and edges. However, such a plane is not used as
a constraint plane for the following two reasons. First, if
the partially visible loop can be modi® ed into a closed
one, the projection of an open vertex on to the con-
straint plane should also be a vertex of the partially
visible loop; yet this may not always be true. Second, an
extended ray would cross the boundary of the isometric
drawing and can always intersect at least one plane
containing an almost invisible loop; however, it may not
always intersect a plane containing a partially visible loop.

8. Construction of subsolids and ® nal workpiece

After modifying all partially visible loops into closed
ones, each face bounded by a closed loop can be used to
generate a subsolid in the 3D world. The union of all
subsolids is the ® nal workpiece proposed in this research.

8.1. Creating subsolids by sweeping operation

A subsolid is a 3D object created by a sweeping
operation which moves a face on the workpiece, along
its inward normal, by a certain distance. The face to be
moved on the isometric drawing is one bounded by a
closed loop which was either a completely visible one or
a partially visible one that has been modi® ed into the
closed form. As shown in Figure 9(f ), the face bounded
by completely visible loop L (V1 , V14, V13 , V21 , V17 , V8) and
that bounded by closed loop L (V15, V16, V24 , V20 , V22),
originally a partially visible one, can both be swept by a
certain distance to generate a subsolid in the 3D world.
To facilitate discussion, the face to be moved in a
sweeping operation is called the primitive face, its
moving direction and distance are respectively known
as the sweeping direction and sweeping distance.

8.2. Computing sweeping distance

The sweeping distance of a primitive face is
constrained by prohibiting the face from moving into
the free space. That is, the primitive face can be con-
tinuously moved until it intersects an almost invisible
face whose outward normal points in the sweeping
direction. Crossing such an almost invisible face will
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M. C. Wu and M . S. Lin16

(a) (b)

(c) (d)

Figure 11. Second testing example of implementation.
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Construction of CSG solids from a single isometric drawing 17

(e) (f )

(g)

Figure 11. Ð continued.
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invade free space. As shown in Figure 9(f ), the primitive
face bounded by loop L (V1 , V14, V13, V21 , V17, V8) can be
continuously moved until it intersects the face bounded
by the almost invisible loop ÃL (V20, V19 , V18 , V16 , V7 , V6).
The sweeping distance then can be determined to be
equal to the length of edge V17V18 . Should the sweeping
distance be a little longer, the primitive face would cross
the workpiece boundary and generate an undesired
subsolid, which is partly contained in the free space.

It may be questioned why the face stopping the
movement of a primitive face should be an almost
invisible one and with its outward normal pointing in
the sweeping direction. By de® nition, the outward
normal of a workpiece face always points towards free
space. Crossing a workpiece face while advancing along
its outward normal, the primitive face would move into
the free space, which is prohibited. Therefore, the
stopping face should have its outward normal pointing
in the sweeping direction. This also indicates that the
stopping face is an almost invisible one, because its
outward normal is opposite to that of the primitive
face Ð a visible one.

In summary, the sweeping distance of a primitive face
can be determined by computing the distance between
two parallel planes, one passing through the primitive
face and the other (known as the stopping plane) passing
through an almost invisible loop whose projection inter-
sects with the primitive face. If the number of such planes
is more than one, the one which is closest to the primitive
face should be chosen. Should the other ones be chosen,
the generated subsolids might invade free space.

9. Validity of ® nal workpiece

In the process of generating subsolids, each visible
face on the isometric drawing has to individually
generate one subsolid. The union of all subsolids is
the ® nal workpiece proposed in this research. It is
essential to explain or prove that the proposed work-
piece is valid; that is, it has the same isometric drawing as
the input one.

M. C. Wu and M . S. Lin18

Figure 12. Framework of a user-friendly solid modelling input
system.

Figure 13. A wireframe based approach of variational
geometry.
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9.1. Isometric drawing of an individual subsolid

We ® rst investigate the visibility of an individual sub-
solid. Faces on the boundary of a subsolid involve three
types: the primitive face, the face on the stopping plane,
and those generated by the movement of edges on the
primitive face. The primitive face is visible, and the face on
the stopping plane is invisible. Of faces generated by the
movement of edges, some would be visible and some not.

To facilitate discussion, an edge on a primitive face is
known as a sweeping edge, and the face generated by
sweeping the edge is called a sweeping region. A sweeping
edge is the intersection of two faces, one is the primitive
face and the other one is known as the alien face. For
example, considering the primitive face L(V1 , V14 , V13,
V21, V17, V8) in Figure 7(f ), edge V1V8 is a sweeping edge,
face L(V1 , V8 , V7 , V6 , V5 , V4 , V3 , V2) is its alien face and face
L (V1 , Vx , V7 , V8) in Figure 7(g) is its sweeping region.

If the alien face of a sweeping edge is bounded by an
almost invisible loop, then the sweeping region of this
edge should be on a plane passing through the almost
invisible loop, which is invisible on an isometric drawing;
therefore the sweeping region also has to be invisible.
As shown in Figure 7(g), for primitive face L (V1 , V14 ,
V13 , V21 , V17 , V8), the sweeping regions created by
edges V1V14 and V14V13 are both invisible with respect
to the isometric drawing of the subsolid.

If the alien face of a sweeping edge is completely
visible or partially visible, the sweeping region of this
edge should be on a plane which is visible on an
isometric drawing. This indicates that the sweeping

region should also be visible. As shown in Figure 7(g),
for primitive face L (V1 , V14, V13 , V21 , V17 , V8), the sweep-
ing regions created by edges V1V8 , V8V17 , V17V21 , and
V21V13 are all visible with respect to the isometric draw-
ing of the subsolid.

9.2. Ignore the information of visible sweeping regions

Notice that a sweeping region generated by an edge
on a visible plane is a subset of its alien face. As shown in
Figure 7(g), sweeping region L(V1 , V8 , V7 , Vx ) is a subset
of the visible face L(V1 , V8 , V7 , V6 , V5 , V4 , V3 , V2). This
characteristic can be brie¯ y proved as below.

If the sweeping region is not a subset of the alien face,
then some portion of the sweeping region should be
outside the boundary of the alien face. This implies that
the sweeping region already invades free space. There-
fore, a visible sweeping region is a subset of its alien face
which is a primitive face of another subsolid and has to
be visible. That is, the visibility information of a visible
sweeping region is always embedded in the primitive
face of some other subsolid. Therefore, a subsolid essen-
tially gives the visibility information of its primitive face.

9.3. Hidden effects among primitive faces

With the generation of all subsolids, each one of the
primitive faces is completely visible if we consider only
the isometric drawing of an individual subsolid.
However, some part of a primitive face might be
hidden when the other subsolids are also displayed.
The hidden results among primitive faces should be
exactly the same as the input isometric drawing, because
the input one can be seen as being solely composed of
primitive faces. Furthermore, the hidden effects among
primitive faces should be also the same as that among
subsolids, because for a subsolid only the visibility infor-
mation of primitive faces is meaningful. Therefore, we
can conclude that the isometric drawing of the ® nal
workpiece should be the same as the input one.

10. Implementation and application

The proposed algorithm has been implemented in the
C language on an IRIS workstation equipped with the
ACIS solid modeller (Spatial Technology 1986). The ® nal
work-piece together with the generated subsolids can be
graphically displayed on the IRIS workstation. Two of the
various testing examples are illustrated below.

The ® rst one addresses the isometric drawing shown
in Figure 10(a). As discussed previously, this isometric
drawing has ten simple loops or visible faces; therefore
ten subsolids should be generated (Figure 10(b ± k)).

Construction of CSG solids from a single isometric drawing 19

Figure 14. Characteristics of collinear vertices.
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The isometric projection of the ® nal workpiece is given
in Figure 10.1. From this ® gure, we can see that the ® nal
workpiece has exactly the same isometric drawing as the
input one.

The second testing example is given for the demon-
stration of processing overlaid edges. The input iso-
metric drawing appears to have ® ve simple loops
(Figure 11(a)); however, it has only four when the
overlaid edge is taken into two. That is, two simple
loops would be combined into one and generate a
subsolid (Figure 11(b)). The other four subsolids are
as shown in Figure 11(c ± f ). As we can see, the ® nal
workpiece also has the same isometric drawing as the
input one (Figure 11(g)).

The present algorithm can be integrated with some
other algorithms to constitute a user-friendly solid
modelling input system . The framework of such a
solid modelling input system is as shown in Figure
12. A free-hand isometric drawing is input to the
system by a scanner and is represented by a set of
pixels. The ® rst module applies some computer vision
technique to convert the free-hand drawing into a
precise one that is represented by a set of line segments
(Chang 1993). The second module utilizes the algo-
rithm presented in this paper to construct a 3D
solid from the precise isometric drawing. A wire-
fram e-based approach of variational geometry is devel-
oped in the third module which can modify the shape
of the constructed solid and add features on it (Haan
1993).

In the third module, a constructed workpiece (Figure
13(a)) can be modi® ed into one (Figure 13(c)) which
involves inclined faces. The modi® cation is by interac-
tively manipulating the wireframe of the constructed
solid. As shown in Figure 13(b), by moving edges AB and
EF to new positions (CD and GH ), the wireframe is
modi® ed and its bounded planar faces subsequently will
be changed. Some other operations such as smoothing
the sharp junction of two planar faces and the addition
of hole features are also included in this module. Note
that the constructed solid can be interactively rotated so
that desired features or modi® cation can be made on a
portion of the solid, which is originally hidden on the
input isometric drawing.

11. Concluding remarks

An algorithm for constructing a CSG solid from a
single isometric drawing is proposed. Currently, the
work-pieces are limited to rectilinear simple polyhedra.
This algorithm is distinguished by a capability to solve
the degenerate cases (edge overlapping problems)
which have been ignored in previous relevant research,
and the construction of primitives to represent the CSG
polyhedron are not limited to blocks.

One possible extension of this work is to enlarge the
workpiece domain and vary the projection methods of
input drawings. That is, the constraints on the shape and
the orientation of workpiece faces can be relaxed, and
the input drawing can be a dimetric projection, tri-
metric projection, oblique projection, or perspective
projection. The other possible extension is the develop-
ment of an algorithm for constructing a 3D solid from its
engineering drawings which may be so comprehensive
that all the relevant views are included.
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Appendix 1

This appendix explains that a collinear vertex may
have multiple inverse projections, while a non-collinear
vertex has only one.

As shown in Figure 14(a), two edges (AB and CD ) which
do not intersect in 3D world may have an intersection on
their isometric projections; some portion of an edge (ED )

is then hidden and becomes invisible. The intersection
(point E ) on the isometric drawing is a collinear point,
and has multiple inverse projections. One may wonder
whether the collinear characteristics may disappear by the
presence of some other edges.

A new edge (FG ) which may interfere with the collinear
characteristic would be present in three patterns. First, as
shown in Figure 14(b), the new edge tends to hide an
ending point of an existing edge (e.g. point A) such that
the collinear characteristic would disappear. However, this
intention would require an intersection (point H ) to
occur between edges FG and AB . The existence of inter-
section point H , in turn, replace the role of point A and
keep the collinear characteristic of point E .

Second, the new edge (FG ) tends to hide the collinear
point (point E ), and the collinear point becomes an in-
between point of the new edge (Figure 14(c)). As we can
see, edge AE becomes wholly hidden by the presence of
the new edge; even so, point E now preserves its
collinear characteristic on the new edge FG .

Third, see Figure 14(d), the new edge (FH ) intersects
the collinear point (point E ) at one of its vertex (point H ).
Since point H is a vertex, it would have three neigh-
bouring edges; one is edge FH and the other two would
be collinear with two of the four edges (AE , CE , BE , and
DE ), because there are only three types of edges. Wher-
ever the other two edges are placed, we can see that point
E always keep the collinear characteristic.

Appendix 2

This appendix explains three characteristics of a
collinear vertex. First, if a collinear vertex has only one
neighbouring vertex in a group, then the unique neigh-
bouring edge in this group is a partially visible edge.
Second, if it has two or more neighbouring vertices in a
group, then the neighbouring edges in this group are all
completely visible.

For the ® rst characteristic, see Figure 14(a), a partially
visible edge is one where one of its ending points (point
D ) has been hidden and the collinear vertex (point E )
appears as the new ending point. The 3D coordinate of
the collinear vertex (point D ) can only be inferred from
the ending point which is not hidden (point C ). Consider
the cases where another neighbouring point (e.g. either
point A or point B ) can be used to infer the same 3D
coordinate. In such cases, point E would be concluded as
a vertex rather than an in-between point, this implies that
edge CE is not a partially visible one-con¯ ict situation.
Conversely, we may validate the second characteristic;
that is, when a collinear vertex has two or more neigh-
bouring vertices in a group, all the neighbouring edges
would be completely visible. Should there exist a partially
visible one, it would be impossible to infer only one 3D
coordinate for the concerned collinear vertex.
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