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Abstract—Virtualization is becoming widely deployed in 
commercial servers. In our previous study, we proposed 
Virtual Machine Aware journaling (VMA journaling), a file 
system journaling approach for virtual server environments. 
With reliable VMM and hardware subsystems, VMA 
journaling eliminates journal writes while ensuring file 
system consistency and data integrity in virtual server 
environments, allowing it to be an effective alternative to 
traditional journaling approaches in these environments.  

In recent years, solid-state disks (SSDs) have shown their 
potential as a replacement of traditional magnetic disks in 
commercial servers. In this paper, we demonstrate the 
benefits of VMA journaling on SSDs. We compare the 
performance of VMA journaling and three traditional 
journaling approaches (i.e., the three journaling modes of 
the ext3 journaling file system) in terms of lifetime and 
garbage collection overhead, which are two key 
performance metrics for SSDs. Since a Flash Translation 
Layer (FTL) is used in an SSD to emulate traditional disk 
interface and the SSD performance highly depends on the 
FTL being used, three state-of-the-art FTLs (i.e., FAST, 
SuperBlock FTL and DFTL) are implemented  for 
performance evaluation. 

The performance results show that, traditional full data 
journaling could reduce the lifetime of the SSD significantly. 
VMA journaling extends the SSD lifetime under full data 
journaling by up to 86.5%. Moreover, GC overhead is 
reduced by up to 80.6% when compared to the full data 
journaling approach of ext3. Finally, VMA journaling is 
effective under all the FTLs. These results demonstrate that 
VMA journaling is effective in SSD-based virtual server 
environments.  

Keywords- journaling file system, flash translation layer, 
virtual machine 

I. INTRODUCTION

In recent years, NAND flash-based solid-state disks 
(SSD) have gained in popularity in desktop/laptop 
computers and servers. SSDs show their potential to 
replace traditional magnetic disks in commercial servers 
due to their low access time, low power consumption, and 
shock-resistance capability.  

Nevertheless, there are still two main obstacles for 
SSDs to be widely deployed. The first one is the 
reliability concern. The lifetime of an SSD is limited by 
the limited program/erase (PE) cycles of the flash 
memory used in an SSD. Generally, an SLC (single level 
cell) NAND flash block can sustain about 100K PE cycles, 

and an MLC (multi level cell) NAND flash block can 
sustain only 10K PE cycles. Once the limit of the PE 
cycles is reached, a block can no longer be updated. Such 
a problem could be serious in reliability-concerned server 
environment. 

The second one is performance degradation resulted 
from garbage collection (GC) of an SSD. Modern SSDs 
adopt the out-of-place update approach, which writes the 
updated data to free pages1 and marks the out-of-date data 
as garbage. When the number of free pages drops below a 
specified threshold, the GC procedure is triggered to 
reclaim free space. The GC procedure selects a victim 
block, copies out the up-to-date data in the block, and then 
erases the block so that a block of free pages can be 
obtained. The overhead of GC involves data copying and 
block erasure, which is time-consuming and could have 
performance impact to the normal user requests. 
Therefore, GC overhead should be minimized in order to 
minimizing the performance impact to server workloads. 

File systems, which generate I/O traffic to the storages, 
play an important role on the storage performance. Many 
modern file systems, for example, ext3 and NTFS, adopt 
journaling to maintain file system consistency and data 
integrity. However, file system journaling writes the 
update data (called journal data) to a preserved area on the 
storage (called journal area) before the data are flushed to 
the data area. Such additional journal writes increase the 
write traffic to the storage [1]. On an SSD, the increased 
write traffic leads to higher GC overhead and more block 
erasures, degrading the SSD performance and reducing 
the SSD lifetime.  

In our previous study, we have proposed VMA 
journaling (Virtual Machine Aware journaling) [2], a new 
file system journaling approach used in virtual server 
environments, which are gaining in popularity in server 
platforms. VMA journaling eliminates journal writes 
while ensuring file system consistency and data integrity 
in virtual server environments. In recent years, virtual 
machines have been broadly used in server consolidation, 
disaster recovery, software testing, security and storage 
management. According to International Data 
Corporation (IDC), in 2008, there were more shipments of 
servers based on virtual machines than those based on 
                                                          
1A NAND flash memory chip is divided into a number of blocks and 
each block includes a fixed number of pages. Read/write operations are 
performed in units of a page, and erase operations are performed in 
units of a block. 
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physical machines, and the ratio will reach 1.5 in 2013 [3]. 
In a virtual server environment with reliable VMM and 
hardware subsystems, VMA journaling provides superior 
file system performance with similar level of data 
integrity and consistency when compared with traditional 
full data journaling. This is achieved by allowing 
cooperation between the journaling file systems and the 
Virtual Machine Monitor (VMM), which is a thin 
software layer running underneath the virtual machines 
and emulating the hardware interface to the guest 
operating systems (i.e. the operating systems running in 
the virtual machines). Unlike traditional journaling 
approaches, which write journal data to the on-storage 
journal area, VMA journaling retains journal data in the 
memory of the virtual machine and stores the information 
for locating these data (called the journal information) in 
the VMM. As a consequence, journal writes are 
eliminated. 

We have evaluated the performance of VMA 
journaling on magnetic disks [2]. In this paper, we 
evaluate the performance of VMA journaling on reducing 
the GC overhead and extending the lifetime of an SSD. 
Due to the elimination of journal writes, VMA journaling 
reduces the write traffic to the SSD compared to the other 
journaling approaches, leading to lower GC overhead and 
a reduced number of block erasures.  

For performance evaluation, we collected I/O traces of 
VMA journaling and three journaling approaches of ext3 
under the execution of eight concurrent virtual machines. 
The collected traces were then fed into our SSD simulator 
for performance evaluation. Since a Flash Translation 
Layer (FTL) is used in an SSD to emulate traditional disk 
interface and the SSD performance varies depending on 
the FTL, three state-of-the-art FTLs:  FAST [4], 
SuperBlock FTL [5], and DFTL [6] were implemented in 
the simulator and used in performance evaluation.  

According to the simulation results, VMA journaling 
reduces the number of erase operations by up to 86.5%, 
while providing similar level of data integrity, when 
compared to traditional full data journaling of ext3. This 
indicates that VMA journaling can extend the SSD 
lifetime by 86.5% if the blocks of the SSD can be worn 
evenly. Compared to metadata journaling of ext3, which 
does not guarantee data integrity, VMA journaling has a 
similar number of erase operations. Moreover, 13.1% to 
75.9% reduction in GC overhead is achieved when 
compared to traditional full data journaling of ext3.  

The remainder of this paper is organized as follows. 
Section 2 describes the related work, followed by the 
design and implementation of VMA journaling in Section 
3. Section 4 shows the performance results. Finally, 
conclusions are given in Sections 5.  

II. BACKGROUND AND RELATED WORK 

A. Flash Translation Layer 
Flash Translation Layers (FTLs) employed in SSDs 

emulate traditional disk interface to support disk-based 

file systems. An FTL maintains a mapping structure in the 
internal RAM of the SSD, which translates logical sector 
numbers to flash page or block numbers. The state of each 
flash page is maintained by the FTL. Once an erased (i.e., 
free) page is written with user data, it becomes a live page, 
and the page containing the old data is marked as dead. A 
time-consuming garbage collection (GC) procedure is 
invoked to maintain enough free pages for 
accommodating further writes. The procedure selects
victim blocks, copies live pages to free pages and finally 
erases these victim blocks. The GC procedure, which 
involves data copying and block erasure, incurs 
performance overhead and could have an impact on the 
flash lifetime. Therefore, GC overhead is a key 
performance metric for an SSD. 

Several FTLs have been proposed in the past few years, 
which can be classified into page-mapped, block-mapped, 
and hybrid-mapped FTLs according to their mapping 
granularities. Page-mapped FTLs, for example the 
SuperBlock FTL and the DFTL used in this paper, adopt a 
fine-grained translation method that directly translates 
each logical page to a physical page. Generally, GC
overhead of page-mapped FTLs is usually smaller than 
the other types of FTLs [5][6]. However, due to fine-
grained translation, a page-mapped FTL requires a large 
mapping table for a large-sized flash memory. 

The Superblock FTL groups several contiguous logical 
blocks into a superblock. Pages belonging to a superblock 
are written to the physical blocks allocated for that 
superblock. Page-level mapping is used in a superblock. 
The page-level mapping information of superblock is 
stored in the spare area of the flash memory, instead of the 
internal RAM of the SSD. Therefore, the memory usage 
can be reduced. The GC procedure is invoked when the 
free pages of the target superblock is not enough to 
accommodate the incoming write. DFTL stores the page-
level mapping information in the flash memory and 
caches the most recently used mapping information in 
RAM so as to reducing the RAM requirement of the 
mapping table. In DFTL, GC is triggered when the free 
pages of the flash storage drops below a threshold.  

Block-mapped FTLs reduce the RAM requirement of 
the mapping table by directly reducing the number of 
entries in the mapping table. This is achieved by using a 
coarse-grained translation method, which translates each 
logical block number to a specific physical block number. 
In these FTLs, each logical page number is divided by the 
number of pages per block to obtain the logical block 
number (i.e., the quotient) and the page offset (i.e., the 
remainder). The former is used to index the mapping table 
to obtain the physical block number and the latter is used 
to locate the target page within the physical block. Such 
mapping approach leads to high GC overhead due to the 
limitation that each logical page can only be written to a 
fixed offset of a physical block. For example, frequently 
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updating a logical page would lead to frequent block 
erasure.  

Several hybrid-mapped FTLs such as the FAST FTL [4] 
have been proposed to achieve low GC overhead while 
keeping the size of the mapping table small. FAST divides 
the blocks into two types: data blocks and log blocks. The 
former, which utilizes the coarse-grained mapping scheme, 
is used to satisfy the first-time write of each logical page 
while the latter, which utilizes the fine-grained mapping 
scheme, is used to accommodate page updates. 

B. Journaling File System 
Journaling file systems adopt the concept of write-

ahead logging to maintain file system consistency. In-
memory file system updates are grouped into a transaction 
and then committed into the journal area, which is a 
reserved space on the storage, before they are flushed to 
the data area of the storage. When a system crashes, the 
file system can be efficiently brought back to a consistent 
state by replaying the journal data (i.e. data in the journal 
area). 

Many journaling file systems support more than one 
journaling modes with different performance and 
consistency strengths. For example, both ext3 and 
ReiserFS support three journaling modes: writeback, 
ordered and journal modes. The differences among these 
modes are the content in the journal area and the flush 
order of the data. Both writeback and ordered modes log 
only metadata and therefore do not ensure data integrity. 
In the writeback mode, data are exposed to the buffer 
flushing threads of the operating system immediately after 
each file operation, and metadata are exposed after each 
journal commit. Since no flushing order is enforced in the 
writeback mode, metadata may be flushed back to the 
data storage before the associated data, causing the 
dangling pointer problem. Therefore, this mode is 
generally regarded as having the weakest consistency 
semantic among the three modes. The ordered mode 
solves the dangling pointer problem by ensuring that the 
updated data are flushed back to the storage before the 
commit of the associated metadata. Although the strict 
flushing order provides strong consistency semantic, the 
ordered mode does not guarantee data integrity since the 
data updates are not journaled, as in the writeback mode. 
The journal mode supports full data journaling, that is, it 
logs both data and metadata and thus guarantees both file 
system consistency and data integrity. All the data and 
metadata updates are committed to the journal area before 
they are exposed. However, this mode has inferior 
performance under most workloads since all the data and 
metadata updates have to be written to the storage twice. 

C. Virtual Machine 
Virtualization technology allows multiple isolated 

virtual machines to run concurrently in one physical 

machine, sharing the resources of that physical machine. 
Each virtual machine is supported by the VMM, a thin 
software layer running underneath the virtual machine. A 
virtual machine is also called a guest domain, and the 
operating system running in a virtual machine is called a 
guest operating system. Generally, VMM can run on an 
operating system or a bare hardware. In this paper, we 
focus on the VMM running directly on bare hardware, 
which provides better performance and is commonly used 
in server environments. 

VMM emulates the hardware interface and provides 
virtual computing resources, such as virtual CPU and disk, 
to the guest operating systems. Virtual disks are usually 
implemented in the form of partitions or image files on 
the physical storage. The guest operating systems can 
utilize their preferred file systems to manage the virtual 
disks. 

D. Reducing Write Traffic to SSD 
In addition to VMA journaling, several techniques 

have also been proposed to extend SSD lifetime by 
reducing the write traffic to an SSD. Griffin [7] employs a 
disk as the write cache of the SSD. The data are first 
written to the log-structured disk cache, and then migrated 
to the SSD periodically. Since duplicated data writes can 
be merged in the disk cache, the write traffic to the SSD is 
reduced. The CAFTL [8] uses the concept of Content-
Addressable Storage (CAS) in the FTL layer to reduce 
write traffic to the SSD. Multiple blocks with the same 
content can be stored as a single copy in the SSD, 
reducing the write traffic to the SSD.  

III. Overview of VMA Journaling 
In order to eliminate journaling writes to the storage, 

VMA journaling commits journal information to the 
VMM instead of the storage. Figure 1 illustrates the 
difference between the handling of journal data in the 
traditional and VMA journaling approaches. In step 1, 
both traditional and VMA journaling group dirty buffers, 
which reflect metadata and data updates, into a transaction. 
Then, the traditional journaling approach commits these 
dirty buffers to the on-storage journal area, as shown in 
step 2 of Figure 1(a). However, VMA journaling commits 
the dirty buffers to the journal area residing in the VMM 
memory instead of the storage, as shown in step 2 of 
Figure 1(b). Therefore, no journaling writes to the storage 
are needed. After the commit, the guest domain can flush 
the committed dirty buffers in an asynchronous manner, 
as shown in step 3 of Figure 1(a) and (b). When a domain 
crashes, the information in the journal area can be used 
for file system recovery. 

Committing dirty buffers to the in-VMM journal area 
does not cause the buffer data to be copied from the guest 
domain memory to the VMM. VMA journaling uses a 
single copy of buffer to represent both the updated data 
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and the journal data. Therefore, committing a buffer under 
VMA journaling involves transferring only the 
information for locating the buffers to the VMM. 
Specifically, only the journal information, i.e. the tuple 
(memory address, block number) denoting the machine 
memory address and the corresponding disk block number 
of the buffer, is transferred to the VMM. Once a domain 
crashes, VMA journaling allows the VMM to retain the 
memory of the committed dirty buffers, and it flushes the 
retained buffers back to the storage for maintaining file 
system consistency and data integrity. 

Since the journal data are placed in the guest domain 
memory, unauthorized modifications to these data could 
disrupt the file system consistency and data integrity. For 
example, unintentional wild writes in the guest domain 
kernel might corrupt the journal data, leading the file 
system to an unrecoverable state. To prevent wild writes 
from modifying the journal data, VMA journaling write-
protects the memory pages of the to-be-committed dirty 
buffers when committing a transaction. Therefore, the 
guest operating system can detect and stop wild writes to 
the journal data via page faults.  

Unlike a wild write, a write issued from the file system 
to a protected buffer should be allowed since the buffer 
still represents the updated data. Copy-on-write (COW) is 
used for such a write. That is, the content of the protected 
buffer is copied to a free and unprotected buffer, which is 
used for satisfying the write. On the next commit, these 
two buffer copies are merged by write-protecting the 
buffer containing the most up-to-date data and freeing the 
original protected buffer that contains the stale data. After 
the merge, a single copy of buffer again represents both 
the updated data and the journal data. 

Reclamation of the journal data is triggered when the 
buffer is going to be reclaimed by the guest operating 
system, for instance, under memory pressure. When the 
buffer is going to be reclaimed, VMA journaling 
unprotects the buffer and removes the journal information 
corresponding to the buffer via a hypercall (i.e., a call to 
the VMM). After that, the buffer no longer represents the 
journal data and can be reclaimed by the guest operating 
system. Note that, file system consistency and data 
integrity still remain since a buffer is reclaimed only after 
its content has been flushed to the data area. However, 
unprotecting each buffer during its reclamation could 
cause a significant overhead due to frequent hypercalls, 
which involves switches between the VMM and guest 
domains. To reduce the overhead, batch unprotection is 
adopted.  

Reclamation of the journal data and information also 
takes place when the VMM cannot afford the journal area 
of the guest domain. When this situation occurs, the 
checkpoint procedure is triggered, during which the 
journal data are flushed to the data area until the size of 
the journal area has been reduced to below a specific 

threshold. Nevertheless, since only metadata (i.e., the 
journal information) are stored in the journal area, the 
required size of a journal area is quite small in VMA 
journaling and thus this situation rarely occurs.  

 Similar to traditional journaling approaches, VMA 
journaling performs recovery by simply replaying the 
journal data. In VMA journaling, this is achieved through 
the cooperation of the VMM and the system management 
domain (e.g. domain 0 in the Xen virtualization 
environment). When a guest domain crashes, the VMM 
reclaims all memory pages of the domain except those 
containing the journal data (i.e. the protected buffers). 
Then, the VMM notifies the system management domain, 
which wakes up a recovery thread to start the following 
recovery procedure. First, for each file system mounted 
as VMA journaling in the crashed domain, the recovery 
procedure issues a query for the total size of the journal 
data. If the size is zero, the corresponding file system is 
consistent and the recovery thread goes on to check the 
next file system. Otherwise, the recovery thread prepares 
a free memory pool of that size for exchanging with 
pages containing these journal data. It then issues a 
hypercall to perform the memory exchange to obtain the 
journal data and to retrieve the corresponding journal 
information from the VMM. After the exchange has been 
completed, the recovery thread writes the journal data 
back to the data area according to the journal information. 
The memory exchange is implemented by page 
remapping. The journal data are remapped into the 
system management domain, and the pages in the free 
memory pool are remapped into the VMM. After the 
journal data have been written, the memory containing 
the journal data becomes free memory of the system 
management domain, and the recovery thread informs the 
VMM to reclaim the journal information about the file 
system.  

Figure 1. (a) Traditional journaling and (b) VMA journaling. 
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IV. EVALUATION OF VMA JOURNALING ON SSDS

We have implemented VMA journaling as a new 
journaling mode of ext3 (called the VMA mode) on the 
Xen virtual machine environment. In this section, we 
compare VMA journaling with traditional journaling 
approaches (specifically, the original three journaling 
modes of ext3) in terms of erase counts (i.e., the numbers 
of erase operations) and GC overhead. Note that, the 
writeback and ordered modes of ext3 use the metadata 
journaling approach while the journal mode and VMA 
mode use the full data journaling approach.  

The performance evaluation is performed by first 
collecting I/O traces under different journaling modes and 
then feeding the collected I/O traces to an SSD simulator 
to measure the erase counts and the GC overhead. 

Table 1 shows the machine configuration and the 
workloads used for trace collection. Eight guest domains 
were run on a physical machine, with 128MB of memory 
allocated for each domain. In order to prevent system I/O 
activities from affecting the performance results, two 
virtual disks belonging to two separated physical disks 
were allocated for each domain. The virtual system disks 
stored the program images including the operating 
systems, libraries and benchmarks, while the virtual data 
disks stored the data accessed by the benchmarks. Each 
virtual disk was made up of a single partition on the 
corresponding physical disk.  

Two micro-benchmarks (seq_write and rnd_write) 
and three macro-benchmarks (postmark, untar and 
kernel_compile) were used as the workloads for trace 
collection.  In the seq_write benchmark, a single empty 
file is first created and then has 8 kB of data appended 
each time until the file size reaches 600MB. The 
rnd_write benchmark issues a sequence of 4 kB random 
writes to a 512MB file until 128MB of data have been 
written. The postmark [9] simulates the workload of a 
news or email server. During execution, it creates an 
initial set of small files and then applies a number of 
transactions on those files. Each transaction consists of a 
create/delete operation together with a read/append 
operation. The untar benchmark extracts a Linux source 

tree (version 2.6.11) from a bzip2-compressed image. 
Finally, the kernel_compile benchmark is a CPU-intensive 
workload, which builds a compressed kernel image from 
the source tree of the Linux kernel. 

Eight concurrent guest domains were run during the 
trace collection, each of which executed an instance of the 
given workload. We modified the Xen backend disk 
driver running in domain 0 (i.e., the system management 
domain) to log the I/O requests during trace collection. 
Note, only the I/O requests of the virtual data disks were 
logged.  

We have implemented an SSD simulator to report the 
erase counts and the GC overhead of a given I/O trace. 
Table 2 shows the configuration of the SSD simulator. A 
32GB flash storage (i.e., 262,144 blocks) was simulated. 
All the time-related values were obtained from the 
specification of the Samsung K9K4G08U0M flash 
memory chip [10]. Three FTLs were implemented in the 
simulator: FAST, Superblock and DFTL. Note that, real 
SSDs were not used for performance evaluation since it is 
difficult to retrieve the internal information of real SSDs 
(e.g. the erase count, GC overhead, and FTL). 

In the following, we first show the reduced write 
traffic of the VMA mode compared to the journal mode of 
ext3. Then, the results of lifetime extension and GC 
overhead reduction resulting from the write traffic 
reduction are shown.  

A. Write Traffic Reduction  
Figures 2 and 3 show the numbers of I/O requests and 

the amount of I/O traffic under different journaling modes, 
respectively. As seen, when compared to the journal mode 
of ext3, the VMA mode reduces the numbers of I/O 
requests (i.e., I/O counts) by 9.4% to 48.9% and the 
amount of I/O traffic by 42.4% to 56.7%, showing the 
effectiveness of journal write elimination. Compared to 
the metadata journaling modes, which do not ensure data 
integrity, the VMA mode presents a similar amount of I/O 
traffic.  

Comparing the two metadata journaling modes, the 
ordered mode leads to more I/O requests and traffic than 
the writeback mode since, as mentioned in Section 2.2, 
the ordered mode needs to flush the updated data before 
committing the associated metadata. Such strict ordering 
limits the effect of delayed write, leading to more I/O 
traffic. 

TABLE I. ENVIRONMENT FOR TRACE COLLECTION

CPU Pentium 4 - 3.2 GHz Hardware Memory DDRII 2 GB 
VMM     Xen 2.0.7

Kernel  XenoLinux 2.6.11 

Memory 
128Mbytes for each guest 
domain 
256Mbytes for domain 0 Domains 

Virtual disks Virtual system disk: 8 GB  
Virtual data disk: 4 GB 

Micro Benchmarks Filebench: seq_write and rnd_write
Macro Benchmarks Postmark , untar and kernel_compile

TABLE II. CONFIGURATION OF THE SSD SIMULATOR

Parameters Values 
Number of blocks 262144 (32GB) 
Pages per block 64 

Page size 2KB 
Page read/write time 88 us  / 263us 

Block erase time 2000us 
FTLs FAST, SuperBlock, DFTL
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B. Lifetime Extension 
Figure 4 shows the erase counts of different journaling 

modes. From the figure, the journal mode has the largest 
erase counts than the other modes. For example, 
compared to the journal mode, the writeback and ordered 
modes result in only 37.8% and 40% of the erase counts, 
respectively, when DFTL is used under the execution of 
the Untar benchmark. The large erase count of the journal 
mode is due to the large write traffic of that mode 
resulting from logging the updates of both metadata and 
data.  

As mentioned before, the lifetime of an SSD is limited 
by the limited PE cycles of the flash memory. Given that 
erase operations can be distributed evenly among flash 
blocks through the use of wear-leveling techniques, the 
lifetime of an SSD is proportional to the number of erase 
operations the SSD endures. 

Therefore, from the results of DFTL under the Untar
benchmark, the journal mode reduces the SSD lifetime by 
more than 60% when compared to the metadata 
journaling modes. Such significant lifetime reduction 
would be an obstacle for full data journaling to be widely 
employed in reliability-concerned server environment. 

Figure 4. Erase Counts 

Figure 2. Number of I/O Requests under Different Journaling Modes Figure 3. Amount of I/O Traffic under Different Journaling Modes 
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VMA mode also supports full data journaling since it 
also logs updates of both metadata and data, ensuring both 
file system consistency and data integrity. However, due 
to journal write elimination, VMA mode reduces the erase 
counts by 34.6% to 56% in the micro benchmarks and 
48.4% to 86.5% in the macro benchmarks, compared to 
the journal mode. Furthermore, the VMA mode shows 
similar or even lower erase counts than the metadata 
journaling modes. Therefore, VMA mode extends the 
SSD lifetime by 86.5% when compared to journal mode, 
and it achieves similar SSD lifetime when compared to 
metadata journaling modes, which do not guarantee data 
integrity. 

Note that, VMA journaling is effective for all the three 
FTLs. Up to 64%, 83% and 86.5% erase operations are 
eliminated in FAST, Superblock and DFTL, respectively, 
compared to the journal mode. Note, the erase counts of 
the SuperBlock FTL and DFTL are less than those of the 
FAST FTL. Such result is consistent with previous studies 
[5-6]. 

C. GC Overhead Reduction 
As mentioned above, garbage collection could lead to 

unpredictable performance drop of the SSD. Figure 5
shows the garbage collection overhead of VMA mode and 
the other three journaling modes of ext3 under FAST, 
SuperBlock and DFTL. Not surprisingly, compared to the 
journal mode, the VMA mode reduces the GC overhead 
by 13.1% to 63.2% in micro benchmarks and by 27% to 
80.6% in macro benchmarks, and it has similar GC 

overhead when compared with the metadata journaling
modes. For each FTL, up to 63.2%, 75.9%, and 80.6% 
GC overhead are reduced in FAST, Superblock and DFTL, 
respectively, compared to the journal mode.  

CONCLUSIONS

Solid state disks (SSDs) have gained in popularity and 
show their potential to replace traditional magnetic disks 
in commercial servers. In our previous study, we 
proposed Virtual Machine Aware journaling (VMA 
journaling), a new file system journaling approaches used 
in virtual server environments which have been broadly 
used. In this paper, we demonstrate the following. First, 
traditional full data journaling, which ensures both file 
system consistency and data integrity, could reduce the 
lifetime of the SSD significantly. Such significant lifetime 
reduction is an obstacle for full data journaling to be 
widely employed in reliability-concerned server 
environment. Second, VMA journaling, which also 
ensures both file system consistency and data integrity, 
effectively extends the lifetime of the SSD (by up to 
86.5% compared to the traditional full data journaling 
approach) in virtual server environments. Moreover, the 
GC overhead is reduced by up to 80.6% when VMA 
journaling is used. Third, three state-of-the-art FTLs (i.e., 
FAST, SuperBlock FTL and DFTL) are used in the 
simulated SSD, and the results show that VMA journaling 
is effective under all these FTLs. From these results, we 
show that VMA journaling is an effective alternative to 

Figure 5. Garbage Collection Overhead  
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traditional journaling approaches in SSD-based virtual 
server environments.  

REFERENCES

[1] Prabhakaran, V., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R. 
H., “Analysis and Evolution of Journaling File Systems”, in 
Proceedings the USENIX Annual Technical Conference 
(USENIX ’05), Anaheim, CA, U.S.A., April 13-15 2005. 

[2]  Huang, T. C., and Chang, D. W., “VM Aware Journaling: 
Improving Journaling File System Performance in Virtualization 
Environments”, Software: Practice and Experience, in press. 

[3] Bateman K., “IDC Charts Rise of Virtual Machines”, Available at: 
http://www.channelweb.co.uk/crn/news/2242378/virtual-
machines-exceeding, May 2009. 

[4]  Lee, S. W., Park, D. J., Chung, T. S., Lee, D. H., Park, S., and 
Song, H. J., “A Log Buffer-based Flash Translation Layer Using 
Fully-associative Sector Translation”, IEEE Transactions on 
Embedded Computing Systems, vol. 6, no. 3, pp. 18-18, July 2007. 

[5] Kang, J. U., Jo, H., Kim, J. S., and Lee, J., “A Superblock-based 
Flash Translation Layer for NAND Flash Memory”, in 
Proceedings 6th International Conference on Embedded Software 
(EMSOFT ‘06), Seoul, Republic of Korea, October 22-27 2006, 
pp. 161-170. 

[6] Gupta, A., Kim, Y., and Urgaonkar, B., “DFTL: A Flash 
Translation Layer Employing Demand-based Selective Caching of 
Page-level Address Mappings”, in Proceedings 14th International 
Conference on Architectural Support for Programming Languages 
and Operating Systems (ASPLOS ‘09), Washington, DC, U.S.A., 
March 7-11 2009, pp. 20-20. 

[7] Soundararajan, G., Prabhakaran, V., Balakrishnan, M., and 
Wobber, T., “Extending SSD Lifetimes with Disk-based Write 
Caches”, in Proceedings 8th USENIX Conference on File and 
Storage Technologies (FAST ’10) , San Jose, CA, U.S.A., 
February 23–26 2010, pp. 8-8. 

[8] Chen, F., Luo, T., and Zhang, X., “CAFTL: a Content-aware Flash 
Translation Layer Enhancing the Lifespan of Flash Memory 
Based Solid State Drives”, in Proceedings 9th USENIX 
Conference on File and Storage Technologies (FAST ’11) , San 
Jose, CA, U.S.A., February 15–17 2011, pp. 6-6. 

[9] Katcher, J., “PostMark: A New File System Benchmark”, 
Available at: http://communities-
staging.netapp.com/servlet/JiveServlet/download/2609-
1551/Katcher97-postmark-netapp-tr3022.pdf, August 1997. 

[10] Samsung Electronics, 512M x 8 Bit / 256M x 16 Bit NAND Flash 
Memory, Datasheet. 

8


