
Extending Lifetime and Reducing Garbage Collection Overhead of Solid State Disks
with Virtual Machine Aware Journaling

Ting-Chang Huang
Department of Computer Science
National Chiao Tung University

Hsinchu, Taiwan, ROC
tchuang@cs.nctu.edu.tw

Da-Wei Chang
Department of Computer Science and Information Engineering

National Cheng Kung University
Tainan, Taiwan, ROC

dwchang@mail.ncku.edu.tw

Abstract—Virtualization is becoming widely deployed in
commercial servers. In our previous study, we proposed
Virtual Machine Aware journaling (VMA journaling), a file
system journaling approach for virtual server environments.
With reliable VMM and hardware subsystems, VMA
journaling eliminates journal writes while ensuring file
system consistency and data integrity in virtual server
environments, allowing it to be an effective alternative to
traditional journaling approaches in these environments.

In recent years, solid-state disks (SSDs) have shown their
potential as a replacement of traditional magnetic disks in
commercial servers. In this paper, we demonstrate the
benefits of VMA journaling on SSDs. We compare the
performance of VMA journaling and three traditional
journaling approaches (i.e., the three journaling modes of
the ext3 journaling file system) in terms of lifetime and
garbage collection overhead, which are two key
performance metrics for SSDs. Since a Flash Translation
Layer (FTL) is used in an SSD to emulate traditional disk
interface and the SSD performance highly depends on the
FTL being used, three state-of-the-art FTLs (i.e., FAST,
SuperBlock FTL and DFTL) are implemented for
performance evaluation.

The performance results show that, traditional full data
journaling could reduce the lifetime of the SSD significantly.
VMA journaling extends the SSD lifetime under full data
journaling by up to 86.5%. Moreover, GC overhead is
reduced by up to 80.6% when compared to the full data
journaling approach of ext3. Finally, VMA journaling is
effective under all the FTLs. These results demonstrate that
VMA journaling is effective in SSD-based virtual server
environments.

Keywords- journaling file system, flash translation layer,
virtual machine

I. INTRODUCTION

In recent years, NAND flash-based solid-state disks
(SSD) have gained in popularity in desktop/laptop
computers and servers. SSDs show their potential to
replace traditional magnetic disks in commercial servers
due to their low access time, low power consumption, and
shock-resistance capability.

Nevertheless, there are still two main obstacles for
SSDs to be widely deployed. The first one is the
reliability concern. The lifetime of an SSD is limited by
the limited program/erase (PE) cycles of the flash
memory used in an SSD. Generally, an SLC (single level
cell) NAND flash block can sustain about 100K PE cycles,

and an MLC (multi level cell) NAND flash block can
sustain only 10K PE cycles. Once the limit of the PE
cycles is reached, a block can no longer be updated. Such
a problem could be serious in reliability-concerned server
environment.

The second one is performance degradation resulted
from garbage collection (GC) of an SSD. Modern SSDs
adopt the out-of-place update approach, which writes the
updated data to free pages1 and marks the out-of-date data
as garbage. When the number of free pages drops below a
specified threshold, the GC procedure is triggered to
reclaim free space. The GC procedure selects a victim
block, copies out the up-to-date data in the block, and then
erases the block so that a block of free pages can be
obtained. The overhead of GC involves data copying and
block erasure, which is time-consuming and could have
performance impact to the normal user requests.
Therefore, GC overhead should be minimized in order to
minimizing the performance impact to server workloads.

File systems, which generate I/O traffic to the storages,
play an important role on the storage performance. Many
modern file systems, for example, ext3 and NTFS, adopt
journaling to maintain file system consistency and data
integrity. However, file system journaling writes the
update data (called journal data) to a preserved area on the
storage (called journal area) before the data are flushed to
the data area. Such additional journal writes increase the
write traffic to the storage [1]. On an SSD, the increased
write traffic leads to higher GC overhead and more block
erasures, degrading the SSD performance and reducing
the SSD lifetime.

In our previous study, we have proposed VMA
journaling (Virtual Machine Aware journaling) [2], a new
file system journaling approach used in virtual server
environments, which are gaining in popularity in server
platforms. VMA journaling eliminates journal writes
while ensuring file system consistency and data integrity
in virtual server environments. In recent years, virtual
machines have been broadly used in server consolidation,
disaster recovery, software testing, security and storage
management. According to International Data
Corporation (IDC), in 2008, there were more shipments of
servers based on virtual machines than those based on

1A NAND flash memory chip is divided into a number of blocks and
each block includes a fixed number of pages. Read/write operations are
performed in units of a page, and erase operations are performed in
units of a block.

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.61

1

physical machines, and the ratio will reach 1.5 in 2013 [3].
In a virtual server environment with reliable VMM and
hardware subsystems, VMA journaling provides superior
file system performance with similar level of data
integrity and consistency when compared with traditional
full data journaling. This is achieved by allowing
cooperation between the journaling file systems and the
Virtual Machine Monitor (VMM), which is a thin
software layer running underneath the virtual machines
and emulating the hardware interface to the guest
operating systems (i.e. the operating systems running in
the virtual machines). Unlike traditional journaling
approaches, which write journal data to the on-storage
journal area, VMA journaling retains journal data in the
memory of the virtual machine and stores the information
for locating these data (called the journal information) in
the VMM. As a consequence, journal writes are
eliminated.

We have evaluated the performance of VMA
journaling on magnetic disks [2]. In this paper, we
evaluate the performance of VMA journaling on reducing
the GC overhead and extending the lifetime of an SSD.
Due to the elimination of journal writes, VMA journaling
reduces the write traffic to the SSD compared to the other
journaling approaches, leading to lower GC overhead and
a reduced number of block erasures.

For performance evaluation, we collected I/O traces of
VMA journaling and three journaling approaches of ext3
under the execution of eight concurrent virtual machines.
The collected traces were then fed into our SSD simulator
for performance evaluation. Since a Flash Translation
Layer (FTL) is used in an SSD to emulate traditional disk
interface and the SSD performance varies depending on
the FTL, three state-of-the-art FTLs: FAST [4],
SuperBlock FTL [5], and DFTL [6] were implemented in
the simulator and used in performance evaluation.

According to the simulation results, VMA journaling
reduces the number of erase operations by up to 86.5%,
while providing similar level of data integrity, when
compared to traditional full data journaling of ext3. This
indicates that VMA journaling can extend the SSD
lifetime by 86.5% if the blocks of the SSD can be worn
evenly. Compared to metadata journaling of ext3, which
does not guarantee data integrity, VMA journaling has a
similar number of erase operations. Moreover, 13.1% to
75.9% reduction in GC overhead is achieved when
compared to traditional full data journaling of ext3.

The remainder of this paper is organized as follows.
Section 2 describes the related work, followed by the
design and implementation of VMA journaling in Section
3. Section 4 shows the performance results. Finally,
conclusions are given in Sections 5.

II. BACKGROUND AND RELATED WORK

A. Flash Translation Layer
Flash Translation Layers (FTLs) employed in SSDs

emulate traditional disk interface to support disk-based

file systems. An FTL maintains a mapping structure in the
internal RAM of the SSD, which translates logical sector
numbers to flash page or block numbers. The state of each
flash page is maintained by the FTL. Once an erased (i.e.,
free) page is written with user data, it becomes a live page,
and the page containing the old data is marked as dead. A
time-consuming garbage collection (GC) procedure is
invoked to maintain enough free pages for
accommodating further writes. The procedure selects
victim blocks, copies live pages to free pages and finally
erases these victim blocks. The GC procedure, which
involves data copying and block erasure, incurs
performance overhead and could have an impact on the
flash lifetime. Therefore, GC overhead is a key
performance metric for an SSD.

Several FTLs have been proposed in the past few years,
which can be classified into page-mapped, block-mapped,
and hybrid-mapped FTLs according to their mapping
granularities. Page-mapped FTLs, for example the
SuperBlock FTL and the DFTL used in this paper, adopt a
fine-grained translation method that directly translates
each logical page to a physical page. Generally, GC
overhead of page-mapped FTLs is usually smaller than
the other types of FTLs [5][6]. However, due to fine-
grained translation, a page-mapped FTL requires a large
mapping table for a large-sized flash memory.

The Superblock FTL groups several contiguous logical
blocks into a superblock. Pages belonging to a superblock
are written to the physical blocks allocated for that
superblock. Page-level mapping is used in a superblock.
The page-level mapping information of superblock is
stored in the spare area of the flash memory, instead of the
internal RAM of the SSD. Therefore, the memory usage
can be reduced. The GC procedure is invoked when the
free pages of the target superblock is not enough to
accommodate the incoming write. DFTL stores the page-
level mapping information in the flash memory and
caches the most recently used mapping information in
RAM so as to reducing the RAM requirement of the
mapping table. In DFTL, GC is triggered when the free
pages of the flash storage drops below a threshold.

Block-mapped FTLs reduce the RAM requirement of
the mapping table by directly reducing the number of
entries in the mapping table. This is achieved by using a
coarse-grained translation method, which translates each
logical block number to a specific physical block number.
In these FTLs, each logical page number is divided by the
number of pages per block to obtain the logical block
number (i.e., the quotient) and the page offset (i.e., the
remainder). The former is used to index the mapping table
to obtain the physical block number and the latter is used
to locate the target page within the physical block. Such
mapping approach leads to high GC overhead due to the
limitation that each logical page can only be written to a
fixed offset of a physical block. For example, frequently

2

updating a logical page would lead to frequent block
erasure.

Several hybrid-mapped FTLs such as the FAST FTL [4]
have been proposed to achieve low GC overhead while
keeping the size of the mapping table small. FAST divides
the blocks into two types: data blocks and log blocks. The
former, which utilizes the coarse-grained mapping scheme,
is used to satisfy the first-time write of each logical page
while the latter, which utilizes the fine-grained mapping
scheme, is used to accommodate page updates.

B. Journaling File System
Journaling file systems adopt the concept of write-

ahead logging to maintain file system consistency. In-
memory file system updates are grouped into a transaction
and then committed into the journal area, which is a
reserved space on the storage, before they are flushed to
the data area of the storage. When a system crashes, the
file system can be efficiently brought back to a consistent
state by replaying the journal data (i.e. data in the journal
area).

Many journaling file systems support more than one
journaling modes with different performance and
consistency strengths. For example, both ext3 and
ReiserFS support three journaling modes: writeback,
ordered and journal modes. The differences among these
modes are the content in the journal area and the flush
order of the data. Both writeback and ordered modes log
only metadata and therefore do not ensure data integrity.
In the writeback mode, data are exposed to the buffer
flushing threads of the operating system immediately after
each file operation, and metadata are exposed after each
journal commit. Since no flushing order is enforced in the
writeback mode, metadata may be flushed back to the
data storage before the associated data, causing the
dangling pointer problem. Therefore, this mode is
generally regarded as having the weakest consistency
semantic among the three modes. The ordered mode
solves the dangling pointer problem by ensuring that the
updated data are flushed back to the storage before the
commit of the associated metadata. Although the strict
flushing order provides strong consistency semantic, the
ordered mode does not guarantee data integrity since the
data updates are not journaled, as in the writeback mode.
The journal mode supports full data journaling, that is, it
logs both data and metadata and thus guarantees both file
system consistency and data integrity. All the data and
metadata updates are committed to the journal area before
they are exposed. However, this mode has inferior
performance under most workloads since all the data and
metadata updates have to be written to the storage twice.

C. Virtual Machine
Virtualization technology allows multiple isolated

virtual machines to run concurrently in one physical

machine, sharing the resources of that physical machine.
Each virtual machine is supported by the VMM, a thin
software layer running underneath the virtual machine. A
virtual machine is also called a guest domain, and the
operating system running in a virtual machine is called a
guest operating system. Generally, VMM can run on an
operating system or a bare hardware. In this paper, we
focus on the VMM running directly on bare hardware,
which provides better performance and is commonly used
in server environments.

VMM emulates the hardware interface and provides
virtual computing resources, such as virtual CPU and disk,
to the guest operating systems. Virtual disks are usually
implemented in the form of partitions or image files on
the physical storage. The guest operating systems can
utilize their preferred file systems to manage the virtual
disks.

D. Reducing Write Traffic to SSD
In addition to VMA journaling, several techniques

have also been proposed to extend SSD lifetime by
reducing the write traffic to an SSD. Griffin [7] employs a
disk as the write cache of the SSD. The data are first
written to the log-structured disk cache, and then migrated
to the SSD periodically. Since duplicated data writes can
be merged in the disk cache, the write traffic to the SSD is
reduced. The CAFTL [8] uses the concept of Content-
Addressable Storage (CAS) in the FTL layer to reduce
write traffic to the SSD. Multiple blocks with the same
content can be stored as a single copy in the SSD,
reducing the write traffic to the SSD.

III. Overview of VMA Journaling
In order to eliminate journaling writes to the storage,

VMA journaling commits journal information to the
VMM instead of the storage. Figure 1 illustrates the
difference between the handling of journal data in the
traditional and VMA journaling approaches. In step 1,
both traditional and VMA journaling group dirty buffers,
which reflect metadata and data updates, into a transaction.
Then, the traditional journaling approach commits these
dirty buffers to the on-storage journal area, as shown in
step 2 of Figure 1(a). However, VMA journaling commits
the dirty buffers to the journal area residing in the VMM
memory instead of the storage, as shown in step 2 of
Figure 1(b). Therefore, no journaling writes to the storage
are needed. After the commit, the guest domain can flush
the committed dirty buffers in an asynchronous manner,
as shown in step 3 of Figure 1(a) and (b). When a domain
crashes, the information in the journal area can be used
for file system recovery.

Committing dirty buffers to the in-VMM journal area
does not cause the buffer data to be copied from the guest
domain memory to the VMM. VMA journaling uses a
single copy of buffer to represent both the updated data

3

and the journal data. Therefore, committing a buffer under
VMA journaling involves transferring only the
information for locating the buffers to the VMM.
Specifically, only the journal information, i.e. the tuple
(memory address, block number) denoting the machine
memory address and the corresponding disk block number
of the buffer, is transferred to the VMM. Once a domain
crashes, VMA journaling allows the VMM to retain the
memory of the committed dirty buffers, and it flushes the
retained buffers back to the storage for maintaining file
system consistency and data integrity.

Since the journal data are placed in the guest domain
memory, unauthorized modifications to these data could
disrupt the file system consistency and data integrity. For
example, unintentional wild writes in the guest domain
kernel might corrupt the journal data, leading the file
system to an unrecoverable state. To prevent wild writes
from modifying the journal data, VMA journaling write-
protects the memory pages of the to-be-committed dirty
buffers when committing a transaction. Therefore, the
guest operating system can detect and stop wild writes to
the journal data via page faults.

Unlike a wild write, a write issued from the file system
to a protected buffer should be allowed since the buffer
still represents the updated data. Copy-on-write (COW) is
used for such a write. That is, the content of the protected
buffer is copied to a free and unprotected buffer, which is
used for satisfying the write. On the next commit, these
two buffer copies are merged by write-protecting the
buffer containing the most up-to-date data and freeing the
original protected buffer that contains the stale data. After
the merge, a single copy of buffer again represents both
the updated data and the journal data.

Reclamation of the journal data is triggered when the
buffer is going to be reclaimed by the guest operating
system, for instance, under memory pressure. When the
buffer is going to be reclaimed, VMA journaling
unprotects the buffer and removes the journal information
corresponding to the buffer via a hypercall (i.e., a call to
the VMM). After that, the buffer no longer represents the
journal data and can be reclaimed by the guest operating
system. Note that, file system consistency and data
integrity still remain since a buffer is reclaimed only after
its content has been flushed to the data area. However,
unprotecting each buffer during its reclamation could
cause a significant overhead due to frequent hypercalls,
which involves switches between the VMM and guest
domains. To reduce the overhead, batch unprotection is
adopted.

Reclamation of the journal data and information also
takes place when the VMM cannot afford the journal area
of the guest domain. When this situation occurs, the
checkpoint procedure is triggered, during which the
journal data are flushed to the data area until the size of
the journal area has been reduced to below a specific

threshold. Nevertheless, since only metadata (i.e., the
journal information) are stored in the journal area, the
required size of a journal area is quite small in VMA
journaling and thus this situation rarely occurs.

 Similar to traditional journaling approaches, VMA
journaling performs recovery by simply replaying the
journal data. In VMA journaling, this is achieved through
the cooperation of the VMM and the system management
domain (e.g. domain 0 in the Xen virtualization
environment). When a guest domain crashes, the VMM
reclaims all memory pages of the domain except those
containing the journal data (i.e. the protected buffers).
Then, the VMM notifies the system management domain,
which wakes up a recovery thread to start the following
recovery procedure. First, for each file system mounted
as VMA journaling in the crashed domain, the recovery
procedure issues a query for the total size of the journal
data. If the size is zero, the corresponding file system is
consistent and the recovery thread goes on to check the
next file system. Otherwise, the recovery thread prepares
a free memory pool of that size for exchanging with
pages containing these journal data. It then issues a
hypercall to perform the memory exchange to obtain the
journal data and to retrieve the corresponding journal
information from the VMM. After the exchange has been
completed, the recovery thread writes the journal data
back to the data area according to the journal information.
The memory exchange is implemented by page
remapping. The journal data are remapped into the
system management domain, and the pages in the free
memory pool are remapped into the VMM. After the
journal data have been written, the memory containing
the journal data becomes free memory of the system
management domain, and the recovery thread informs the
VMM to reclaim the journal information about the file
system.

Figure 1. (a) Traditional journaling and (b) VMA journaling.

4

IV. EVALUATION OF VMA JOURNALING ON SSDS

We have implemented VMA journaling as a new
journaling mode of ext3 (called the VMA mode) on the
Xen virtual machine environment. In this section, we
compare VMA journaling with traditional journaling
approaches (specifically, the original three journaling
modes of ext3) in terms of erase counts (i.e., the numbers
of erase operations) and GC overhead. Note that, the
writeback and ordered modes of ext3 use the metadata
journaling approach while the journal mode and VMA
mode use the full data journaling approach.

The performance evaluation is performed by first
collecting I/O traces under different journaling modes and
then feeding the collected I/O traces to an SSD simulator
to measure the erase counts and the GC overhead.

Table 1 shows the machine configuration and the
workloads used for trace collection. Eight guest domains
were run on a physical machine, with 128MB of memory
allocated for each domain. In order to prevent system I/O
activities from affecting the performance results, two
virtual disks belonging to two separated physical disks
were allocated for each domain. The virtual system disks
stored the program images including the operating
systems, libraries and benchmarks, while the virtual data
disks stored the data accessed by the benchmarks. Each
virtual disk was made up of a single partition on the
corresponding physical disk.

Two micro-benchmarks (seq_write and rnd_write)
and three macro-benchmarks (postmark, untar and
kernel_compile) were used as the workloads for trace
collection. In the seq_write benchmark, a single empty
file is first created and then has 8 kB of data appended
each time until the file size reaches 600MB. The
rnd_write benchmark issues a sequence of 4 kB random
writes to a 512MB file until 128MB of data have been
written. The postmark [9] simulates the workload of a
news or email server. During execution, it creates an
initial set of small files and then applies a number of
transactions on those files. Each transaction consists of a
create/delete operation together with a read/append
operation. The untar benchmark extracts a Linux source

tree (version 2.6.11) from a bzip2-compressed image.
Finally, the kernel_compile benchmark is a CPU-intensive
workload, which builds a compressed kernel image from
the source tree of the Linux kernel.

Eight concurrent guest domains were run during the
trace collection, each of which executed an instance of the
given workload. We modified the Xen backend disk
driver running in domain 0 (i.e., the system management
domain) to log the I/O requests during trace collection.
Note, only the I/O requests of the virtual data disks were
logged.

We have implemented an SSD simulator to report the
erase counts and the GC overhead of a given I/O trace.
Table 2 shows the configuration of the SSD simulator. A
32GB flash storage (i.e., 262,144 blocks) was simulated.
All the time-related values were obtained from the
specification of the Samsung K9K4G08U0M flash
memory chip [10]. Three FTLs were implemented in the
simulator: FAST, Superblock and DFTL. Note that, real
SSDs were not used for performance evaluation since it is
difficult to retrieve the internal information of real SSDs
(e.g. the erase count, GC overhead, and FTL).

In the following, we first show the reduced write
traffic of the VMA mode compared to the journal mode of
ext3. Then, the results of lifetime extension and GC
overhead reduction resulting from the write traffic
reduction are shown.

A. Write Traffic Reduction
Figures 2 and 3 show the numbers of I/O requests and

the amount of I/O traffic under different journaling modes,
respectively. As seen, when compared to the journal mode
of ext3, the VMA mode reduces the numbers of I/O
requests (i.e., I/O counts) by 9.4% to 48.9% and the
amount of I/O traffic by 42.4% to 56.7%, showing the
effectiveness of journal write elimination. Compared to
the metadata journaling modes, which do not ensure data
integrity, the VMA mode presents a similar amount of I/O
traffic.

Comparing the two metadata journaling modes, the
ordered mode leads to more I/O requests and traffic than
the writeback mode since, as mentioned in Section 2.2,
the ordered mode needs to flush the updated data before
committing the associated metadata. Such strict ordering
limits the effect of delayed write, leading to more I/O
traffic.

TABLE I. ENVIRONMENT FOR TRACE COLLECTION

CPU Pentium 4 - 3.2 GHz Hardware Memory DDRII 2 GB
VMM Xen 2.0.7

Kernel XenoLinux 2.6.11

Memory
128Mbytes for each guest
domain
256Mbytes for domain 0 Domains

Virtual disks Virtual system disk: 8 GB
Virtual data disk: 4 GB

Micro Benchmarks Filebench: seq_write and rnd_write
Macro Benchmarks Postmark , untar and kernel_compile

TABLE II. CONFIGURATION OF THE SSD SIMULATOR

Parameters Values
Number of blocks 262144 (32GB)
Pages per block 64

Page size 2KB
Page read/write time 88 us / 263us

Block erase time 2000us
FTLs FAST, SuperBlock, DFTL

5

B. Lifetime Extension
Figure 4 shows the erase counts of different journaling

modes. From the figure, the journal mode has the largest
erase counts than the other modes. For example,
compared to the journal mode, the writeback and ordered
modes result in only 37.8% and 40% of the erase counts,
respectively, when DFTL is used under the execution of
the Untar benchmark. The large erase count of the journal
mode is due to the large write traffic of that mode
resulting from logging the updates of both metadata and
data.

As mentioned before, the lifetime of an SSD is limited
by the limited PE cycles of the flash memory. Given that
erase operations can be distributed evenly among flash
blocks through the use of wear-leveling techniques, the
lifetime of an SSD is proportional to the number of erase
operations the SSD endures.

Therefore, from the results of DFTL under the Untar
benchmark, the journal mode reduces the SSD lifetime by
more than 60% when compared to the metadata
journaling modes. Such significant lifetime reduction
would be an obstacle for full data journaling to be widely
employed in reliability-concerned server environment.

Figure 4. Erase Counts

Figure 2. Number of I/O Requests under Different Journaling Modes Figure 3. Amount of I/O Traffic under Different Journaling Modes

6

VMA mode also supports full data journaling since it
also logs updates of both metadata and data, ensuring both
file system consistency and data integrity. However, due
to journal write elimination, VMA mode reduces the erase
counts by 34.6% to 56% in the micro benchmarks and
48.4% to 86.5% in the macro benchmarks, compared to
the journal mode. Furthermore, the VMA mode shows
similar or even lower erase counts than the metadata
journaling modes. Therefore, VMA mode extends the
SSD lifetime by 86.5% when compared to journal mode,
and it achieves similar SSD lifetime when compared to
metadata journaling modes, which do not guarantee data
integrity.

Note that, VMA journaling is effective for all the three
FTLs. Up to 64%, 83% and 86.5% erase operations are
eliminated in FAST, Superblock and DFTL, respectively,
compared to the journal mode. Note, the erase counts of
the SuperBlock FTL and DFTL are less than those of the
FAST FTL. Such result is consistent with previous studies
[5-6].

C. GC Overhead Reduction
As mentioned above, garbage collection could lead to

unpredictable performance drop of the SSD. Figure 5
shows the garbage collection overhead of VMA mode and
the other three journaling modes of ext3 under FAST,
SuperBlock and DFTL. Not surprisingly, compared to the
journal mode, the VMA mode reduces the GC overhead
by 13.1% to 63.2% in micro benchmarks and by 27% to
80.6% in macro benchmarks, and it has similar GC

overhead when compared with the metadata journaling
modes. For each FTL, up to 63.2%, 75.9%, and 80.6%
GC overhead are reduced in FAST, Superblock and DFTL,
respectively, compared to the journal mode.

CONCLUSIONS

Solid state disks (SSDs) have gained in popularity and
show their potential to replace traditional magnetic disks
in commercial servers. In our previous study, we
proposed Virtual Machine Aware journaling (VMA
journaling), a new file system journaling approaches used
in virtual server environments which have been broadly
used. In this paper, we demonstrate the following. First,
traditional full data journaling, which ensures both file
system consistency and data integrity, could reduce the
lifetime of the SSD significantly. Such significant lifetime
reduction is an obstacle for full data journaling to be
widely employed in reliability-concerned server
environment. Second, VMA journaling, which also
ensures both file system consistency and data integrity,
effectively extends the lifetime of the SSD (by up to
86.5% compared to the traditional full data journaling
approach) in virtual server environments. Moreover, the
GC overhead is reduced by up to 80.6% when VMA
journaling is used. Third, three state-of-the-art FTLs (i.e.,
FAST, SuperBlock FTL and DFTL) are used in the
simulated SSD, and the results show that VMA journaling
is effective under all these FTLs. From these results, we
show that VMA journaling is an effective alternative to

Figure 5. Garbage Collection Overhead

7

traditional journaling approaches in SSD-based virtual
server environments.

REFERENCES

[1] Prabhakaran, V., Arpaci-Dusseau, A. C., and Arpaci-Dusseau, R.
H., “Analysis and Evolution of Journaling File Systems”, in
Proceedings the USENIX Annual Technical Conference
(USENIX ’05), Anaheim, CA, U.S.A., April 13-15 2005.

[2] Huang, T. C., and Chang, D. W., “VM Aware Journaling:
Improving Journaling File System Performance in Virtualization
Environments”, Software: Practice and Experience, in press.

[3] Bateman K., “IDC Charts Rise of Virtual Machines”, Available at:
http://www.channelweb.co.uk/crn/news/2242378/virtual-
machines-exceeding, May 2009.

[4] Lee, S. W., Park, D. J., Chung, T. S., Lee, D. H., Park, S., and
Song, H. J., “A Log Buffer-based Flash Translation Layer Using
Fully-associative Sector Translation”, IEEE Transactions on
Embedded Computing Systems, vol. 6, no. 3, pp. 18-18, July 2007.

[5] Kang, J. U., Jo, H., Kim, J. S., and Lee, J., “A Superblock-based
Flash Translation Layer for NAND Flash Memory”, in
Proceedings 6th International Conference on Embedded Software
(EMSOFT ‘06), Seoul, Republic of Korea, October 22-27 2006,
pp. 161-170.

[6] Gupta, A., Kim, Y., and Urgaonkar, B., “DFTL: A Flash
Translation Layer Employing Demand-based Selective Caching of
Page-level Address Mappings”, in Proceedings 14th International
Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ‘09), Washington, DC, U.S.A.,
March 7-11 2009, pp. 20-20.

[7] Soundararajan, G., Prabhakaran, V., Balakrishnan, M., and
Wobber, T., “Extending SSD Lifetimes with Disk-based Write
Caches”, in Proceedings 8th USENIX Conference on File and
Storage Technologies (FAST ’10) , San Jose, CA, U.S.A.,
February 23–26 2010, pp. 8-8.

[8] Chen, F., Luo, T., and Zhang, X., “CAFTL: a Content-aware Flash
Translation Layer Enhancing the Lifespan of Flash Memory
Based Solid State Drives”, in Proceedings 9th USENIX
Conference on File and Storage Technologies (FAST ’11) , San
Jose, CA, U.S.A., February 15–17 2011, pp. 6-6.

[9] Katcher, J., “PostMark: A New File System Benchmark”,
Available at: http://communities-
staging.netapp.com/servlet/JiveServlet/download/2609-
1551/Katcher97-postmark-netapp-tr3022.pdf, August 1997.

[10] Samsung Electronics, 512M x 8 Bit / 256M x 16 Bit NAND Flash
Memory, Datasheet.

8

