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Abstract — Object detection has become an enabling function for 
modern smart embedded devices to perform intelligent 
applications and interact with the environment appropriately 
and promptly. However, the limited computation resource of 
embedded devices has become a barrier to execute the 
computation intensive object detection algorithm. Leveraging the 
multi-threading scheme on embedded multi-core systems 
provides an opportunity to boost the performance. However, the 
memory bottleneck limits the performance scalability. Improving 
data locality of applications and maximizing the data reuse for 
on-chip caches have therefore become critical design concerns. 
This paper comprehensively analyzes the memory behavior and 
data locality of a multi-threaded object detection algorithm. A 
novel Classifier-Grouping scheme is proposed to significantly 
enhance the data reuse for on-chip caches of embedded multi-
core systems. By executing a multi-threaded object detection 
algorithm on a cycle-accurate multi-core simulator, the proposed 
approach can achieve up to 62% better performance when 
compared with the original parallel program.  

Keywords - data locality; object detection; parallel processing; 
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I.  INTRODUCTION 
Intelligence has become an essential feature for modern 

smart embedded devices. These devices are able to recognize 
the surrounding environment through sensing various types of 
stimuli, including vibration, orientation, temperature, sound, 
images, video, and etc [1]. With the awareness of the 
surroundings, a smart device can make decision and react 
intelligently to specific stimuli or events in real-time or within 
acceptable latencies. For example, modern tablets can sense the 
orientation of the device through gyroscopes and adjust the 
screen orientation for users [2]. The future smart application 
can perform even higher levels of intelligence, for example, to 
automatically identify different users, or even search the 
customer background in real-time during a business conference 
[3]. 

Among different types of stimuli, images and real-time 
video have the richest information about the environment. 
Images and video contain information close to the level of 
human eyes. Many embedded devices have applied image 
sensing techniques and perform functional enhancement for 
applications. For example, most of the digital cameras can 
nowadays identify human faces in the target zoom and tune the 
best focus for the picture. A game console can recognize the 
movement of players through the embedded image sensors, and 
let the player control the console without a physical controller 

[4]. A high-end car is even equipped with cameras to 
automatically monitor the current driving direction. When the 
direction is deviating from the main path, a waning message of 
the potential danger will be sent to the driver before an accident 
happens [27]. All of these intelligent applications require a 
capability to recognize the existence as well as the location of 
the target object in the current monitor screen area. Some real-
time applications, such as the lane departure warning system of 
a car, even require a prompt recognition thus the system can 
feedback the appropriate action in time.  

However, processing the image data and finding the target 
object require intensive data computation. It is estimated to 
take about 2 seconds to recognize an object in an image of 
720*576 pixels on a 2.33GHz Intel® Core  2 Quad processor 
[17]. Even with such a powerful general purpose processor, the 
execution time is 50 times slower than the requirement of a 
real-time application (processing at least 25 frames per 
second). This computation requirement poses a more stringent 
barrier for a portable embedded device, which is highly 
constrained in computation resources.  

Parallel processing and multi-core architectures are 
considered as a solution to achieve high performance and 
efficient computation. They have become the mainstream to 
the design of modern computing systems. Embedded processor 
vendors, such as Tilera [5], ARM [6], MIPS [7], are proposing 
multi-core architectures. Even the desktop processor vendors, 
such as Intel and AMD are planning multi-core products for 
embedded and mobile applications. The new parallel embedded 
processors present opportunities to boost the raw computing 
capability and achieve energy efficient execution. However, 
the limited off-chip memory bandwidth and long access latency 
have imposed a limitation to the system performance [8]. 
Efficient usage of the on-chip memory, especially the cache of 
processors, has therefore become a critical design issue to 
achieve performance scalability of embedded multi-core 
systems.  

The main contributions of this paper can be categorized 
into three folds. First, this paper comprehensively investigates 
the memory access behavior of a multi-threaded Viola-Jones-
based [24] object detection algorithm on an embedded multi-
core system. Second, from the analysis results, we have 
concluded that optimizing the locality of classifier features is 
more effective than the locality of the integral image data. 
Third, based on this observation, a new design scheme, 
Classifier-Grouping (referred as CG in this paper), is proposed 
to enhance the data locality on the local processor cache. 
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Without affecting the accuracy and quality of the original 
object detection algorithm, Classifier-Grouping clusters the 
execution of appropriate numbers of classifiers and enhances 
the data reuse of the local cache on an embedded multi-core 
system. The improved data locality maximizes the data reuse 
for on-chip caches and effectively avoids the off-chip memory 
bottleneck. The overall system performance can then be 
improved significantly. By running the optimized multi-
threaded object detection algorithm on an ARM-based cycle-
accurate SMP (Symmetric Multi-Processing) simulator [10], 
we are able to improve the system performance up to 62% 
when compared with the reference parallel implementation. 

This paper is organized as follows. Section II discusses the 
related work. A multi-threaded Viola-Jones-based object 
detection algorithm is introduced in Section III. Section IV 
shows the cycle-accurate SMP simulation platform used in this 
paper. Section V comprehensively analyzes the memory 
behavior of the multi-threaded object detection algorithm. 
Based on the analysis results, Section VI proposes Classifier-
Grouping, a new design scheme of the algorithm which 
optimizes the data locality on embedded multi-core systems. 
The experimental results are also illustrated in this section. 
Section VII draws the conclusion and future work.  

II. RELATED WORK 
Object detection is an indispensible function for smart 

embedded devices. By extracting the features in a sensed 
image, it is among the first step for a device to understand the 
surrounding environment. The Viola-Jones algorithm is one of 
the widely used object detection schemes [9]. It was first 
proposed to detect human faces in an image. Due to the high 
accuracy and fast computation, the algorithm has also been 
extended to detect other objects in an image or video, such as 
hands, eyes [13], pedestrians [14], and cars [15]. To achieve 
fast object detection, many research efforts have focused on 
enhancing the performance by using specific hardware 
modules. The specifically designed hardware exploits the 
algorithmic parallelism and speeds the critical arithmetic 
operations by hardware accelerators [16][20][21][22].  

The capital expenditure of NRE (Non-Recurring-Expense) 
is increasing significantly with the advances of the 
semiconductor technology. Without a mass volume of 
production, a pure hardware solution is becoming less 
attractive economically. Moreover, the less flexible hardware 
design is difficult to adapt to the changes and specific operation 
requirements of the ever changing features of the future 
applications, especially for the intelligent applications. 
However, the applications of the future systems do not accept a 
compromised performance provided by a traditional single-
core programmable platform. The recently emerging embedded 
multi-processors leverage on the scalability of the Moore’s 
Law and can boost the performance by exploiting the 
parallelism of applications. The enhanced performance with the 
programmable feature make the multi-core system a cost 
attractive solution in designing future embedded intelligent 
applications.  

Chen‘s research [17] is among the first to explore the 
algorithmic parallelism of the Viola-Jones-based detection 

algorithm on programmable processors. The potential 
parallelism of the Ada-boost algorithm was analyzed and 
executed on multi-core systems with 4 to 8 processors. A 5.5X 
performance enhancement was demonstrated by adopting a 
hybrid scheme of both coarse-grained and fine-grained TLP 
(Thread Level Parallelism). Chen et al. [25] implemented the 
OpenCV object detection algorithm on a Cell processor and 
obtained 19% of performance improvement. Chiang [18] 
investigated the characteristics of different parallelism levels of 
a Viola-Jones algorithm and proposed a three-staged 
parallelization scheme to improve the load balance of the 
algorithm. A 37X performance improvement is achieved based 
on the proposed scheme. However, Chiang’s work mainly 
focused on the algorithmic parallelism on a multi-core system 
and did not take into account the performance degradation 
caused by the memory bottleneck.  

Data locality optimization is a critical design issue for 
computing systems and has been studied for decades [11]. 
However, most of the previous research works focused on the 
locality optimization for the single core system. Locality issues 
of multi-core systems are recently emerging as essential design 
concerns when the parallel platforms become the mainstream 
of the computing architecture [12].  In a shared memory multi-
core system, the design needs to be balanced between 
parallelism and locality in order to achieve the best overall 
performance. 

This paper differs from the previous work in two aspects: (1) 
the target platform of this work focuses on embedded multi-
core systems. Each core is a simple single issue RISC 
programmable processor with relatively small on-chip caches; 
(2) this work concentrates on the data locality optimization for 
the parallel object detection algorithm and proposes a design to 
improve the memory access behavior as well as overall 
performance.  

III. PARALLELIZE AN OBJECT DETECTION ALGORITHM 
This paper focuses on the Viola-Jones object detection 

algorithm [24]. The Viola-Jones algorithm was first designed 
for face detection on a still image. It features low computation 
complexity and high recognition accuracy, and was extended to 
support various detection applications of different target 
objects.  

This section delves into the detailed flow of this algorithm 
and the multi-threaded implementation on a programmable 
computer. The first part of this section introduces the main 
algorithm flow of the Viola-Jones algorithm and discusses the 
functions and properties of each operation. The second part 
shows the sequential implementation of the reference design 
adopted form OpenCV [19]. The third part discusses the 
inherent parallelism of the algorithm and a load-balanced 
multi-threaded implementation.  

A. Viola-Jones Algorithm 
As shown in Fig.1(a), the main purpose of an object 

detection algorithm is to decide the existence and position of 
the target object by checking specific visual features in the 
current image. Fig.1(a) illustrates the flow of the Viola-Jones 
algorithm. After the target image is loaded into the detection 
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system, the image is checked by different sizes of scan 
windows in order to identify the target objects of various sizes. 
Each scan window will inspect every position in the target 
image by applying the cascaded classifiers (Fig.1(b)).  

Viola-Jones algorithm is the first to utilize AdaBoost as part 
of the learning algorithm for object detection. AdaBoost uses a 
cascade of classifiers to implement an efficient and accurate 
detection mechanism [9]. The image in each scan window 
passes through a series of classifiers during detection. A 
number of visual features are selected to represent the target 
object. Each classifier performs the detection of a part of the 
features. As shown in Fig.1(b), a small number of weak 
classifiers with similar features form a strong classifier, and 
several strong classifiers are cascaded into a complete object 
detector. A strong classifier at a later stage contains more weak 
classifiers to provide more rigorous feature checks. This 
cascaded structure rapidly and efficiently rejects most negative 
window positions while keeping almost all the positive ones. 

The features of an object within each scan window is 
evaluated based on the Haar-like feature [9], where the value 
of each  feature is obtained by the sum of the pixel values in 
the white rectangles of the feature minus the sum of pixel 
values in the black rectangles (Fig.1(c)). The outcome of each 
Haar-like feature in a classifier stage is computed and 
accumulated. When all the features in a stage are computed, a 
stage threshold value is used to determine whether the sample 
in the current scan window is a successful candidate to move 
on to the next stage or not.  

The Viola-Jones algorithm applies the integral image 
method to rapidly compute the Haar-like features. The integral 
image method was originally introduced to perform the digital 
image processing [23]. By using the integral image method, the 
computation of the (weighted) intensity difference between two 
to four rectangles can be efficiently obtained [9]. This scheme 
provides a fast method to compute the target features in a 
rectangular sub-region area.  

 

Figure 1. (a) Flow of the Viola-Jones object detection algorithm; (b) 
cascaded structure of classifiers; (c) Haar-like features within each classifier. 

B. Sequential Implementation of Viola-Jones Algorithm 
Fig.2 illustrates the pseudo code of the sequential reference 

design of the Viola-Jones algorithm. The reference design in 
this paper is adopted and modified from OpenCV library [19]. 

 
Figure 2. Pseudo code of the sequential Viola-Jones algorithm. 

As shown in Fig.2, the sequential implementation of Viola-
Jones algorithm can be divided into three parts. (1) Resize. 
The implementation uses the fixed-size scan window with a 
well-trained classifier library for the AdaBoost algorithm. 
Since the scan window size is fixed, an input image needs to 
be resized into different resolutions. (2) Integral. This part 
calculates the integral information for each image position. 
This integral information enables fast evaluation of the Haar-
like features in the Detection part. (3) Detection. By moving 
the scan window through the image, the image area covered 
by the scan window is sent into the cascaded classifier 
structure to decide the existence and location of the target 
object. 

The Detection block contains a list of cascaded strong 
classifiers. Each strong classifier is composed of a series of 
weak classifiers. When the scan window steps to a new 
position, the image data covered by the scan window will be 
checked by these cascaded classifiers. If the image data passes 
all the classifiers, this window position will be marked as 
positive, which means there exists a target object at this 
position. Otherwise, the cascaded classifiers will reject a 
position as soon as it fails the check. 

Fig.3 illustrates a more detailed pseudo code for the 
Detection block. During the execution of weak classifiers, the 
feature parameters of each weak classifier are loaded. These 
parameters include information of the Haar-like features, 
weighting factors for each Haar-like rectangle, weighting factor 
of the weak classifier, and the threshold of the weak classifier. 
Based on the OpenCV library, each weak classifier contains 
two to three Haar-like rectangles.  

 

 
Figure 3. Pseudo code of the detailed flow of Detection block 

1:   Detect {
2:     for all SC {  // SC: strong classifier 
3:        for all WC {  // WC: weak classifier 
4:           load parameters of WC;  // position, Haar-like features,  
5:               // weighting factor, threshold,  
6:           load Integral data of the feature positions; 
7:           calculate the weighted sum of the feature; 
8:           stage_sum += WC.alpha [weighted sum >= WC.threshold]; 
9:        } // end of WC 
10: 
11:      if ( stage_sum > SC.threashold )  return positive feedback; 
12:      else  return negative feedback; 
13:   }  // end of SC 
14: } // end of Detect 

1:  for all WZ // WZ: window size 
2:    Resize image; 
3:    Integral image; 
4:    for all WP  // WP: window position 
5:      Detect { 
6:        for all SC  // SC: strong classifier 
7:          for all WC  // WC: weak classifier 
8:            If failed, label the position as negative; jump to the next WP; 
9:        If passed all the SCs, label the position as positive; 
10:     } // end of Detect 
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Since OpenCV is a reference design running on a general 
purpose processor, it implements a lot of floating point 
operations to perform the object detection. However, floating 
point computation is an expensive operation on an embedded 
processor. This is not only because the operation takes more 
cycles to finish, but also consumes more energy and chip area. 
Thus, if possible, most embedded applications would remove 
the floating point computation and substitute it with fixed-
point operations. The downside of using the fixed-point 
scheme is the degradation of computation precision. However, 
Viola-Jones algorithm is robust to the lower computation 
precision because of its multi-resolution characteristics. The 
same image will be resized and checked under different 
resolutions, thus the degradation of the computation precision 
does not cause negative decisive impact on the final results. 
The reference design used in this paper is a fixed-point 
implementation of OpenCV design. After a careful tuning, the 
fixed-point design shows the same recognition accuracy as the 
original floating point implementation. 

C. A Multi-Threaded Design of Viola-Jones Algorithm 
To take advantage of the computation power enabled by an 

embedded multi-core system, the Viola-Jones algorithm needs 
to be parallelized into multiple threads. Since this paper 
focuses on a shared-memory symmetric multi-processor 
platform, the key design concerns of parallelizing an 
application can be categorized into two folds. The first 
concern is the parallelization granularity, which decides how 
fine-grained a designer would like to expose the inherent 
parallelism. The second concern is how much overhead, for 
both computation and synchronization, will be generated when 
parallelizing an application. This section will give a detailed 
discussion on these two design concerns.  

The parallelism of the Viola-Jones algorithm can be 
exposed at different algorithmic levels. For example, designers 
can process different window sizes by different threads 
concurrently (Window Size Level). The algorithm can also be 
parallelized by simultaneously executing each weak classifier 
with a different thread (Weak Classifier Level). The lower 
parallelism level, such as Weak Classifier Level, gives finer 
granularity of parallelism. This scheme creates more threads 
and gives a better balance among the execution loads of 
different concurrent threads. Well balanced task loads can 
potentially utilize the parallel computation platform more 
efficiently. Processors do not need to stay in the idle mode and 
wait for the finish of a critical thread with long execution time. 
However, having more threads in a system increases overhead 
of thread creation. It also causes a higher amount of 
synchronization between threads and demands higher memory 
and interconnection bandwidth. On the other hand, the higher 
parallelism level, such as Window Size Level, generates fewer 
concurrent threads and imposes lower synchronization 
overhead. However, the performance of a design with high 
parallelism level could suffer from the imbalanced task loads.  

To achieve superior performance, a multi-threaded design 
needs to strike the balance between the parallelism granularity 
and the synchronization overhead. This paper adopts the 3-
Stages Hybrid Scheme parallel implementation proposed in 
[18]. The parallelism is exposed from two methods, including 
the functional stages of the algorithm flow and the data 
processing of each stage. The functional stage of the Viola-
Jones algorithm can be intuitively identified as the three main 
functional blocks shown in Fig.2, including Resize image, 
Integral image, and Detection block. These three stages have 
clear boundaries which separate the computation and the 
associated data. Therefore it is a reasonable design choice to 
process these stages concurrently in a functional pipelining 
scheme.  

The second method to expose the parallelism is the data 
processing within each functional block. An obvious 
parallelism exists in the data domain of the functional block, 
where each block needs to process different sizes of the 
images. There is no data dependency between computations of 
different image sizes, and thus these computations can be 
executed concurrently by multiple threads.  

Fig.4 illustrates the 3-Stages Hybrid scheme. The first stage 
contains a multi-threaded version of the Resize block. An 
image is split into several sub-image chunks. The resize task 
of each sub-image chunk is performed by a thread. In this 
way, multiple threads can perform the resize of an image 
concurrently. The same scheme is applied to different sizes of 
images. To achieve better task load balance, a larger image is 
divided into more sub-images and executed by more 
concurrent threads. The second stage processes the Integral 
blocks of different image sizes concurrently with multiple 
threads. The third stage performs the parallel execution of the 
Detection block. Similar to the technique used in the parallel 
Resize block, a larger image is divided into more sub-images 
and executed by more concurrent threads. The 3-Stage Hybrid 
scheme finds a proper design point between the trade-off of 
load balance and synchronization overhead, and achieves a 
better overall performance.  

 
Figure 4. The 3-Stages Hybrid scheme of the parallel Viola-Jones 

algorithm. 
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IV. EXPERIMENTAL SETUP: A CYCLE ACCURATE SMP 
SIMULATOR 

The experiments of this paper are executed on a cycle-
accurate multi-threaded shared-memory SMP simulator [10]. 
The simulator performs HW/SW co-simulation of both the 
multi-threading SW library and the cycle-accurate SMP 
hardware model. This platform returns a precise evaluation of 
the overall system characteristics and performance.  

Fig.5 illustrates the organization of the simulator. The 
multi-threading library is based on QuickThread [26]. This 
light-weighted library including the boot code fits in under 
2KBytes of object codes. There are four generic APIs 
(Application Programming Interface), including stp_create(), 
stp_start(), stp_yield(), and stp_stop(), which enable the 
creation of threads, execution of threads, yielding of a thread, 
and termination of a thread respectively. These APIs facilitate 
the control of multiple threads executing on a parallel platform.  

After creation, all the threads are managed by a FIFO 
queue. The queue is implemented in the shared memory space, 
and can be accessed by all the processors. The FIFO queue 
requires an atomic access and is protected by a spin-lock 
synchronization mechanism. Each processor can create and 
add new threads to the tail of the queue. When a processor 
finishes executing the current task, it will request the next task 
from the head the queue.  

The processing core models a single-issue ARMv5 
architecture with no floating point unit. Each processor has its 
own data cache and instruction cache. The configurable cache 
organization enables easy exploration of different cache line 
sizes, block sizes, and associativity. The interconnection 
implements a single-transaction shared-bus. Although not 
scalable, the shared-bus scheme is still widely used in today’s 
embedded multi-core systems. The latencies of bus 
transactions and memory accesses are also configurable. The 
experiment can adjust the shared-bus latencies to reflect the 
salability issue when the number of processors is increasing.  

All the processors are sharing the same memory space. The 
cache coherence is implemented as a simple snooping-based 
protocol. The important system parameters used in the 
simulator are shown on the right hand side of Fig.5. In this 
paper, each processor is assumed to run at 250MHz. The 
nominal size for each local cache is 8KBytes. Each cache 
block has 16 cache lines, and supports full associativity.  

The maximum number of processors used in this paper is 
sixteen. The arbitration of the single-transaction bus takes 1 
processor cycles (4ns), which is feasible with today’s 
advanced semiconductor technology [28]. The signal 
traversing on the shared-interconnection takes 2 processor 
cycles (8ns). This parameter could also be used to represent 
the latencies required for the data to traverse the path of on 
chip network, if the processors are connected by a NoC 
(Network on Chip).  

The access latency of the main memory takes 7 cycles 
(28ns), which is approximately the latency of the modern 
SDRAMs [29]. The ARM-based cycle accurate simulator can 
well represent the system characteristics of the majority of 
embedded multi-core systems.  

 
Figure 5. The SW/HW organization of a multi-threaded shared-memory 

SMP simulator. The system parameters are shown on the right hand side. 

V. DATA LOCALITY OF THE DETECTION BLOCK 
This paper focuses on the data locality optimization for the 

Detection block. Based on the analysis results, a new design 
scheme, Classifier-Grouping (CG), is proposed to enhance the 
data reuse of on-chip caches. 

As illustrated in Fig.2, the implementation of Viola-Jones 
algorithm can be divided into three blocks, including Resize, 
Integral, and Detection. According to [18], Detection 
occupies around 70% of the overall runtime. Resize and 
Integral parts only take around 30% of the overall execution 
time. Note that this ratio shows up differently when applying 
on different parallel platforms. For example, [25] has shown 
that the Detection block has taken up 95% to 98% of the 
overall execution time. The main reason behind the disparity 
is the difference of the implementation schemes and the 
underlined parallel platforms. However, all the related studies 
have concluded that the Detection block is the most significant 
time consuming part in the overall application, and should be 
the main focus of the further optimization. 

Another reason of concentrating on the Detection block is 
its inherent high data locality, which is not the case for the 
other two blocks (Resize and Integral). From the parallel 
implementation scheme described in section III, the Resize 
block reads the original image data and resizes the image into 
different resolutions. The original image data will be used 
only one time by each thread. The Integral block takes a 
resized image and calculates the integral information for 
different positions. Again, the resized image data will be read 
only once by each thread. The main performance enhancement 
of these two blocks comes from the exploitation of the high 
data level parallelism.  

The Detection block not only has the high data level 
parallelism, it also possesses significant amount of data reuse 
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during the computation. When executing on an embedded 
processor, the Detection block has contained two types of data 
locality. The first type is the feature information used by each 
classifier, including types of Haar-like features, position in the 
scan window, weighting factors, threshold, and etc. The 
second type is the image data that would be processed by 
cascaded classifiers. The same data points of an integral image 
within a scan window could be reused by different classifiers 
during the detecting procedure. However, optimizing one type 
of data locality could conflict the data reuse of the other type.  

For example, the reference implementation of Fig.2 can 
potentially take advantage of the data locality of the integral 
image data. The Detection block fixes on the same scan 
window and checks this window by the cascaded classifiers. 
During the detecting procedure, the loaded integral image data 
will be stored in the local cache of a processor. If this scan 
window passes the current classifier, the next classifier might 
need and therefore reuse the same data points in the cache. 
However, due to the relatively small cache sizes of an 
embedded processor (8KBytes in this paper), the feature 
information of the already used classifiers could be flushed 
when the scan window moves to a new position and starts 
loading the new integral image data.  

Due to the conflict characteristic of these two types of data 
locality, we have to evaluate the impact of each type and 
choose a more effective one.  

A. Analysis of Two Types of Data Locality within Detection 
Block 
The observation shows that the cascaded classifier structure 

rapidly and efficiently rejects most negative window positions 
while keeping almost all the positive ones. From our 
experiment, around 75% of the scan window positions failed 
within the first three strong classifiers, which contain a total of 
40 weak classifiers. Almost 90% of the scan window positions 
failed within the first five strong classifiers, which contain 112 
weak classifiers. This observation gives a hint that it could be 
more effective to exploit the data locality of classifiers rather 
than the integral data points. The following paragraphs will 
detail the analysis of these two types.  

Each weak classifier includes two to three rectangular 
Haar-like features. Viola-Jones algorithm uses the integral 
image to efficiently compute the target features. Thus each 
classifier only loads the corner integral data points of a Haar-
like feature rectangle and computes the intensity difference 
between sub-rectangles. The possibility that the corners of 
these rectangles fall on the same data position of an integral 
image is fairly low. Fig.6 illustrates this characteristic.  

Let us use a simple example to illustrate this case. In the 
reference implementation, each resized image will be scanned 
by a 20x20 pixel scan window (total 400 pixels). Assume a 
scan window has passed the first five strong classifiers, which 
has used a total of 952 integral data points. Each integral data 

point, in average, will only be used a little bit more than two 
times. This data access characteristic cannot take a full 
advantage of the local data cache and has concluded that it can 
only expose very little data locality when focusing on the 
reuse of the integral image data.  

 
Figure 6. Haar-like feature rectangles in a scan window.  

The feature data of classifiers, however, has a much better 
data locality than the integral data points. Recall the property 
that most of the scan window will be rejected within the first 
three strong classifiers. If we can somehow keep the feature 
data of the first three weak classifiers in the local cache of a 
processor, almost all the scan window can benefit from 
reusing the data of classifier features in local caches. For a 
512x512 image, there are more than 290K scan window 
positions. The system performance can be enhanced 
significantly if most of these scan window positions can reuse 
the classifier feature data in local caches.   

VI. CLASSIER-GROUPING: A SCHEME TO ENHANCE DATA 
LOCALITY  

Based on the analysis from the previous section, we have 
proposed a new design scheme to enhance the data locality for 
an embedded multi-core system. The first design scheme is to 
change the order of the execution loop. It is referred as Loop-
Changing (LC) scheme in this paper. The strategy of the LC 
scheme tries to avoid the classifier feature data from being 
flushed by the subsequently loaded integral image data. This 
strategy has enhanced the overall system performance and 
proved the effectiveness of the conclusion of our data locality 
analysis. Based on the LC scheme, a Classifier-Grouping (CG) 
scheme is then proposed to further change the program 
organization and bind the execution of the first three strong 
classifiers. CG improves the data reuse and provides a 
performance enhancement up to 62%.  

A. Loop-Changing Scheme to Enhance Data Reuse 
Fig.7 shows the pseudo code of the LC scheme. Different 

from the original algorithm flow in Fig.2, the LC design moves 
the loop of WP, which changes the position of the scan window, 
to the place after the loop of SC (Strong Classifier). 

The LC design improves the locality of the feature 
information of weak classifiers. Moving the WP loop after the 
SC loop can reduce the possibility for the already-cached 
feature information being replaced by the subsequently loaded 
data right after the usage of the current strong classifier.  
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Figure 7. Pseudo code of the Loop-Changing (LC) scheme.  

Fig.8 shows the runtime comparison between the reference 
parallel scheme (3-Stage Hybrid scheme) and the LC design 
scheme. The cycle-accurate simulation has been performed for 
systems with different numbers of processors (x-axis of Fig.8). 
The LC design has better performance at all the multi-core 
schemes. This is because the numbers of external memory 
accesses are reduced significantly due to the better data locality 
at the local cache. The 16-processor scheme has the maximum 
performance enhancement of 58%. This is mainly because the 
potential performance enhancement of the 3-Stage Hybrid 
enabled by more processors is compromised by the enormous 
memory access time. The memory bottleneck becomes the 
limiting factor of the system performance. Hence the 
performance stops improving when there are more than eight 
processors. However, the LC design significantly reduces the 
number of memory accesses. The performance continues to 
scale when there are more processors (8, and 16 processors).  

 
Figure 8. Performance comparison between the different design schemes 

(3-Staged Hybrid, Loop-Changing, Classfier-Grouping) 

B. Classifier-Grouping Scheme to Further Enhance Locality 
The results of LC design encourage us to further bind the 

execution of the first couple of weak classifiers to gain more 
benefit from the locality of classifier features. It is called 
Classifier-Grouping (CG) scheme. Fig.9 shows the pseudo 
code of an example of the CG scheme, which binds the 
execution of the first three strong classifiers. The basic idea is 
to execute the first three strong classifiers for all the window 
positions (line 5 to 8 in Fig.9). This way, the features of the 
first three strong classifiers can be reused extensively by the 
scan windows at all the window positions. After all the window 
positions have been checked by the first three strong classifiers, 

the program moves on to apply the rest of the strong classifiers 
(line 10 to 19 in Fig.9). The later part of the execution uses the 
same implementation as in the Loop-Changing scheme.  

 
Figure 9. Pseudo code of the Classifier-Grouping scheme, which groups 

the execution of the first three (0~2) strong classifiers.  

However, there are two main design concerns when 
applying the CG scheme on a parallel object detection 
algorithm. First, the CG scheme has imposed some overhead. 
During the execution of line 5 to 8 in Fig.9, CG scheme needs 
to record the positions which have passed each strong classifier. 
These positions will be read back when executing the 
subsequent strong classifiers. This will create extra memory 
accesses and data transactions.  

Second, the number of bound classifiers could impact the 
overall performance. Binding too few strong classifiers cannot 
benefit the most from the data reuse. However, binding too 
many strong classifiers could possibly flush early loaded 
classifiers from the local cache and degrade the locality. 
Moreover, this number could change when the size of the local 
cache is different. To achieve the best performance, designers 
need to concern the induced overhead of the CG scheme and 
trade-off an appropriate number of bound classifiers.  

This paper has successfully demonstrated the effectiveness 
of the CG scheme, and identified the application characteristics 
and key design concerns. Binding the first three strong 
classifiers is a decision from the empirical results. A more 
effective design trade-off requires a systematic design 
methodology, which is the next step in our future research.  

VII. CONCLUSIONS AND FUTURE WORK 
The object detection enables a smart embedded device to 

recognize the surrounding environment and react properly.  
The intensive computation requirement requires a parallel 
object detection algorithm executing on a multi-core system.  
The memory bottleneck makes it a critical design concern to 
improve the data locality and take a full advantage of the on-
chip cache. This paper analyzed the memory behavior of a 
parallel Viola-Jones algorithm, and proposed a Classifier-
Grouping design scheme to enhance the data locality of the 
application. By running a multi-threaded object detection 
algorithm on a cycle-accurate multi-core simulator, the 

1: for all WZ          // WZ: window size 
2:    Resize image; 
3:    Integral image; 
4:    Detect { 
5:      for all WP        // WP: window position  
6:        for  SC0:SC2     // SC: strong classifier (cascade 0-2) 
7:           for all WC       // WC: weak classifier 
8:             If failed, label the position as negative; jump to the next WP; 
9: 
10:    for other SC     // SC: strong classifier 
14:      for all WP        // WP: window position  
15:         for all WC       // WC: weak classifier 
16:            If failed, label the position as negative; jump to the next WP; 
17:            // processor can better reuse the WC data stored in the cache 
18:             // which significantly increases the data locality 
19:     If passed all the SCs, label the position as positive; 
20:   } // end of Detect 

1: for all WZ          // WZ: window size 
2:   Resize image; 
3:   Integral image; 
4:   Detect { 
5:     for all SC       // SC: strong classifier 
6:       for all WP   // WP: window position (New position of WP loop) 
7:         for all WC  // WC: weak classifier 
8:            If failed, label the position as negative; jump to the next WP; 
9:            // processor can better reuse the WC data stored in the cache 
10:          // which significantly increases the data locality 
11:    If passed all the SCs, label the position as positive; 
12:  } // end of Detect 
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proposed approach can achieve up to 62% better performance 
when compared with the reference parallel design.  

Our future work will focus on developing a systematic 
design methodology to perform the appropriate trade-offs on 
the critical design parameters, such as the extra overhead 
induced by the CG scheme, numbers of bound classifiers in CG 
scheme, cache sizes of processors, memory and 
interconnection latencies, etc.  
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