
Classifier Grouping to Enhance Data Locality for A
Multi-Threaded Object Detection Algorithm

Bo-Cheng Charles Lai, Chih-Hsuan Chiang, Guan-Ru Li
Department of Electronics Engineering

National Chiao Tung University
Hsinchu, Taiwan

Abstract — Object detection has become an enabling function for
modern smart embedded devices to perform intelligent
applications and interact with the environment appropriately
and promptly. However, the limited computation resource of
embedded devices has become a barrier to execute the
computation intensive object detection algorithm. Leveraging the
multi-threading scheme on embedded multi-core systems
provides an opportunity to boost the performance. However, the
memory bottleneck limits the performance scalability. Improving
data locality of applications and maximizing the data reuse for
on-chip caches have therefore become critical design concerns.
This paper comprehensively analyzes the memory behavior and
data locality of a multi-threaded object detection algorithm. A
novel Classifier-Grouping scheme is proposed to significantly
enhance the data reuse for on-chip caches of embedded multi-
core systems. By executing a multi-threaded object detection
algorithm on a cycle-accurate multi-core simulator, the proposed
approach can achieve up to 62% better performance when
compared with the original parallel program.

Keywords - data locality; object detection; parallel processing;
multi-core; embedded device;

I. INTRODUCTION
Intelligence has become an essential feature for modern

smart embedded devices. These devices are able to recognize
the surrounding environment through sensing various types of
stimuli, including vibration, orientation, temperature, sound,
images, video, and etc [1]. With the awareness of the
surroundings, a smart device can make decision and react
intelligently to specific stimuli or events in real-time or within
acceptable latencies. For example, modern tablets can sense the
orientation of the device through gyroscopes and adjust the
screen orientation for users [2]. The future smart application
can perform even higher levels of intelligence, for example, to
automatically identify different users, or even search the
customer background in real-time during a business conference
[3].

Among different types of stimuli, images and real-time
video have the richest information about the environment.
Images and video contain information close to the level of
human eyes. Many embedded devices have applied image
sensing techniques and perform functional enhancement for
applications. For example, most of the digital cameras can
nowadays identify human faces in the target zoom and tune the
best focus for the picture. A game console can recognize the
movement of players through the embedded image sensors, and
let the player control the console without a physical controller

[4]. A high-end car is even equipped with cameras to
automatically monitor the current driving direction. When the
direction is deviating from the main path, a waning message of
the potential danger will be sent to the driver before an accident
happens [27]. All of these intelligent applications require a
capability to recognize the existence as well as the location of
the target object in the current monitor screen area. Some real-
time applications, such as the lane departure warning system of
a car, even require a prompt recognition thus the system can
feedback the appropriate action in time.

However, processing the image data and finding the target
object require intensive data computation. It is estimated to
take about 2 seconds to recognize an object in an image of
720*576 pixels on a 2.33GHz Intel® Core 2 Quad processor
[17]. Even with such a powerful general purpose processor, the
execution time is 50 times slower than the requirement of a
real-time application (processing at least 25 frames per
second). This computation requirement poses a more stringent
barrier for a portable embedded device, which is highly
constrained in computation resources.

Parallel processing and multi-core architectures are
considered as a solution to achieve high performance and
efficient computation. They have become the mainstream to
the design of modern computing systems. Embedded processor
vendors, such as Tilera [5], ARM [6], MIPS [7], are proposing
multi-core architectures. Even the desktop processor vendors,
such as Intel and AMD are planning multi-core products for
embedded and mobile applications. The new parallel embedded
processors present opportunities to boost the raw computing
capability and achieve energy efficient execution. However,
the limited off-chip memory bandwidth and long access latency
have imposed a limitation to the system performance [8].
Efficient usage of the on-chip memory, especially the cache of
processors, has therefore become a critical design issue to
achieve performance scalability of embedded multi-core
systems.

The main contributions of this paper can be categorized
into three folds. First, this paper comprehensively investigates
the memory access behavior of a multi-threaded Viola-Jones-
based [24] object detection algorithm on an embedded multi-
core system. Second, from the analysis results, we have
concluded that optimizing the locality of classifier features is
more effective than the locality of the integral image data.
Third, based on this observation, a new design scheme,
Classifier-Grouping (referred as CG in this paper), is proposed
to enhance the data locality on the local processor cache.

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.43

268

Without affecting the accuracy and quality of the original
object detection algorithm, Classifier-Grouping clusters the
execution of appropriate numbers of classifiers and enhances
the data reuse of the local cache on an embedded multi-core
system. The improved data locality maximizes the data reuse
for on-chip caches and effectively avoids the off-chip memory
bottleneck. The overall system performance can then be
improved significantly. By running the optimized multi-
threaded object detection algorithm on an ARM-based cycle-
accurate SMP (Symmetric Multi-Processing) simulator [10],
we are able to improve the system performance up to 62%
when compared with the reference parallel implementation.

This paper is organized as follows. Section II discusses the
related work. A multi-threaded Viola-Jones-based object
detection algorithm is introduced in Section III. Section IV
shows the cycle-accurate SMP simulation platform used in this
paper. Section V comprehensively analyzes the memory
behavior of the multi-threaded object detection algorithm.
Based on the analysis results, Section VI proposes Classifier-
Grouping, a new design scheme of the algorithm which
optimizes the data locality on embedded multi-core systems.
The experimental results are also illustrated in this section.
Section VII draws the conclusion and future work.

II. RELATED WORK
Object detection is an indispensible function for smart

embedded devices. By extracting the features in a sensed
image, it is among the first step for a device to understand the
surrounding environment. The Viola-Jones algorithm is one of
the widely used object detection schemes [9]. It was first
proposed to detect human faces in an image. Due to the high
accuracy and fast computation, the algorithm has also been
extended to detect other objects in an image or video, such as
hands, eyes [13], pedestrians [14], and cars [15]. To achieve
fast object detection, many research efforts have focused on
enhancing the performance by using specific hardware
modules. The specifically designed hardware exploits the
algorithmic parallelism and speeds the critical arithmetic
operations by hardware accelerators [16][20][21][22].

The capital expenditure of NRE (Non-Recurring-Expense)
is increasing significantly with the advances of the
semiconductor technology. Without a mass volume of
production, a pure hardware solution is becoming less
attractive economically. Moreover, the less flexible hardware
design is difficult to adapt to the changes and specific operation
requirements of the ever changing features of the future
applications, especially for the intelligent applications.
However, the applications of the future systems do not accept a
compromised performance provided by a traditional single-
core programmable platform. The recently emerging embedded
multi-processors leverage on the scalability of the Moore’s
Law and can boost the performance by exploiting the
parallelism of applications. The enhanced performance with the
programmable feature make the multi-core system a cost
attractive solution in designing future embedded intelligent
applications.

Chen‘s research [17] is among the first to explore the
algorithmic parallelism of the Viola-Jones-based detection

algorithm on programmable processors. The potential
parallelism of the Ada-boost algorithm was analyzed and
executed on multi-core systems with 4 to 8 processors. A 5.5X
performance enhancement was demonstrated by adopting a
hybrid scheme of both coarse-grained and fine-grained TLP
(Thread Level Parallelism). Chen et al. [25] implemented the
OpenCV object detection algorithm on a Cell processor and
obtained 19% of performance improvement. Chiang [18]
investigated the characteristics of different parallelism levels of
a Viola-Jones algorithm and proposed a three-staged
parallelization scheme to improve the load balance of the
algorithm. A 37X performance improvement is achieved based
on the proposed scheme. However, Chiang’s work mainly
focused on the algorithmic parallelism on a multi-core system
and did not take into account the performance degradation
caused by the memory bottleneck.

Data locality optimization is a critical design issue for
computing systems and has been studied for decades [11].
However, most of the previous research works focused on the
locality optimization for the single core system. Locality issues
of multi-core systems are recently emerging as essential design
concerns when the parallel platforms become the mainstream
of the computing architecture [12]. In a shared memory multi-
core system, the design needs to be balanced between
parallelism and locality in order to achieve the best overall
performance.

This paper differs from the previous work in two aspects: (1)
the target platform of this work focuses on embedded multi-
core systems. Each core is a simple single issue RISC
programmable processor with relatively small on-chip caches;
(2) this work concentrates on the data locality optimization for
the parallel object detection algorithm and proposes a design to
improve the memory access behavior as well as overall
performance.

III. PARALLELIZE AN OBJECT DETECTION ALGORITHM
This paper focuses on the Viola-Jones object detection

algorithm [24]. The Viola-Jones algorithm was first designed
for face detection on a still image. It features low computation
complexity and high recognition accuracy, and was extended to
support various detection applications of different target
objects.

This section delves into the detailed flow of this algorithm
and the multi-threaded implementation on a programmable
computer. The first part of this section introduces the main
algorithm flow of the Viola-Jones algorithm and discusses the
functions and properties of each operation. The second part
shows the sequential implementation of the reference design
adopted form OpenCV [19]. The third part discusses the
inherent parallelism of the algorithm and a load-balanced
multi-threaded implementation.

A. Viola-Jones Algorithm
As shown in Fig.1(a), the main purpose of an object

detection algorithm is to decide the existence and position of
the target object by checking specific visual features in the
current image. Fig.1(a) illustrates the flow of the Viola-Jones
algorithm. After the target image is loaded into the detection

269

system, the image is checked by different sizes of scan
windows in order to identify the target objects of various sizes.
Each scan window will inspect every position in the target
image by applying the cascaded classifiers (Fig.1(b)).

Viola-Jones algorithm is the first to utilize AdaBoost as part
of the learning algorithm for object detection. AdaBoost uses a
cascade of classifiers to implement an efficient and accurate
detection mechanism [9]. The image in each scan window
passes through a series of classifiers during detection. A
number of visual features are selected to represent the target
object. Each classifier performs the detection of a part of the
features. As shown in Fig.1(b), a small number of weak
classifiers with similar features form a strong classifier, and
several strong classifiers are cascaded into a complete object
detector. A strong classifier at a later stage contains more weak
classifiers to provide more rigorous feature checks. This
cascaded structure rapidly and efficiently rejects most negative
window positions while keeping almost all the positive ones.

The features of an object within each scan window is
evaluated based on the Haar-like feature [9], where the value
of each feature is obtained by the sum of the pixel values in
the white rectangles of the feature minus the sum of pixel
values in the black rectangles (Fig.1(c)). The outcome of each
Haar-like feature in a classifier stage is computed and
accumulated. When all the features in a stage are computed, a
stage threshold value is used to determine whether the sample
in the current scan window is a successful candidate to move
on to the next stage or not.

The Viola-Jones algorithm applies the integral image
method to rapidly compute the Haar-like features. The integral
image method was originally introduced to perform the digital
image processing [23]. By using the integral image method, the
computation of the (weighted) intensity difference between two
to four rectangles can be efficiently obtained [9]. This scheme
provides a fast method to compute the target features in a
rectangular sub-region area.

Figure 1. (a) Flow of the Viola-Jones object detection algorithm; (b)
cascaded structure of classifiers; (c) Haar-like features within each classifier.

B. Sequential Implementation of Viola-Jones Algorithm
Fig.2 illustrates the pseudo code of the sequential reference

design of the Viola-Jones algorithm. The reference design in
this paper is adopted and modified from OpenCV library [19].

Figure 2. Pseudo code of the sequential Viola-Jones algorithm.

As shown in Fig.2, the sequential implementation of Viola-
Jones algorithm can be divided into three parts. (1) Resize.
The implementation uses the fixed-size scan window with a
well-trained classifier library for the AdaBoost algorithm.
Since the scan window size is fixed, an input image needs to
be resized into different resolutions. (2) Integral. This part
calculates the integral information for each image position.
This integral information enables fast evaluation of the Haar-
like features in the Detection part. (3) Detection. By moving
the scan window through the image, the image area covered
by the scan window is sent into the cascaded classifier
structure to decide the existence and location of the target
object.

The Detection block contains a list of cascaded strong
classifiers. Each strong classifier is composed of a series of
weak classifiers. When the scan window steps to a new
position, the image data covered by the scan window will be
checked by these cascaded classifiers. If the image data passes
all the classifiers, this window position will be marked as
positive, which means there exists a target object at this
position. Otherwise, the cascaded classifiers will reject a
position as soon as it fails the check.

Fig.3 illustrates a more detailed pseudo code for the
Detection block. During the execution of weak classifiers, the
feature parameters of each weak classifier are loaded. These
parameters include information of the Haar-like features,
weighting factors for each Haar-like rectangle, weighting factor
of the weak classifier, and the threshold of the weak classifier.
Based on the OpenCV library, each weak classifier contains
two to three Haar-like rectangles.

Figure 3. Pseudo code of the detailed flow of Detection block

1: Detect {
2: for all SC { // SC: strong classifier
3: for all WC { // WC: weak classifier
4: load parameters of WC; // position, Haar-like features,
5: // weighting factor, threshold,
6: load Integral data of the feature positions;
7: calculate the weighted sum of the feature;
8: stage_sum += WC.alpha [weighted sum >= WC.threshold];
9: } // end of WC
10:
11: if (stage_sum > SC.threashold) return positive feedback;
12: else return negative feedback;
13: } // end of SC
14: } // end of Detect

1: for all WZ // WZ: window size
2: Resize image;
3: Integral image;
4: for all WP // WP: window position
5: Detect {
6: for all SC // SC: strong classifier
7: for all WC // WC: weak classifier
8: If failed, label the position as negative; jump to the next WP;
9: If passed all the SCs, label the position as positive;
10: } // end of Detect

270

Since OpenCV is a reference design running on a general
purpose processor, it implements a lot of floating point
operations to perform the object detection. However, floating
point computation is an expensive operation on an embedded
processor. This is not only because the operation takes more
cycles to finish, but also consumes more energy and chip area.
Thus, if possible, most embedded applications would remove
the floating point computation and substitute it with fixed-
point operations. The downside of using the fixed-point
scheme is the degradation of computation precision. However,
Viola-Jones algorithm is robust to the lower computation
precision because of its multi-resolution characteristics. The
same image will be resized and checked under different
resolutions, thus the degradation of the computation precision
does not cause negative decisive impact on the final results.
The reference design used in this paper is a fixed-point
implementation of OpenCV design. After a careful tuning, the
fixed-point design shows the same recognition accuracy as the
original floating point implementation.

C. A Multi-Threaded Design of Viola-Jones Algorithm
To take advantage of the computation power enabled by an

embedded multi-core system, the Viola-Jones algorithm needs
to be parallelized into multiple threads. Since this paper
focuses on a shared-memory symmetric multi-processor
platform, the key design concerns of parallelizing an
application can be categorized into two folds. The first
concern is the parallelization granularity, which decides how
fine-grained a designer would like to expose the inherent
parallelism. The second concern is how much overhead, for
both computation and synchronization, will be generated when
parallelizing an application. This section will give a detailed
discussion on these two design concerns.

The parallelism of the Viola-Jones algorithm can be
exposed at different algorithmic levels. For example, designers
can process different window sizes by different threads
concurrently (Window Size Level). The algorithm can also be
parallelized by simultaneously executing each weak classifier
with a different thread (Weak Classifier Level). The lower
parallelism level, such as Weak Classifier Level, gives finer
granularity of parallelism. This scheme creates more threads
and gives a better balance among the execution loads of
different concurrent threads. Well balanced task loads can
potentially utilize the parallel computation platform more
efficiently. Processors do not need to stay in the idle mode and
wait for the finish of a critical thread with long execution time.
However, having more threads in a system increases overhead
of thread creation. It also causes a higher amount of
synchronization between threads and demands higher memory
and interconnection bandwidth. On the other hand, the higher
parallelism level, such as Window Size Level, generates fewer
concurrent threads and imposes lower synchronization
overhead. However, the performance of a design with high
parallelism level could suffer from the imbalanced task loads.

To achieve superior performance, a multi-threaded design
needs to strike the balance between the parallelism granularity
and the synchronization overhead. This paper adopts the 3-
Stages Hybrid Scheme parallel implementation proposed in
[18]. The parallelism is exposed from two methods, including
the functional stages of the algorithm flow and the data
processing of each stage. The functional stage of the Viola-
Jones algorithm can be intuitively identified as the three main
functional blocks shown in Fig.2, including Resize image,
Integral image, and Detection block. These three stages have
clear boundaries which separate the computation and the
associated data. Therefore it is a reasonable design choice to
process these stages concurrently in a functional pipelining
scheme.

The second method to expose the parallelism is the data
processing within each functional block. An obvious
parallelism exists in the data domain of the functional block,
where each block needs to process different sizes of the
images. There is no data dependency between computations of
different image sizes, and thus these computations can be
executed concurrently by multiple threads.

Fig.4 illustrates the 3-Stages Hybrid scheme. The first stage
contains a multi-threaded version of the Resize block. An
image is split into several sub-image chunks. The resize task
of each sub-image chunk is performed by a thread. In this
way, multiple threads can perform the resize of an image
concurrently. The same scheme is applied to different sizes of
images. To achieve better task load balance, a larger image is
divided into more sub-images and executed by more
concurrent threads. The second stage processes the Integral
blocks of different image sizes concurrently with multiple
threads. The third stage performs the parallel execution of the
Detection block. Similar to the technique used in the parallel
Resize block, a larger image is divided into more sub-images
and executed by more concurrent threads. The 3-Stage Hybrid
scheme finds a proper design point between the trade-off of
load balance and synchronization overhead, and achieves a
better overall performance.

Figure 4. The 3-Stages Hybrid scheme of the parallel Viola-Jones

algorithm.

271

IV. EXPERIMENTAL SETUP: A CYCLE ACCURATE SMP
SIMULATOR

The experiments of this paper are executed on a cycle-
accurate multi-threaded shared-memory SMP simulator [10].
The simulator performs HW/SW co-simulation of both the
multi-threading SW library and the cycle-accurate SMP
hardware model. This platform returns a precise evaluation of
the overall system characteristics and performance.

Fig.5 illustrates the organization of the simulator. The
multi-threading library is based on QuickThread [26]. This
light-weighted library including the boot code fits in under
2KBytes of object codes. There are four generic APIs
(Application Programming Interface), including stp_create(),
stp_start(), stp_yield(), and stp_stop(), which enable the
creation of threads, execution of threads, yielding of a thread,
and termination of a thread respectively. These APIs facilitate
the control of multiple threads executing on a parallel platform.

After creation, all the threads are managed by a FIFO
queue. The queue is implemented in the shared memory space,
and can be accessed by all the processors. The FIFO queue
requires an atomic access and is protected by a spin-lock
synchronization mechanism. Each processor can create and
add new threads to the tail of the queue. When a processor
finishes executing the current task, it will request the next task
from the head the queue.

The processing core models a single-issue ARMv5
architecture with no floating point unit. Each processor has its
own data cache and instruction cache. The configurable cache
organization enables easy exploration of different cache line
sizes, block sizes, and associativity. The interconnection
implements a single-transaction shared-bus. Although not
scalable, the shared-bus scheme is still widely used in today’s
embedded multi-core systems. The latencies of bus
transactions and memory accesses are also configurable. The
experiment can adjust the shared-bus latencies to reflect the
salability issue when the number of processors is increasing.

All the processors are sharing the same memory space. The
cache coherence is implemented as a simple snooping-based
protocol. The important system parameters used in the
simulator are shown on the right hand side of Fig.5. In this
paper, each processor is assumed to run at 250MHz. The
nominal size for each local cache is 8KBytes. Each cache
block has 16 cache lines, and supports full associativity.

The maximum number of processors used in this paper is
sixteen. The arbitration of the single-transaction bus takes 1
processor cycles (4ns), which is feasible with today’s
advanced semiconductor technology [28]. The signal
traversing on the shared-interconnection takes 2 processor
cycles (8ns). This parameter could also be used to represent
the latencies required for the data to traverse the path of on
chip network, if the processors are connected by a NoC
(Network on Chip).

The access latency of the main memory takes 7 cycles
(28ns), which is approximately the latency of the modern
SDRAMs [29]. The ARM-based cycle accurate simulator can
well represent the system characteristics of the majority of
embedded multi-core systems.

Figure 5. The SW/HW organization of a multi-threaded shared-memory

SMP simulator. The system parameters are shown on the right hand side.

V. DATA LOCALITY OF THE DETECTION BLOCK
This paper focuses on the data locality optimization for the

Detection block. Based on the analysis results, a new design
scheme, Classifier-Grouping (CG), is proposed to enhance the
data reuse of on-chip caches.

As illustrated in Fig.2, the implementation of Viola-Jones
algorithm can be divided into three blocks, including Resize,
Integral, and Detection. According to [18], Detection
occupies around 70% of the overall runtime. Resize and
Integral parts only take around 30% of the overall execution
time. Note that this ratio shows up differently when applying
on different parallel platforms. For example, [25] has shown
that the Detection block has taken up 95% to 98% of the
overall execution time. The main reason behind the disparity
is the difference of the implementation schemes and the
underlined parallel platforms. However, all the related studies
have concluded that the Detection block is the most significant
time consuming part in the overall application, and should be
the main focus of the further optimization.

Another reason of concentrating on the Detection block is
its inherent high data locality, which is not the case for the
other two blocks (Resize and Integral). From the parallel
implementation scheme described in section III, the Resize
block reads the original image data and resizes the image into
different resolutions. The original image data will be used
only one time by each thread. The Integral block takes a
resized image and calculates the integral information for
different positions. Again, the resized image data will be read
only once by each thread. The main performance enhancement
of these two blocks comes from the exploitation of the high
data level parallelism.

The Detection block not only has the high data level
parallelism, it also possesses significant amount of data reuse

272

during the computation. When executing on an embedded
processor, the Detection block has contained two types of data
locality. The first type is the feature information used by each
classifier, including types of Haar-like features, position in the
scan window, weighting factors, threshold, and etc. The
second type is the image data that would be processed by
cascaded classifiers. The same data points of an integral image
within a scan window could be reused by different classifiers
during the detecting procedure. However, optimizing one type
of data locality could conflict the data reuse of the other type.

For example, the reference implementation of Fig.2 can
potentially take advantage of the data locality of the integral
image data. The Detection block fixes on the same scan
window and checks this window by the cascaded classifiers.
During the detecting procedure, the loaded integral image data
will be stored in the local cache of a processor. If this scan
window passes the current classifier, the next classifier might
need and therefore reuse the same data points in the cache.
However, due to the relatively small cache sizes of an
embedded processor (8KBytes in this paper), the feature
information of the already used classifiers could be flushed
when the scan window moves to a new position and starts
loading the new integral image data.

Due to the conflict characteristic of these two types of data
locality, we have to evaluate the impact of each type and
choose a more effective one.

A. Analysis of Two Types of Data Locality within Detection
Block
The observation shows that the cascaded classifier structure

rapidly and efficiently rejects most negative window positions
while keeping almost all the positive ones. From our
experiment, around 75% of the scan window positions failed
within the first three strong classifiers, which contain a total of
40 weak classifiers. Almost 90% of the scan window positions
failed within the first five strong classifiers, which contain 112
weak classifiers. This observation gives a hint that it could be
more effective to exploit the data locality of classifiers rather
than the integral data points. The following paragraphs will
detail the analysis of these two types.

Each weak classifier includes two to three rectangular
Haar-like features. Viola-Jones algorithm uses the integral
image to efficiently compute the target features. Thus each
classifier only loads the corner integral data points of a Haar-
like feature rectangle and computes the intensity difference
between sub-rectangles. The possibility that the corners of
these rectangles fall on the same data position of an integral
image is fairly low. Fig.6 illustrates this characteristic.

Let us use a simple example to illustrate this case. In the
reference implementation, each resized image will be scanned
by a 20x20 pixel scan window (total 400 pixels). Assume a
scan window has passed the first five strong classifiers, which
has used a total of 952 integral data points. Each integral data

point, in average, will only be used a little bit more than two
times. This data access characteristic cannot take a full
advantage of the local data cache and has concluded that it can
only expose very little data locality when focusing on the
reuse of the integral image data.

Figure 6. Haar-like feature rectangles in a scan window.

The feature data of classifiers, however, has a much better
data locality than the integral data points. Recall the property
that most of the scan window will be rejected within the first
three strong classifiers. If we can somehow keep the feature
data of the first three weak classifiers in the local cache of a
processor, almost all the scan window can benefit from
reusing the data of classifier features in local caches. For a
512x512 image, there are more than 290K scan window
positions. The system performance can be enhanced
significantly if most of these scan window positions can reuse
the classifier feature data in local caches.

VI. CLASSIER-GROUPING: A SCHEME TO ENHANCE DATA
LOCALITY

Based on the analysis from the previous section, we have
proposed a new design scheme to enhance the data locality for
an embedded multi-core system. The first design scheme is to
change the order of the execution loop. It is referred as Loop-
Changing (LC) scheme in this paper. The strategy of the LC
scheme tries to avoid the classifier feature data from being
flushed by the subsequently loaded integral image data. This
strategy has enhanced the overall system performance and
proved the effectiveness of the conclusion of our data locality
analysis. Based on the LC scheme, a Classifier-Grouping (CG)
scheme is then proposed to further change the program
organization and bind the execution of the first three strong
classifiers. CG improves the data reuse and provides a
performance enhancement up to 62%.

A. Loop-Changing Scheme to Enhance Data Reuse
Fig.7 shows the pseudo code of the LC scheme. Different

from the original algorithm flow in Fig.2, the LC design moves
the loop of WP, which changes the position of the scan window,
to the place after the loop of SC (Strong Classifier).

The LC design improves the locality of the feature
information of weak classifiers. Moving the WP loop after the
SC loop can reduce the possibility for the already-cached
feature information being replaced by the subsequently loaded
data right after the usage of the current strong classifier.

273

Figure 7. Pseudo code of the Loop-Changing (LC) scheme.

Fig.8 shows the runtime comparison between the reference
parallel scheme (3-Stage Hybrid scheme) and the LC design
scheme. The cycle-accurate simulation has been performed for
systems with different numbers of processors (x-axis of Fig.8).
The LC design has better performance at all the multi-core
schemes. This is because the numbers of external memory
accesses are reduced significantly due to the better data locality
at the local cache. The 16-processor scheme has the maximum
performance enhancement of 58%. This is mainly because the
potential performance enhancement of the 3-Stage Hybrid
enabled by more processors is compromised by the enormous
memory access time. The memory bottleneck becomes the
limiting factor of the system performance. Hence the
performance stops improving when there are more than eight
processors. However, the LC design significantly reduces the
number of memory accesses. The performance continues to
scale when there are more processors (8, and 16 processors).

Figure 8. Performance comparison between the different design schemes

(3-Staged Hybrid, Loop-Changing, Classfier-Grouping)

B. Classifier-Grouping Scheme to Further Enhance Locality
The results of LC design encourage us to further bind the

execution of the first couple of weak classifiers to gain more
benefit from the locality of classifier features. It is called
Classifier-Grouping (CG) scheme. Fig.9 shows the pseudo
code of an example of the CG scheme, which binds the
execution of the first three strong classifiers. The basic idea is
to execute the first three strong classifiers for all the window
positions (line 5 to 8 in Fig.9). This way, the features of the
first three strong classifiers can be reused extensively by the
scan windows at all the window positions. After all the window
positions have been checked by the first three strong classifiers,

the program moves on to apply the rest of the strong classifiers
(line 10 to 19 in Fig.9). The later part of the execution uses the
same implementation as in the Loop-Changing scheme.

Figure 9. Pseudo code of the Classifier-Grouping scheme, which groups

the execution of the first three (0~2) strong classifiers.

However, there are two main design concerns when
applying the CG scheme on a parallel object detection
algorithm. First, the CG scheme has imposed some overhead.
During the execution of line 5 to 8 in Fig.9, CG scheme needs
to record the positions which have passed each strong classifier.
These positions will be read back when executing the
subsequent strong classifiers. This will create extra memory
accesses and data transactions.

Second, the number of bound classifiers could impact the
overall performance. Binding too few strong classifiers cannot
benefit the most from the data reuse. However, binding too
many strong classifiers could possibly flush early loaded
classifiers from the local cache and degrade the locality.
Moreover, this number could change when the size of the local
cache is different. To achieve the best performance, designers
need to concern the induced overhead of the CG scheme and
trade-off an appropriate number of bound classifiers.

This paper has successfully demonstrated the effectiveness
of the CG scheme, and identified the application characteristics
and key design concerns. Binding the first three strong
classifiers is a decision from the empirical results. A more
effective design trade-off requires a systematic design
methodology, which is the next step in our future research.

VII. CONCLUSIONS AND FUTURE WORK
The object detection enables a smart embedded device to

recognize the surrounding environment and react properly.
The intensive computation requirement requires a parallel
object detection algorithm executing on a multi-core system.
The memory bottleneck makes it a critical design concern to
improve the data locality and take a full advantage of the on-
chip cache. This paper analyzed the memory behavior of a
parallel Viola-Jones algorithm, and proposed a Classifier-
Grouping design scheme to enhance the data locality of the
application. By running a multi-threaded object detection
algorithm on a cycle-accurate multi-core simulator, the

1: for all WZ // WZ: window size
2: Resize image;
3: Integral image;
4: Detect {
5: for all WP // WP: window position
6: for SC0:SC2 // SC: strong classifier (cascade 0-2)
7: for all WC // WC: weak classifier
8: If failed, label the position as negative; jump to the next WP;
9:
10: for other SC // SC: strong classifier
14: for all WP // WP: window position
15: for all WC // WC: weak classifier
16: If failed, label the position as negative; jump to the next WP;
17: // processor can better reuse the WC data stored in the cache
18: // which significantly increases the data locality
19: If passed all the SCs, label the position as positive;
20: } // end of Detect

1: for all WZ // WZ: window size
2: Resize image;
3: Integral image;
4: Detect {
5: for all SC // SC: strong classifier
6: for all WP // WP: window position (New position of WP loop)
7: for all WC // WC: weak classifier
8: If failed, label the position as negative; jump to the next WP;
9: // processor can better reuse the WC data stored in the cache
10: // which significantly increases the data locality
11: If passed all the SCs, label the position as positive;
12: } // end of Detect

274

proposed approach can achieve up to 62% better performance
when compared with the reference parallel design.

Our future work will focus on developing a systematic
design methodology to perform the appropriate trade-offs on
the critical design parameters, such as the extra overhead
induced by the CG scheme, numbers of bound classifiers in CG
scheme, cache sizes of processors, memory and
interconnection latencies, etc.

ACKNOWLEDGEMENT

This work is sponsored by Nation Science Council under
grant NSC99-2221-E-009-190.

REFERENCES
[1] H.W. Gellersen, A. Schmidt and M.Beigl, “Multi-Sensor Context-

Awareness in Mobile Devices and Smart Artifacts,” In Journal of
Mobile Networks and Applications, Vol.7, Num.5, pp.341-351. 2002.

[2] R. Colin Johnson, “First MEMS gyro smartphone to ship in June,”
EETimes, May 2010. http://www.eetimes.com/electronics-
news/4199279/MEMS-Gyro-Smartphone

[3] SixthSense Project, MIT Media Lab.
http://www.pranavmistry.com/projects/sixthsense/

[4] Kinect for Microsoft Xbox. http://www.xbox.com/en-GB/kinect
[5] The TILE-Gx™ processor family processor. http://www.tilera.com/
[6] ARM cortex-A9 processor. http://www.arm.com/
[7] MIPS Technologies Announces Symmetric Multiprocessing (SMP)

Support for Android™ Platform on MIPS-Based™ SoCs.
http://www.mips.com/

[8] S. Leibson, “Memory is the Future Bottleneck in Multicore Servers,”
EDN News, March 2010.

[9] C. Zhang and Z. Y. Zhang, “A Survey of Recent Advances in Face
Detection ”, Microsoft Research, June 2010.

[10] P. Schaumont, B. C. Lai, W. Qin, I. Verbauwhede, "Cooperative
Multithreading on Embedded Multiprocessor Architectures Enables
Energy-Scalable Design,” Proceeding 2005 Design Automation
Conference (DAC), pp. 27-30, June 2005.

[11] M. Wolf and Monica S. Lam. A data locality optimizing algorithm. In
ACM SIGPLAN symposium on Programming Languages Design and
Implementation, pages 30–44, 1991.

[12] Cade, M.J.Cade and A. Qasem, Balancing Locality and Parallelism on
Shared-cache Mulit-core Systems. 11th IEEE International Conference

High Performance Computing and Communications, 2009. HPCC '09.
Pages 188 – 195, June 2009

[13] M. Gaubatz, R.Ulichney, “Automatic red-eye detection and
correction,” in Proc. IEEE Int. Conf. Image Processing, vol. 1, pp. 804–
807, 2002.

[14] M.J.Jones, D.Snow, “Pedestrian detection using boosted features over
many frames,” 19th International Conference on Pattern Recognition,
pp.1-4, Dec.2008.

[15] T.T.Nguyen, H.Grabner, H.Bischof, B.Gruber, “On-line Boosting for
Car Detection from Aerial Images”, IEEE International Conference
on Research, Innovation and Vision for the Future, pp.87-95, 2007

[16] T. Theocharides, N. Vijaykrishnam and M. J. Irwin, “A parallel
architecture for hardware face detection”, Symp on Emerging VLSI
Technologies and Architectures, pp. 452-453, 2006.

[17] Y. K. Chen, W. L. Li and X.F. Tong, “Parallelization of AdaBoost
algorithm on multi-core processors”, IEEE SiPS 2008, Washington DC,
2008, pp.275-280.

[18] C.H.Chiang, C.H.Kao, G.R. Li, B.C. Lai, "Multi-Level Parallelism
Analysis of Face Detection on a Shared Memory Multi-Core System,"
IEEE International Symposium on VLSI Design, Automation and Test,
April 2011.

[19] Open Source Computer Vision, http://opencv.willowgarage.com/
[20] Y. Wei, X. Bing, C. Chareonsak, "FPGA Implementation of AdaBoost

Algorithm for Detection of Face Biometrics", In Proc. IEEE
International Workshop Biomedical Circuits and Systems, 2004.

[21] M. Yang, Y. Wu, J. Crenshaw, B. Augustine, R. Mareachen, "Face
Detection for Automatic Exposure Control in Handheld Camera", in
Proc. IEEE International Conference Computer Vision Systems, 2006.

[22] C. J. Gao and S. L. Lu, “Novel FPGA based Haar classifier face
detection algorithm acceleration”, FPL 2008, Heidelberg, September
2008, pp. 373-378.

[23] F. C. Crow, “Summed-Area Tables for Texture Mapping”, Computer
Graphic, vol. 18, no. 3, pp. 207-212, July 1984.

[24] P.Viola and M.Jones, “Rapid Object Detection Uisng a Boosted Cascade
of Simple Feature,” in Proc. CVPR, vol.1, pp.8-14, 2001.

[25] Shin-Kai Chen, Tay-Jyi Lin and Chih-Wei Liu, “Parallel Object
Detection on Multicore Platform,” in Proc. SiPs, 2009.

[26] D. Keppel, “Tools and Techniques for Building Fast Portable Threads
Packages,” UWCSE 93-05-06, U. Washington, 1993.

[27] C. Hammerschmidt, “HAVEit project proves series maturity of
automatic driving,” EETimes, June 2011.

[28] E.S Shin, V.J. Mooney, and G.F. Riley, “Round-robin Arbiter Design
and Generation,” 15th International Symposium on System Synthesis,
pp.243-248, 2002.

[29] CAS latency, on Wikipedia, July 2011.

275

