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Abstract— As the number of processors sharing a cache 
increases, conflict misses due to interference amongst 
competing processes have an increasing impact on the 
individual performance of processes. Cache partitioning is a 
method of allocating a cache between concurrently executing 
processes in order to counteract the effects of inter-process 
conflicts. However, cache partitioning methods commonly 
divide a shared cache into private partitions dedicated to a 
single processor, which can lead to underutilized portions of 
the cache when set accesses are non-uniform.  

Our proposed method compliments these cache partitioning 
algorithms by creating an additional shared partition able to 
be shared amongst all processors. Underutilized areas of the 
cache are identified by a monitoring circuit and used for the 
shared partition. Detection of underutilization is based on the 
number of unique set accesses for a given allocated way. For a 
16-way set associative cache, the implementation of our 
method requires 64 bytes of storage overhead per core in 
addition to that needed for the method that determines the 
sizes of the private partitions. For the tested system, our 
method is able to improve performance over the traditional 
LRU policy for a number of selected benchmark sets by an 
average of 1.4% and up to 13.3% for a two core system and an 
average of 1.4% and up to 7.8% for a four core system, and is 
able to improve the performance of a conventional cache 
partitioning method (Utility-Based Cache Partitioning) by an 
average of 0.1% and up to 0.5% for both a two and four core 
systems. 

Keywords- cache partitioning; shared cache; set utilization; 
chip multi-processor 

I.  INTRODUCTION 
With multi-core processors now the norm, the number of 

processors simultaneously sharing a shared cache has 
increased. This can result in an increase in the number of 
inter-process conflict misses within the shared cache and 
hence result in poor overall system performance. When using 
the LRU replacement policy this poor performance can be 
exacerbated due to the LRU replacement policy’s demand 
approach to cache block selection, in which applications that 
have a high demand for unique cache blocks and poor 
temporal locality (for example, those that stream data) are 
allocated a larger portion of the cache than applications that 
have a lower demand for unique cache blocks but stronger 
temporal locality.  

Cache partitioning is a method designed to avoid this 
destructive interference between applications by restricting 

the amount of cache applications can use. Generally, cache 
partitioning methods assign each application a dedicated 
private partition, in effect dividing the shared cache into a 
number of private caches. Whilst eliminating inter-process 
conflict misses, the effective cache capacity for each process 
is decreased, potentially increasing the number of capacity 
misses. Partition sizes are often adjusted dynamically based 
on a cost function with an objective such as improving the 
miss rate, CPI or fairness. The unit for partitioning can vary, 
with granularities ranging from line to way to set based. The 
focus of this paper is on improving cache partitioning 
methods using a way granularity that solely allocate private 
partitions. Our goal is to partition a cache in such a way as to 
gain the benefits of both a shared cache (decreased capacity 
misses) and private caches (decreased inter-process conflict 
misses). 

Our proposed method takes note of the fact that not all 
blocks in a cache are used uniformly, particularly during a 
given repartitioning period since it is relatively short (five 
million cycles in some methods). After a processor has been 
allocated its private partition, information from a monitoring 
circuit is used to determine which ways in the allocated 
partition are underutilized. As the chance of inter-process 
conflict misses is low in these underutilized areas, they are 
then shared with the other processors. We determine through 
simulation that for the given benchmark sets the best 
performance is obtained if a way is shared when less than 
15% of the sets within the way are underutilized. When used 
in conjunction with a way-based cache partitioning method 
that monitors the stack distance information of individual 
processors, our method requires an additional storage 
overhead of 64 bytes per core for a 16-way set associative 
cache with 32 sets monitored regardless of cache size.  

Results show that for both two and four core systems 
improvements in performance can be made over both having 
no partitioning scheme and conventional cache partitioning 
into private partitions. Our method is able to improve 
performance over having no partitioning scheme for a 
number of selected benchmark sets by an average of 1.4% 
and up to 13.3% for a two core system and an average of 
1.4% and up to 7.8% for a four core system. Performance is 
also improved over a conventional cache partitioning method 
(Utility-based Cache Partitioning) by an average of 0.1% and 
up to 0.5% for both two core and four core systems. 
Importantly, although the average improvement in 
performance is fairly modest, our proposed method is able to 
improve both the best and worst case performance of the 
conventional cache partitioning scheme. 

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.119

284



This paper contributes a method for partitioning a cache 
into private and shared partitions based on the number of 
unique sets accessed, a measure we are unaware of being 
used in other related work. The method is targeted at systems 
where the number of cores is lower than the associativity of 
the cache, enabling each core to be allocated a minimum of 
one way each. As a result, the scalability of the proposed 
method is limited as the number of cores sharing a cache is 
increasing faster than the associativity of the cache. 

The paper is divided into six sections. The first serves as 
an introduction to the topic and research. The proposed 
method is then detailed, with the rationale and description of 
the algorithm specified. Next, the experimental methodology 
is shown and afterward results are shown and analyzed. 
Related work is then covered and compared with our method 
and lastly the conclusion is presented. 

II. SET UTILIZATION BASED DYNAMIC CACHE 
PARTITIONING 

A. Rationale   
To determine how to better partition a cache, we analyze the 
cache access patterns of an application over time. Given a 
way-based partitioning method and the LRU replacement 
policy, looking at the LRU stack distance hit counts of an 
application is useful in determining what the effect of 
allocating a certain number of ways to an application would 
be [1]. Fig. 1 shows the average number of hits per stack 
distance position in a 1MB 16-way set associative L2 cache 
per five million simulated cycles over one billion simulated 
cycles for the gzip benchmark from the SPEC CPU2000 
benchmark suite. The simulation parameters used are further 
outlined in Table I in Section IV. Five million cycles were 
chosen as it is the suggested repartitioning period as 
discussed in [2] and [3]. For this benchmark, as the number 
of ways allocated (increasing stack position) increases, the 
number of hits steadily decreases, i.e. there is a diminishing 
benefit from an increase in cache capacity. However this 
figure does not describe accurately the distribution of the hits 
within the cache. Fig. 2 shows the average number of hits per 
stack distance position for each set in the cache for the same 
parameters. As can be seen, for a given stack distance 
position not all sets are accessed uniformly, an observation 
also noted in work related to cache set mapping functions 
[4]. This presents an opportunity for improvement over a 
partitioning scheme that allocates only private partitions.  

 
Figure 1.  Average number of hits per stack distance position in a 1MB 

16-way set associative L2 cache per five million simulated cycles over one 
billion simulated cycles for the gzip benchmark 

 

Figure 2.  Average number of hits per stack distance position for each set 
in the cache 

Fig. 3 shows the average percentage of total sets accessed 
per stack distance position over five million cycles for a 
number of selected SPEC CPU2000 benchmarks. We find 
the utilization of cache sets varies greatly between both 
applications and stack distance positions. If two processes 
share a way and the utilization of a given process’s stack 
position for that way is low, the chance of accesses between 
processes conflicting is low. Sharing this way should be able 
to decrease the number of capacity misses and have little to 
no effect on the number of inter-process conflict misses of 
processes sharing the way. Our method is based upon this 
principle. If a way allocated to a process is underutilized, it is 
shared with other processes. This creates two types of 
partitions - private and shared.  

 

Figure 3.  Average cache set utilization for the gzip, galgel, wupwise, and 
art benchmarks. The y-axis represents the average percentage of sets used. 
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B. Partitioning Algorithm 
The overall framework of the proposed m

core system is shown in Fig. 4. Each proc
L1 instruction and data caches that are conn
L2 cache. Additionally, each processor is
monitoring circuit that is used to gain hit
each processor as if the L2 cache were priv
it is not necessary to contain the actual c
only the tags to know if a cache access w
(referred to as an Auxiliary Tag Directory (A
private partitioning algorithm allocates all th
cache between each processor. The sha
algorithm then takes this partition size in
with information on cache utilization to d
allocated ways can be shared. For systems
two cores, the L1 caches are connected t
cache and an additional hit monitor which is
partitioning algorithms. 

1) Private Partition Size Determination 
In general, any way-based partitioning

completely allocates all ways in a cache 
determine the private partition sizes. In our 
use the Utility-based Cache Partitioning (U
algorithm to determine the sizes of the p
This partitioning algorithm aims to max
reduction in cache misses. Further details 
can be found in [3]. Although the UCP me
method is complimentary to other partitio
with alternate cost functions (for example b
[5]). 

2) Shared Partition Size Determination 
The shared partitioning algorithm de

allocated ways are amenable to sharing. Th
detect the usage of a stack distance in a se
per core hit monitors needed for p
determination are modified to add an additi
each stack distance position in the set. The
used is then the total number of used bits
stack distance. If the total number of sets 
threshold, the way is considered underutilize
 

Figure 4.  Design overview of proposed method for 
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3) Sharing Granularity of Share
Once an allocated way has

underutilized and to be shared, the 
processes to share the way with. Tw

The first is that the newly sha
amongst all other processes, termed
This provides a potential decrea
amongst all processes, however at t
increase in inter-process conflict m
of inter-process conflict misses incr
processors sharing the cache increa
for this method is straightforward a
size of the shared partition to be tra
optimized to only track the sizes of t

Pseudo code for this metho
Algorithm 1. For each private par
each allocated way is compared to a
it is below the threshold, the way 
further ways from that partition are
are shared in order from least recen
used. This is due to the LRU replac
stack property, meaning accesses
partition will not hit in the shared pa

 
Algorithm 1 ShareAll algorithm 
    foreach core do: 
        foreach allocated_way from LR
            if(number_of_used_sets < th
                private_partition[core] -= 
                shared_partition += 1 
            else 
                skip this core 
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other cores that can be shared in this position are ordered in 
terms of reduction in misses. The newly shared way is shared 
with other cores until the total utilization reaches a threshold, 
after which the chance of conflicts is established as too great. 
This method requires storage of both the private partition 
sizes and number of blocks that can be used in the shared 
partition for each connected core. 

 
Algorithm 2 ShareSubset algorithm 
    foreach core do: 
        foreach allocated_way from LRU to MRU do: 
            if(number_of_used_sets < threshold) 
                private_partition[core] -= 1 
                shared_partition[core] += 1 
                corelist = get list of cores ordered in benefit from  
                                    additional way 
                foreach toCore in coreList do: 
                    if(combined_usage < threshold): 
                        shared_partition[toCore] += 1 
            else 
                skip this core 

 
4) Augmented LRU Policy 

As with other way-based cache partitioning methods, the 
standard LRU policy is also augmented to support our 
method. Each cache line has an additional tag representing 
which processor it belongs to (one bit for a cache shared 
between two processors). This is used to determine how 
many blocks are allocated in a set to each processor. On a 
cache miss the LRU block needs to be chosen whilst keeping 
the partitioning constraints. Roughly speaking, if any 
processors have too many blocks (greater than the combined 
size of the private and shared partitions) the LRU block from 
them is chosen for eviction. If not, then the LRU block of the 
shared partition is chosen for eviction. If there is no shared 
partition (i.e. the cache utilization for each way is high), then 
the LRU block of the private partition is then chosen. In 
addition, a lazy repartitioning method [3] is used to evict 
cache blocks on demand rather than evicting all blocks 
belonging to a processor that are over its allocated limit. 

C. Storage Overhead 
The additional hardware requirements are minimal given 

a private partitioning algorithm that already uses an auxiliary 
tag directory. Using the UCP method as an example, for a 
32-bit system it requires an additional storage overhead of 
1920 bytes for a 1MB 16-way cache shared between two 
cores with 32 sets monitored. Our method adds an additional 
bit for each stack position monitored, and with 32*16 blocks 
monitored, 64 additional bytes are needed for storage per 
core, a 6.67% increase over the UCP method or 0.006% of 
the total cache size per core. For additional cores, this 
number is multiplied by the total number of cores.  

D. Effect on Latency 
The effect of the proposed method on the latency of the 

system has two components - that of the partition 
determination, and that of the enforcement of the partition 
constraints.  

Although partition determination is not on the critical 
path of a cache access, it is limited by the repartitioning 
period as it must complete before the partitions are changed 
again. As the repartitioning algorithm is composed mainly of 
additions, subtractions, and comparisons, the latency of the 
algorithm is predicted to be within the repartitioning period. 

Partition enforcement is done through the augmented 
LRU policy, and thus falls on the critical path of a cache 
access. For any cache access (be it a hit or miss), the latency 
will increase slightly due to the additional core tag 
comparison required, but which most likely can be masked 
within the existing latency or requiring only one extra cycle. 
On a cache miss, the latency for choosing the block to evict 
is increased, however this computation can be performed 
whilst the new block is being fetched from the next level of 
the memory hierarchy, hiding the increased latency. 
Therefore overall, the proposed method should have little if 
any effect on the latency of the cache. 

III. EXPERIMENTAL METHODOLOGY 

A. Baseline Configuration 
Whilst any number of cores can be connected to the 

shared cache, using a way based partitioning method limits 
the actual number of cores that can be sensibly connected. 
As a minimum of one way is allocated to each processor and 
the number of ways is usually limited for hardware cost 
reasons to 16 or 32, a reasonable maximum number of cores 
would be 4 to 8. For this reason our experiments only 
simulate systems with two and four cores. 

The Simics system simulator [6] was used to simulate a 
system running Solaris 10 on an UltraSPARC III processor.  
Table I shows the configuration parameters used.  

Either two or four processors were used, with each of the 
benchmarks bound to a single processor using pbind. 
Benchmarks were run in parallel and fast forwarded to the 
beginning of their main loops. The caches were then warmed 
up for 500M cycles, and simulation of results began for 1B 
cycles. 

TABLE I.  BASELINE CONFIGURATION USED 

Processor 2/4 processors, single threaded 
Private L1 Instruction Caches 16KB, 64 byte block size, 4-way set 

associative, 3 cycle access latency 
Private L1 Data Caches 16KB, 64 byte block size, 4-way set 

associative, 3 cycle access latency 
Shared L2 Unified Cache 1MB/2MB, 64 byte block size, 16-

way set associative, 15 cycle access 
latency 

Memory 4GB, 200 cycle access latency 

B. Benchmarks 
A number of benchmarks were chosen from the SPEC 

CPU2000 benchmark suite [7], all using the reference input 
sets. As partitioning algorithms are designed to counter the 
poor performance of the LRU replacement policy for 
applications with a large number of misses and that have a 
limited need for cache (utility), the benchmarks have been 
divided into four categories along two axes - total number of 
misses and utility. Benchmarks with an average of more than  
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TABLE II.  CLASSIFICATION OF BENCHMARKS 

 Low Utility High Utility 
High Number of 

Misses 
swim, wupwise, 
equake 

mcf,art, vpr, twolf 

Low Number of 
Misses 

gzip, crafty, ammp, 
fma3d 

parser, galgel 

 
500 misses over five million cycles (arbitrarily chosen) are 
classified as having a high number of misses. Classification 
into high and low utility is based on stack distance position 
hit curves. Benchmarks where the number of hits for higher 
stack distances is less than 10 are classified as low utility, as 
these positions are relatively unused and represent receiving 
no benefit from being allocated more cache. The benchmark 
classifications are shown in Table II. 

A number of benchmark sets for two and four cores 
systems were then selected based on this categorization. 10 
benchmarks for the two core system and 11 benchmarks for 
the four core system comprising a combination of each of the 
categories were chosen shown in Table III.  

It is predicted that any benchmark sets containing 
benchmarks with a high number of misses and low utility 
will greatly benefit from cache partitioning. It is also 
predicted that our proposed method will outperform the UCP  
method particularly for benchmark sets containing 
benchmarks with low average set usage.  

TABLE III.  BENCHMARK SETS USED FOR SIMULATION 

Two Core Benchmark Sets Four Core Benchmark Sets 
art-ammp 
crafty-fma3d 
equake-galgel 
gzip-parser 
mcf-art 
mcf-parser 
parser-galgel 
swim-crafty 
swim-mcf 
wupwise-equake 

ammp-fma3d-parser-galgel 
ammp-fma3d-vpr-art 
art-twolf-parser-galgel 
gzip-crafty-ammp-fma3d 
mcf-art-vpr-twolf 
parser-parser-galgel-galgel 
swim-equake-gzip-crafty 
swim-vpr-gzip-parser 
swim-wupwise-equake-wupwise 
swim-wupwise-mcf-twolf 
swim-wupwise-parser-galgel 

C. Metrics 
We use the normalized weighted speedup to evaluate the 

performance of our proposed method. The weighted speedup 
measures the relative difference in the number of instructions 
executed per cycle for an application running concurrently 
compared to when it is run in isolation. This value is then 
normalized against the performance of the no-partitioning 
policy (LRU). The formula for calculating the weighted 
speedup is shown below in (1). 

 �= ii SingleIPCIPCSpeedupWeighted /  (1) 

IV. RESULTS AND ANALYSIS 

A. Two Core System 
The performance of our proposed method compared with 

a no-partitioning method (using the standard LRU 

replacement policy for eviction decisions) and the UCP 
method (using only private partitions) for a two core system 
in shown in Fig. 5. For the case in which there are only two 
cores in the system, the ShareAll and ShareSubset algorithms 
are still valid. The ShareAll algorithm shares an allocated 
way in a private partition if the set utilization of that way is 
below a threshold (sharing is based only on the utilization by 
the owning core). The ShareSubset algorithm shares an 
allocated way in a private partition if the set utilization of 
that way combined with the set utilization of the way that it 
would be shared with from the other core is below a 
threshold (sharing is based on combined utilization). 

We find our proposed method increases performance 
against the no-partitioning case by an average of 1.4% over 
our selected benchmark sets, and up to 13.3% for the case of 
the mcf-art benchmark set. This is in comparison to the UCP 
method, which increases performance relative to the no-
partitioning case by an average 1.3% over the selected 
benchmark sets and up to 12.8% for the mcf-art benchmark 
set. Both variations of our proposed method are able to 
improve performance of the UCP method. The relative low 
average increase in performance is a result of 8 out of the 10 
benchmark sets differing in performance by less than 1% 
between no-partitioning and cache partitioning. This 
indicates cache partitioning may not be particularly effective 
in a two core system for most combinations of applications. 

Of note is for benchmark sets where the UCP method 
performs worse than the no-partitioning method (wupwise-
equake, swim-crafty, crafty-fma3d), our proposed method is 
able to increase the performance, bringing it closer to the 
performance of the no-partitioning method. Interestingly, for 
the parser-galgel benchmark set, the performance of our 
proposed method is higher than the no-partitioning and UCP 
methods. Our proposed method is able to take advantage of 
the low set utilization of the fma3d, swim and crafty 
benchmarks to provide a larger capacity for the benchmarks.  

In comparison to the UCP method, our proposed method 
provides an average of 0.1% better performance and up to 
0.5% better performance comparative to the no-partitioning 
case. This small increase likely represents a diminishing 
return in further improving the UCP method. 

 
Figure 5.  Performance of no partitioning, UCP, and proposed method for 

two core system 
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Also, we find the difference in performance between the 
two variations of our proposed method (ShareAll and 
ShareSubset) to be very small (0.06% in favor of the 
ShareAll algorithm). Therefore, a hardware implementation 
of the proposed method would be able to use the less costly 
ShareAll algorithm with a negligible effect on performance. 

B. Four Core System 
The performance of the proposed method for a four core 

system is shown in Fig. 6. The performance of a no-
partitioning (LRU), UCP, and the two variations of our 
proposed method (ShareAll and ShareSubset) are shown. 
ShareAll implements the algorithm described in Algorithm 1 
and shares an allocated way in a private partition with all 
other cores in the system if the number of utilized sets is 
below a threshold. The ShareSubset variation implements the 
algorithm described in Algorithm 2 and allows each core a 
different proportion of the shared partition. 

We find our proposed method increases performance in 
comparison to the no-partitioning case by 1.4% on average 
for the selected benchmark sets and up to 7.8% for the art-
twolf-parser-galgel benchmark set. In comparison, the UCP 
method increases performance relative to the no-partitioning 
case by 1.3% on average for the selected benchmark sets and 
up to 7.7% for the art-twolf-parser-galgel benchmark set. 
The average performance is similar to the two core case, in 
that 7 out of the 11 benchmark sets have a difference in 
performance of less than 1% between the methods. The two 
variations of our proposed method are again very similar in 
performance, however this time the ShareSubset variation 
offers slightly better average performance (by 0.06%).  

Results across the benchmark sets are similar in pattern 
to those of the two core system, with the proposed method 
able to increase both the worst case and best case 
performance of the UCP method, with the difference being 
up to 0.5% in the case of the ammp-fma3d-parser-galgel 
benchmark set. In addition, our method is able to out-
perform both a no-partitioning method and the UCP method 
in 6 out of the 11 benchmark sets and out-perform the UCP 

 
Figure 6.  Performance of no partitioning, UCP, and proposed method for 

four core system 

method in 9 out of the 11 benchmark sets, indicating our 
method may be more beneficial as the number of cores 
increases. 

C. Set Considered Used Threshold 
It is not necessary for the used bit to be set given a single 

access to that stack distance position. A counter can instead 
be used to have a threshold at which a stack distance position 
in a set is considered used or not. Sensitivity analysis of this 
parameter was conducted using the average weighted 
speedup of the benchmark sets. As the threshold for a stack 
distance position being considered used or not increases, 
overall performance deteriorates. The best performance is for 
the case when the threshold is 1, or whether the stack 
distance position has been used at all for that set. This is 
fortunate since it means the overhead of the stack distance 
position usage bits will not be large and only one bit for each 
block is needed in the monitored sets. 

D. Way Considered Utilized Threshold 
The number of unique sets used given a stack distance 

position before that stack distance position is considered 
sufficiently utilized is an additional parameter that can be 
considered. The threshold for the number of unique sets used 
before which a way is shared is adjustable and sensitivity 
analysis of this parameter is shown in Fig. 7. Unique set 
usage thresholds were chosen based on a percentage of the 
total number of sets, with results from 0% to 100% in 1% 
intervals of the total sets used compared. Performance for 
each of the methods was normalized against the no-partition 
four core case. 

Sharing a processor’s allocated way based on 15% 
utilization shows the best results. The lower the threshold, 
the closer the performance to that of the UCP method. This is 
to be expected as the chance of sharing a way will be low, 
hence the shared partition is non-existent and the UCP 
derived partitions are exclusively used. When the threshold 
increases, the performance more closely matches that of the 
non-partitioned case. This also is expected, as the probability 
of a processor’s way being shared is higher and hence more 
likely to have a larger shared partition, equivalent to the non-
partitioned case. The ShareSubset method does not match 
that of the non-partitioned case when the threshold is 100% 

 
Figure 7.   Performance of proposed method for varying thresholds 
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as it uses the combined utilization and each core can 
potentially utilize 100% of the sets in the way. Of note is the 
performance degradation as the threshold increases above 
40% of the total sets used. The performance quickly 
becomes worse than the no-partitioning case and then 
improves to match that of the no-partitioning case. This is 
due to the suboptimal restriction of cache capacity amongst 
the applications.  

V. RELATED WORK 
Cache partitioning as a research topic saw an increase in 

interest with the rise of chip multi-processors. A number of 
different methods have been proposed, with a large 
proportion using way-based partitioning. 

Dynamic Partitioning of Shared Cache Memory [2] is a 
way-based partitioning method to dynamically reduce the 
total number of misses for simultaneously executing 
processes. Cache miss information for each process is 
collected through stack distance counters (termed marginal 
gain counters) and a greedy algorithm used to determine a 
new partition size. Of note is the rollback mechanism, where 
the performance of the current and previous partition sizes 
are compared and the better one chosen for the next partition 
size. Limitations of this method is include the fact that 
separate hit counters are not kept for each core making miss 
prediction less accurate and the limited scalability to four or 
more cores. 

Utility Based Cache Partitioning [3], the example method 
used for determining the private partitions in this paper, 
allocates ways amongst the cores based on maximizing the 
reduction in misses. This is computed through stack distance 
counters and alternate tag directories enabling the effect of 
various cache partition sizes to be determined 
simultaneously. The method however is not able to 
adequately adjust to situations where having no explicit 
partitioning policy performs well (applications with a low 
number of inter-process conflict misses running 
concurrently). 

Cooperative Cache Partitioning [8] is another way based 
partitioning method designed to deal with thrashing threads. 
It uses Multiple Time-sharing Partitions to share a large 
partition between multiple thrashing threads, giving each 
thread the entire partition for a portion of the repartitioning 
period. This combined with the Cooperative Caching [9] 
method provides an improvement in performance, 
particularly Quality of Service. This scheme is also 
compatible with our proposed method and we anticipate 
additional improvements in performance if used together. 

Adaptive Shared/Private NUCA Cache Partitioning [10] 
is a method similar to our proposed method that divides a 
cache into shared and private partitions. The difference lies 
in the method for determining the size of the partitions. In 
this method shadow tags are used, however only one way is 
reallocated per repartitioning period, meaning the method is 
unable to adjust quickly to changes in working sets unlike 
our method which can make larger changes in                                                     
partition sizes. Additionally, cache misses are used as the 
determinant for when to repartition the cache, meaning 
applications with a large number of cache misses yet no 

change in their working sets will cause unnecessary 
repartitioning.  

Recent work has noted the poor scalability of having 
separate monitors for each core and methods have been 
proposed including In-Cache Estimation Monitors [11] and 
set-dueling [12] to eliminate the need for separate monitors. 
A number of sets in the cache are dedicated to a particular 
core from which the monitored statistics can be gathered. 
These methods improve in effectiveness as the cache size 
increases while associativity remains constant, as there are a 
larger number of sets and less reduction in effective cache 
capacity per core. These methods are compatible with our 
proposed method and can also be adjusted to help in the 
monitoring of set usage, helping reduce the overhead of our 
proposed method. 

To the best of our knowledge, our method is the only 
cache partitioning method that explicitly takes into account 
the non-uniform set usage of applications in partitioning 
decisions. 

VI. CONCLUSION 
Previous cache partitioning methods ignored the effect of 

the non-uniformity of cache set accesses upon the 
effectiveness of partitioning decisions. Our method uses this 
non-uniformity of set accesses as the basis for our 
improvement of cache partitioning schemes with partitions 
that are private to each core. A shared partition is created 
with underutilized portions of the private partitions, gaining 
the benefits of increased capacity while minimizing the 
chance of destructive cache interference through inter-
process conflict misses. Our results show modest 
improvements in performance for both two and four core 
systems over having no partitioning scheme and using 
private partitions only. As our method applies to way-based 
partitioning, scalability to a larger number of cores with a 
relatively low associativity shared cache remains a problem. 
There are still further opportunities in dealing with non-
uniform cache set accesses to improve the performance of 
cache partitioning (for example alternate address mapping 
functions) and will be the focus of our future work. 
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