
Set Utilization Based Dynamic Shared Cache Partitioning

Peter Deayton, Chung-Ping Chung
Department of Computer Science
National Chiao-Tung University

Hsinchu, Taiwan, ROC
{pdeayton, cpchung}@cs.nctu.edu.tw

Abstract— As the number of processors sharing a cache
increases, conflict misses due to interference amongst
competing processes have an increasing impact on the
individual performance of processes. Cache partitioning is a
method of allocating a cache between concurrently executing
processes in order to counteract the effects of inter-process
conflicts. However, cache partitioning methods commonly
divide a shared cache into private partitions dedicated to a
single processor, which can lead to underutilized portions of
the cache when set accesses are non-uniform.

Our proposed method compliments these cache partitioning
algorithms by creating an additional shared partition able to
be shared amongst all processors. Underutilized areas of the
cache are identified by a monitoring circuit and used for the
shared partition. Detection of underutilization is based on the
number of unique set accesses for a given allocated way. For a
16-way set associative cache, the implementation of our
method requires 64 bytes of storage overhead per core in
addition to that needed for the method that determines the
sizes of the private partitions. For the tested system, our
method is able to improve performance over the traditional
LRU policy for a number of selected benchmark sets by an
average of 1.4% and up to 13.3% for a two core system and an
average of 1.4% and up to 7.8% for a four core system, and is
able to improve the performance of a conventional cache
partitioning method (Utility-Based Cache Partitioning) by an
average of 0.1% and up to 0.5% for both a two and four core
systems.

Keywords- cache partitioning; shared cache; set utilization;
chip multi-processor

I. INTRODUCTION
With multi-core processors now the norm, the number of

processors simultaneously sharing a shared cache has
increased. This can result in an increase in the number of
inter-process conflict misses within the shared cache and
hence result in poor overall system performance. When using
the LRU replacement policy this poor performance can be
exacerbated due to the LRU replacement policy’s demand
approach to cache block selection, in which applications that
have a high demand for unique cache blocks and poor
temporal locality (for example, those that stream data) are
allocated a larger portion of the cache than applications that
have a lower demand for unique cache blocks but stronger
temporal locality.

Cache partitioning is a method designed to avoid this
destructive interference between applications by restricting

the amount of cache applications can use. Generally, cache
partitioning methods assign each application a dedicated
private partition, in effect dividing the shared cache into a
number of private caches. Whilst eliminating inter-process
conflict misses, the effective cache capacity for each process
is decreased, potentially increasing the number of capacity
misses. Partition sizes are often adjusted dynamically based
on a cost function with an objective such as improving the
miss rate, CPI or fairness. The unit for partitioning can vary,
with granularities ranging from line to way to set based. The
focus of this paper is on improving cache partitioning
methods using a way granularity that solely allocate private
partitions. Our goal is to partition a cache in such a way as to
gain the benefits of both a shared cache (decreased capacity
misses) and private caches (decreased inter-process conflict
misses).

Our proposed method takes note of the fact that not all
blocks in a cache are used uniformly, particularly during a
given repartitioning period since it is relatively short (five
million cycles in some methods). After a processor has been
allocated its private partition, information from a monitoring
circuit is used to determine which ways in the allocated
partition are underutilized. As the chance of inter-process
conflict misses is low in these underutilized areas, they are
then shared with the other processors. We determine through
simulation that for the given benchmark sets the best
performance is obtained if a way is shared when less than
15% of the sets within the way are underutilized. When used
in conjunction with a way-based cache partitioning method
that monitors the stack distance information of individual
processors, our method requires an additional storage
overhead of 64 bytes per core for a 16-way set associative
cache with 32 sets monitored regardless of cache size.

Results show that for both two and four core systems
improvements in performance can be made over both having
no partitioning scheme and conventional cache partitioning
into private partitions. Our method is able to improve
performance over having no partitioning scheme for a
number of selected benchmark sets by an average of 1.4%
and up to 13.3% for a two core system and an average of
1.4% and up to 7.8% for a four core system. Performance is
also improved over a conventional cache partitioning method
(Utility-based Cache Partitioning) by an average of 0.1% and
up to 0.5% for both two core and four core systems.
Importantly, although the average improvement in
performance is fairly modest, our proposed method is able to
improve both the best and worst case performance of the
conventional cache partitioning scheme.

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.119

284

This paper contributes a method for partitioning a cache
into private and shared partitions based on the number of
unique sets accessed, a measure we are unaware of being
used in other related work. The method is targeted at systems
where the number of cores is lower than the associativity of
the cache, enabling each core to be allocated a minimum of
one way each. As a result, the scalability of the proposed
method is limited as the number of cores sharing a cache is
increasing faster than the associativity of the cache.

The paper is divided into six sections. The first serves as
an introduction to the topic and research. The proposed
method is then detailed, with the rationale and description of
the algorithm specified. Next, the experimental methodology
is shown and afterward results are shown and analyzed.
Related work is then covered and compared with our method
and lastly the conclusion is presented.

II. SET UTILIZATION BASED DYNAMIC CACHE
PARTITIONING

A. Rationale
To determine how to better partition a cache, we analyze the
cache access patterns of an application over time. Given a
way-based partitioning method and the LRU replacement
policy, looking at the LRU stack distance hit counts of an
application is useful in determining what the effect of
allocating a certain number of ways to an application would
be [1]. Fig. 1 shows the average number of hits per stack
distance position in a 1MB 16-way set associative L2 cache
per five million simulated cycles over one billion simulated
cycles for the gzip benchmark from the SPEC CPU2000
benchmark suite. The simulation parameters used are further
outlined in Table I in Section IV. Five million cycles were
chosen as it is the suggested repartitioning period as
discussed in [2] and [3]. For this benchmark, as the number
of ways allocated (increasing stack position) increases, the
number of hits steadily decreases, i.e. there is a diminishing
benefit from an increase in cache capacity. However this
figure does not describe accurately the distribution of the hits
within the cache. Fig. 2 shows the average number of hits per
stack distance position for each set in the cache for the same
parameters. As can be seen, for a given stack distance
position not all sets are accessed uniformly, an observation
also noted in work related to cache set mapping functions
[4]. This presents an opportunity for improvement over a
partitioning scheme that allocates only private partitions.

Figure 1. Average number of hits per stack distance position in a 1MB

16-way set associative L2 cache per five million simulated cycles over one
billion simulated cycles for the gzip benchmark

Figure 2. Average number of hits per stack distance position for each set
in the cache

Fig. 3 shows the average percentage of total sets accessed
per stack distance position over five million cycles for a
number of selected SPEC CPU2000 benchmarks. We find
the utilization of cache sets varies greatly between both
applications and stack distance positions. If two processes
share a way and the utilization of a given process’s stack
position for that way is low, the chance of accesses between
processes conflicting is low. Sharing this way should be able
to decrease the number of capacity misses and have little to
no effect on the number of inter-process conflict misses of
processes sharing the way. Our method is based upon this
principle. If a way allocated to a process is underutilized, it is
shared with other processes. This creates two types of
partitions - private and shared.

Figure 3. Average cache set utilization for the gzip, galgel, wupwise, and
art benchmarks. The y-axis represents the average percentage of sets used.

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16A
ve

ra
ge

 N
um

be
r

of
 H

its

Stack Distance Position

gzip

5

10

15 0

500

10000

1

2

3

4

5

Set

gzip

Stack Distance (MRU-LRU)

H
its

0%
2%
4%
6%
8%

10%
12%
14%

1 3 5 7 9 11 13 15

galgel

0%

20%

40%

60%

80%

1 3 5 7 9 11 13 15

gzip

0%
10%
20%
30%
40%
50%
60%

1 3 5 7 9 11 13 15

wupwise

0%
10%
20%
30%
40%
50%
60%

1 3 5 7 9 11 13 15

art

285

B. Partitioning Algorithm
The overall framework of the proposed m

core system is shown in Fig. 4. Each proc
L1 instruction and data caches that are conn
L2 cache. Additionally, each processor is
monitoring circuit that is used to gain hit
each processor as if the L2 cache were priv
it is not necessary to contain the actual c
only the tags to know if a cache access w
(referred to as an Auxiliary Tag Directory (A
private partitioning algorithm allocates all th
cache between each processor. The sha
algorithm then takes this partition size in
with information on cache utilization to d
allocated ways can be shared. For systems
two cores, the L1 caches are connected t
cache and an additional hit monitor which is
partitioning algorithms.

1) Private Partition Size Determination
In general, any way-based partitioning

completely allocates all ways in a cache
determine the private partition sizes. In our
use the Utility-based Cache Partitioning (U
algorithm to determine the sizes of the p
This partitioning algorithm aims to max
reduction in cache misses. Further details
can be found in [3]. Although the UCP me
method is complimentary to other partitio
with alternate cost functions (for example b
[5]).

2) Shared Partition Size Determination
The shared partitioning algorithm de

allocated ways are amenable to sharing. Th
detect the usage of a stack distance in a se
per core hit monitors needed for p
determination are modified to add an additi
each stack distance position in the set. The
used is then the total number of used bits
stack distance. If the total number of sets
threshold, the way is considered underutilize

Figure 4. Design overview of proposed method for
showing additional structures require

method for a dual
essor has private

nected to a shared
s connected to a
t information for

vate to it. As such
cache block data,
would hit or not
ATD) in [3]). The
he ways in the L2
ared partitioning
nformation along
determine which
s with more than
to the shared L2
s connected to the

g algorithm that
can be used to
experiments, we

UCP) partitioning
private partitions.
ximize the total
on the algorithm

ethod is used, our
oning algorithms
based on fairness

etermines which
he first step is to
et. To do this the
private partition
ional used bit for
e number of sets
s set for a given
used is below a

ed.

a dual core system,
ed.

3) Sharing Granularity of Share
Once an allocated way has

underutilized and to be shared, the
processes to share the way with. Tw

The first is that the newly sha
amongst all other processes, termed
This provides a potential decrea
amongst all processes, however at t
increase in inter-process conflict m
of inter-process conflict misses incr
processors sharing the cache increa
for this method is straightforward a
size of the shared partition to be tra
optimized to only track the sizes of t

Pseudo code for this metho
Algorithm 1. For each private par
each allocated way is compared to a
it is below the threshold, the way
further ways from that partition are
are shared in order from least recen
used. This is due to the LRU replac
stack property, meaning accesses
partition will not hit in the shared pa

Algorithm 1 ShareAll algorithm
 foreach core do:
 foreach allocated_way from LR
 if(number_of_used_sets < th
 private_partition[core] -=
 shared_partition += 1
 else
 skip this core

The second method is to share th

a selected number of other p
ShareSubset algorithm. The implem
is more complex and complicates th
block the replacement policy shoul
determining if a block belonging to
partition is a form of constraint sat
and NP hard. As the replacement
choose a block to replace by the tim
the next level in the memory hier
memory, but possibly another cache
too long. Therefore instead of more
algorithms, we use an approximatio
share underutilized ways whilst the
below a threshold. The replacemen
total number of ways a core can us
any core that exceeds its allocation
in below in the Augmented LRU Po

Pseudo code for this metho
Algorithm 2. Similar to the ShareA
of each allocated way from the LR
MRU allocated way is compare
underutilized, the way is transferre
with the number of ways in the
originating core is allowed to use in

ed Partition
s been determined as
question arises of which

wo options are presented.
ared way can be shared
d the ShareAll algorithm.
ase in capacity misses
the expense of a potential
isses, with the likelihood
reasing as the number of
ases. The implementation
nd only requires the total
acked (this can be further
the private partitions).

od is shown below in
rtition, the utilization of
a threshold for sharing. If

is shared, otherwise no
e shared. Allocated ways
ntly used to most recently
ement policy obeying the
s that hit in a private
artition.

RU to MRU do:
hreshold)
1

he to-be-shared way with
processors, termed the
mentation of this method
he determination of which
ld evict. The problem of
a process is in the shared
tisfaction problem (CSP)
policy must be able to

me a block is fetched from
rarchy (in our case main
e), the latency must not be
e complicated and slower
on. Cores are allowed to
e combined utilization is
nt policy then tracks the
se, evicting a block from
(further details provided

olicy section).
od is shown below in
All method, the utilization
RU allocated way to the
ed to the threshold. If
d to the shared partition,
shared partition that the

ncreased. Then ways from

286

other cores that can be shared in this position are ordered in
terms of reduction in misses. The newly shared way is shared
with other cores until the total utilization reaches a threshold,
after which the chance of conflicts is established as too great.
This method requires storage of both the private partition
sizes and number of blocks that can be used in the shared
partition for each connected core.

Algorithm 2 ShareSubset algorithm
 foreach core do:
 foreach allocated_way from LRU to MRU do:
 if(number_of_used_sets < threshold)
 private_partition[core] -= 1
 shared_partition[core] += 1
 corelist = get list of cores ordered in benefit from
 additional way
 foreach toCore in coreList do:
 if(combined_usage < threshold):
 shared_partition[toCore] += 1
 else
 skip this core

4) Augmented LRU Policy

As with other way-based cache partitioning methods, the
standard LRU policy is also augmented to support our
method. Each cache line has an additional tag representing
which processor it belongs to (one bit for a cache shared
between two processors). This is used to determine how
many blocks are allocated in a set to each processor. On a
cache miss the LRU block needs to be chosen whilst keeping
the partitioning constraints. Roughly speaking, if any
processors have too many blocks (greater than the combined
size of the private and shared partitions) the LRU block from
them is chosen for eviction. If not, then the LRU block of the
shared partition is chosen for eviction. If there is no shared
partition (i.e. the cache utilization for each way is high), then
the LRU block of the private partition is then chosen. In
addition, a lazy repartitioning method [3] is used to evict
cache blocks on demand rather than evicting all blocks
belonging to a processor that are over its allocated limit.

C. Storage Overhead
The additional hardware requirements are minimal given

a private partitioning algorithm that already uses an auxiliary
tag directory. Using the UCP method as an example, for a
32-bit system it requires an additional storage overhead of
1920 bytes for a 1MB 16-way cache shared between two
cores with 32 sets monitored. Our method adds an additional
bit for each stack position monitored, and with 32*16 blocks
monitored, 64 additional bytes are needed for storage per
core, a 6.67% increase over the UCP method or 0.006% of
the total cache size per core. For additional cores, this
number is multiplied by the total number of cores.

D. Effect on Latency
The effect of the proposed method on the latency of the

system has two components - that of the partition
determination, and that of the enforcement of the partition
constraints.

Although partition determination is not on the critical
path of a cache access, it is limited by the repartitioning
period as it must complete before the partitions are changed
again. As the repartitioning algorithm is composed mainly of
additions, subtractions, and comparisons, the latency of the
algorithm is predicted to be within the repartitioning period.

Partition enforcement is done through the augmented
LRU policy, and thus falls on the critical path of a cache
access. For any cache access (be it a hit or miss), the latency
will increase slightly due to the additional core tag
comparison required, but which most likely can be masked
within the existing latency or requiring only one extra cycle.
On a cache miss, the latency for choosing the block to evict
is increased, however this computation can be performed
whilst the new block is being fetched from the next level of
the memory hierarchy, hiding the increased latency.
Therefore overall, the proposed method should have little if
any effect on the latency of the cache.

III. EXPERIMENTAL METHODOLOGY

A. Baseline Configuration
Whilst any number of cores can be connected to the

shared cache, using a way based partitioning method limits
the actual number of cores that can be sensibly connected.
As a minimum of one way is allocated to each processor and
the number of ways is usually limited for hardware cost
reasons to 16 or 32, a reasonable maximum number of cores
would be 4 to 8. For this reason our experiments only
simulate systems with two and four cores.

The Simics system simulator [6] was used to simulate a
system running Solaris 10 on an UltraSPARC III processor.
Table I shows the configuration parameters used.

Either two or four processors were used, with each of the
benchmarks bound to a single processor using pbind.
Benchmarks were run in parallel and fast forwarded to the
beginning of their main loops. The caches were then warmed
up for 500M cycles, and simulation of results began for 1B
cycles.

TABLE I. BASELINE CONFIGURATION USED

Processor 2/4 processors, single threaded
Private L1 Instruction Caches 16KB, 64 byte block size, 4-way set

associative, 3 cycle access latency
Private L1 Data Caches 16KB, 64 byte block size, 4-way set

associative, 3 cycle access latency
Shared L2 Unified Cache 1MB/2MB, 64 byte block size, 16-

way set associative, 15 cycle access
latency

Memory 4GB, 200 cycle access latency

B. Benchmarks
A number of benchmarks were chosen from the SPEC

CPU2000 benchmark suite [7], all using the reference input
sets. As partitioning algorithms are designed to counter the
poor performance of the LRU replacement policy for
applications with a large number of misses and that have a
limited need for cache (utility), the benchmarks have been
divided into four categories along two axes - total number of
misses and utility. Benchmarks with an average of more than

287

TABLE II. CLASSIFICATION OF BENCHMARKS

 Low Utility High Utility
High Number of

Misses
swim, wupwise,
equake

mcf,art, vpr, twolf

Low Number of
Misses

gzip, crafty, ammp,
fma3d

parser, galgel

500 misses over five million cycles (arbitrarily chosen) are
classified as having a high number of misses. Classification
into high and low utility is based on stack distance position
hit curves. Benchmarks where the number of hits for higher
stack distances is less than 10 are classified as low utility, as
these positions are relatively unused and represent receiving
no benefit from being allocated more cache. The benchmark
classifications are shown in Table II.

A number of benchmark sets for two and four cores
systems were then selected based on this categorization. 10
benchmarks for the two core system and 11 benchmarks for
the four core system comprising a combination of each of the
categories were chosen shown in Table III.

It is predicted that any benchmark sets containing
benchmarks with a high number of misses and low utility
will greatly benefit from cache partitioning. It is also
predicted that our proposed method will outperform the UCP
method particularly for benchmark sets containing
benchmarks with low average set usage.

TABLE III. BENCHMARK SETS USED FOR SIMULATION

Two Core Benchmark Sets Four Core Benchmark Sets
art-ammp
crafty-fma3d
equake-galgel
gzip-parser
mcf-art
mcf-parser
parser-galgel
swim-crafty
swim-mcf
wupwise-equake

ammp-fma3d-parser-galgel
ammp-fma3d-vpr-art
art-twolf-parser-galgel
gzip-crafty-ammp-fma3d
mcf-art-vpr-twolf
parser-parser-galgel-galgel
swim-equake-gzip-crafty
swim-vpr-gzip-parser
swim-wupwise-equake-wupwise
swim-wupwise-mcf-twolf
swim-wupwise-parser-galgel

C. Metrics
We use the normalized weighted speedup to evaluate the

performance of our proposed method. The weighted speedup
measures the relative difference in the number of instructions
executed per cycle for an application running concurrently
compared to when it is run in isolation. This value is then
normalized against the performance of the no-partitioning
policy (LRU). The formula for calculating the weighted
speedup is shown below in (1).

 �= ii SingleIPCIPCSpeedupWeighted / (1)

IV. RESULTS AND ANALYSIS

A. Two Core System
The performance of our proposed method compared with

a no-partitioning method (using the standard LRU

replacement policy for eviction decisions) and the UCP
method (using only private partitions) for a two core system
in shown in Fig. 5. For the case in which there are only two
cores in the system, the ShareAll and ShareSubset algorithms
are still valid. The ShareAll algorithm shares an allocated
way in a private partition if the set utilization of that way is
below a threshold (sharing is based only on the utilization by
the owning core). The ShareSubset algorithm shares an
allocated way in a private partition if the set utilization of
that way combined with the set utilization of the way that it
would be shared with from the other core is below a
threshold (sharing is based on combined utilization).

We find our proposed method increases performance
against the no-partitioning case by an average of 1.4% over
our selected benchmark sets, and up to 13.3% for the case of
the mcf-art benchmark set. This is in comparison to the UCP
method, which increases performance relative to the no-
partitioning case by an average 1.3% over the selected
benchmark sets and up to 12.8% for the mcf-art benchmark
set. Both variations of our proposed method are able to
improve performance of the UCP method. The relative low
average increase in performance is a result of 8 out of the 10
benchmark sets differing in performance by less than 1%
between no-partitioning and cache partitioning. This
indicates cache partitioning may not be particularly effective
in a two core system for most combinations of applications.

Of note is for benchmark sets where the UCP method
performs worse than the no-partitioning method (wupwise-
equake, swim-crafty, crafty-fma3d), our proposed method is
able to increase the performance, bringing it closer to the
performance of the no-partitioning method. Interestingly, for
the parser-galgel benchmark set, the performance of our
proposed method is higher than the no-partitioning and UCP
methods. Our proposed method is able to take advantage of
the low set utilization of the fma3d, swim and crafty
benchmarks to provide a larger capacity for the benchmarks.

In comparison to the UCP method, our proposed method
provides an average of 0.1% better performance and up to
0.5% better performance comparative to the no-partitioning
case. This small increase likely represents a diminishing
return in further improving the UCP method.

Figure 5. Performance of no partitioning, UCP, and proposed method for

two core system

98%

100%

102%

104%

106%

108%

110%

112%

114%

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

LRU
UCP
ShareAll
ShareSubset

288

Also, we find the difference in performance between the
two variations of our proposed method (ShareAll and
ShareSubset) to be very small (0.06% in favor of the
ShareAll algorithm). Therefore, a hardware implementation
of the proposed method would be able to use the less costly
ShareAll algorithm with a negligible effect on performance.

B. Four Core System
The performance of the proposed method for a four core

system is shown in Fig. 6. The performance of a no-
partitioning (LRU), UCP, and the two variations of our
proposed method (ShareAll and ShareSubset) are shown.
ShareAll implements the algorithm described in Algorithm 1
and shares an allocated way in a private partition with all
other cores in the system if the number of utilized sets is
below a threshold. The ShareSubset variation implements the
algorithm described in Algorithm 2 and allows each core a
different proportion of the shared partition.

We find our proposed method increases performance in
comparison to the no-partitioning case by 1.4% on average
for the selected benchmark sets and up to 7.8% for the art-
twolf-parser-galgel benchmark set. In comparison, the UCP
method increases performance relative to the no-partitioning
case by 1.3% on average for the selected benchmark sets and
up to 7.7% for the art-twolf-parser-galgel benchmark set.
The average performance is similar to the two core case, in
that 7 out of the 11 benchmark sets have a difference in
performance of less than 1% between the methods. The two
variations of our proposed method are again very similar in
performance, however this time the ShareSubset variation
offers slightly better average performance (by 0.06%).

Results across the benchmark sets are similar in pattern
to those of the two core system, with the proposed method
able to increase both the worst case and best case
performance of the UCP method, with the difference being
up to 0.5% in the case of the ammp-fma3d-parser-galgel
benchmark set. In addition, our method is able to out-
perform both a no-partitioning method and the UCP method
in 6 out of the 11 benchmark sets and out-perform the UCP

Figure 6. Performance of no partitioning, UCP, and proposed method for

four core system

method in 9 out of the 11 benchmark sets, indicating our
method may be more beneficial as the number of cores
increases.

C. Set Considered Used Threshold
It is not necessary for the used bit to be set given a single

access to that stack distance position. A counter can instead
be used to have a threshold at which a stack distance position
in a set is considered used or not. Sensitivity analysis of this
parameter was conducted using the average weighted
speedup of the benchmark sets. As the threshold for a stack
distance position being considered used or not increases,
overall performance deteriorates. The best performance is for
the case when the threshold is 1, or whether the stack
distance position has been used at all for that set. This is
fortunate since it means the overhead of the stack distance
position usage bits will not be large and only one bit for each
block is needed in the monitored sets.

D. Way Considered Utilized Threshold
The number of unique sets used given a stack distance

position before that stack distance position is considered
sufficiently utilized is an additional parameter that can be
considered. The threshold for the number of unique sets used
before which a way is shared is adjustable and sensitivity
analysis of this parameter is shown in Fig. 7. Unique set
usage thresholds were chosen based on a percentage of the
total number of sets, with results from 0% to 100% in 1%
intervals of the total sets used compared. Performance for
each of the methods was normalized against the no-partition
four core case.

Sharing a processor’s allocated way based on 15%
utilization shows the best results. The lower the threshold,
the closer the performance to that of the UCP method. This is
to be expected as the chance of sharing a way will be low,
hence the shared partition is non-existent and the UCP
derived partitions are exclusively used. When the threshold
increases, the performance more closely matches that of the
non-partitioned case. This also is expected, as the probability
of a processor’s way being shared is higher and hence more
likely to have a larger shared partition, equivalent to the non-
partitioned case. The ShareSubset method does not match
that of the non-partitioned case when the threshold is 100%

Figure 7. Performance of proposed method for varying thresholds

98%

100%

102%

104%

106%

108%

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

LRU
UCP
ShareAll
ShareSubset

98.0%

98.5%

99.0%

99.5%

100.0%

100.5%

101.0%

101.5%

102.0%

0 20 40 60 80 100

N
or

m
al

iz
ed

 A
ve

ra
ge

 P
er

fo
rm

an
ce

Threshold for Sharing (% of sets used in way)

LRU
UCP
ShareSubset
ShareAll

289

as it uses the combined utilization and each core can
potentially utilize 100% of the sets in the way. Of note is the
performance degradation as the threshold increases above
40% of the total sets used. The performance quickly
becomes worse than the no-partitioning case and then
improves to match that of the no-partitioning case. This is
due to the suboptimal restriction of cache capacity amongst
the applications.

V. RELATED WORK
Cache partitioning as a research topic saw an increase in

interest with the rise of chip multi-processors. A number of
different methods have been proposed, with a large
proportion using way-based partitioning.

Dynamic Partitioning of Shared Cache Memory [2] is a
way-based partitioning method to dynamically reduce the
total number of misses for simultaneously executing
processes. Cache miss information for each process is
collected through stack distance counters (termed marginal
gain counters) and a greedy algorithm used to determine a
new partition size. Of note is the rollback mechanism, where
the performance of the current and previous partition sizes
are compared and the better one chosen for the next partition
size. Limitations of this method is include the fact that
separate hit counters are not kept for each core making miss
prediction less accurate and the limited scalability to four or
more cores.

Utility Based Cache Partitioning [3], the example method
used for determining the private partitions in this paper,
allocates ways amongst the cores based on maximizing the
reduction in misses. This is computed through stack distance
counters and alternate tag directories enabling the effect of
various cache partition sizes to be determined
simultaneously. The method however is not able to
adequately adjust to situations where having no explicit
partitioning policy performs well (applications with a low
number of inter-process conflict misses running
concurrently).

Cooperative Cache Partitioning [8] is another way based
partitioning method designed to deal with thrashing threads.
It uses Multiple Time-sharing Partitions to share a large
partition between multiple thrashing threads, giving each
thread the entire partition for a portion of the repartitioning
period. This combined with the Cooperative Caching [9]
method provides an improvement in performance,
particularly Quality of Service. This scheme is also
compatible with our proposed method and we anticipate
additional improvements in performance if used together.

Adaptive Shared/Private NUCA Cache Partitioning [10]
is a method similar to our proposed method that divides a
cache into shared and private partitions. The difference lies
in the method for determining the size of the partitions. In
this method shadow tags are used, however only one way is
reallocated per repartitioning period, meaning the method is
unable to adjust quickly to changes in working sets unlike
our method which can make larger changes in
partition sizes. Additionally, cache misses are used as the
determinant for when to repartition the cache, meaning
applications with a large number of cache misses yet no

change in their working sets will cause unnecessary
repartitioning.

Recent work has noted the poor scalability of having
separate monitors for each core and methods have been
proposed including In-Cache Estimation Monitors [11] and
set-dueling [12] to eliminate the need for separate monitors.
A number of sets in the cache are dedicated to a particular
core from which the monitored statistics can be gathered.
These methods improve in effectiveness as the cache size
increases while associativity remains constant, as there are a
larger number of sets and less reduction in effective cache
capacity per core. These methods are compatible with our
proposed method and can also be adjusted to help in the
monitoring of set usage, helping reduce the overhead of our
proposed method.

To the best of our knowledge, our method is the only
cache partitioning method that explicitly takes into account
the non-uniform set usage of applications in partitioning
decisions.

VI. CONCLUSION
Previous cache partitioning methods ignored the effect of

the non-uniformity of cache set accesses upon the
effectiveness of partitioning decisions. Our method uses this
non-uniformity of set accesses as the basis for our
improvement of cache partitioning schemes with partitions
that are private to each core. A shared partition is created
with underutilized portions of the private partitions, gaining
the benefits of increased capacity while minimizing the
chance of destructive cache interference through inter-
process conflict misses. Our results show modest
improvements in performance for both two and four core
systems over having no partitioning scheme and using
private partitions only. As our method applies to way-based
partitioning, scalability to a larger number of cores with a
relatively low associativity shared cache remains a problem.
There are still further opportunities in dealing with non-
uniform cache set accesses to improve the performance of
cache partitioning (for example alternate address mapping
functions) and will be the focus of our future work.

REFERENCES
[1] R. L. Mattson, J. Gecsei, D. R. Slutz, I. L. Traiger, "Evaluation

techniques for storage hierarchies," IBM Systems Journal , vol.9,
no.2, pp.78-117, 1970.

[2] G. E. Suh, L. Rudolph, and S. Devadas, "Dynamic partitioning of
shared cache memory," The Journal of Supercomputing, vol. 28, no.
1, pp. 7-26, Apr. 2004.

[3] M. K. Qureshi, and Y. N. Patt, "Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition
shared caches," Microarchitecture, 2006. MICRO-39. 39th Annual
IEEE/ACM International Symposium on , pp.423-432, Dec. 2006.

[4] A. Gonzalez, M. Valero, N. Topham, and J. M. Parcerisa,
"Eliminating cache conflict misses through XOR-based placement
functions," In Proceedings of the 11th international conference on
Supercomputing (ICS '97), pp. 76-83, 1997.

[5] S. Kim, D. Chandra, and Y. Solihin, "Fair cache sharing and
partitioning in a chip multiprocessor architecture," Parallel
Architecture and Compilation Techniques, 2004. PACT 2004.
Proceedings. 13th International Conference on , pp.111-122, 2004.

290

[6] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G.
Hallberg, J. Hogberg; F. Larsson, A. Moestedt, B. Werner, "Simics:
A full system simulation platform," Computer , vol.35, no.2, pp.50-
58, 2002.

[7] J. L. Henning, "SPEC CPU2000: measuring CPU performance in the
New Millennium," Computer , vol.33, no.7, pp.28-35, Jul 2000.

[8] J. Chang, and G. S. Sohi, "Cooperative cache partitioning for chip
multiprocessors," In Proceedings of the 21st annual international
conference on Supercomputing (ICS '07), pp.242-252, 2007.

[9] J. Chang; G. S. Sohi, "Cooperative caching for chip multiprocessors,"
Computer Architecture, 2006. ISCA '06. 33rd International
Symposium on , pp.264-276, 2006.

[10] H. Dybdahl, and P. Stenstrom, "An adaptive shared/private NUCA
cache partitioning scheme for chip multiprocessors," In Proceedings

of the 2007 IEEE 13th International Symposium on High
Performance Computer Architecture (HPCA '07), pp.2-12, 2007.

[11] Y. Xie, and G. H. Loh, "PIPP: Promotion/insertion pseudo-
partitioning of multi-core shared caches,". In Proceedings of the 36th
annual international symposium on Computer architecture (ISCA
'09), pp. 174-183, 2009.

[12] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. Steely Jr., and J.
Emer, "Adaptive insertion policies for managing shared caches," In
Proceedings of the 17th international conference on Parallel
architectures and compilation techniques (PACT '08), pp. 208-219,
2008.

291

