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CMOS Current-Mode Neural Associative 
Memory Design with On-Chip Learning 

Chung-Yu Wu, Member, IEEE, and Jeng-Feng Lan, Student Member, IEEE 

Abstract-Based on the Grossberg mathematical model called 
the outstar, a modular neural net with on-chip learning and 
memory is designed and analyzed. The outstar is the minimal 
anatomy that can interpret the classical conditioning or associa- 
tive memory. It can also be served as a general-purpose pattern 
learning device. To realize the outstar, CMOS (complimentary 
metal-oxide semiconductor) current-mode analog dividers are 
developed to implement the special memory called the ratio-type 
memory. Furthermore, a CMOS current-mode analog multiplier 
is used to implement the correlation. The implemented CMOS 
outstar can on-chip store the relative ratio values of the trained 
weights for a long time. It can also be modularized to construct 
general neural nets. HSPICE (a circuit simulator of Meta Soft- 
ware, Inc.) simulation results of the CMOS outstar circuits as 
associative memory and pattern learner have successfully verified 
their functions. The measured results of the fabricated CMOS 
outstar circuits have also successfully confirmed the ratio memory 
and on-chip learning capability of the circuits. Furthermore, it 
has been shown that the storage time of the ratio memory can 
be as long as five minutes without refreshment. Also the outstar 
can enhance the contrast of the stored pattern within a long 
period. This makes the outstar circuits quite feasible in many 
applications. 

I. INTRODUCTION 
HE fundamental characteristics of the artificial neural nets T (ANN’S) are parallel processing and learning capabilities 

[ll, [2]. To realize these characteristics in real time, the 
hardware implementation is needed. Off-chip learning and 
memorizing the weights are first proposed to realize the 
characteristics of ANN’S in hardware. By using this method, 
the programmable neural nets were developed [3]-[5]. Because 
the weights are programmable, this type of neural nets can 
have different weights for different applications. Nevertheless, 
this method needs an extra computer control. 

Due to the need of more powerful neural hardware, the 
neural nets with on-chip learning became a new design trend 
[6]-[10]. Using the on-chip learning, the neural net has much 
faster learning speed and much smaller area as compared 
to the conventional computer training. Due to the inherent 
leakage in the analog weight storage, however, it is very 
difficult to directly and permanently on-chip store the trained 
weights no matter what method is used to train them. Among 
the proposed on-chip learning structures so far [6]-[lo], one 

of the storage methods is to store the weights in the extra 
memory, e.g., DRAM (dynamic random access memory) [lo]. 
When the learning has been completed in an analog neural 
net, the trained weights pass through AiD (analog-to-digital) 
converters and the resultant digital codes are stored in the 
memory. When the trained neural net starts to work, the stored 
weights are loaded black to the net from the memory through 
D/A (digital-to-analog) converters. This requires a complex 
control scheme to operate the neural net. Alternately, the 
refreshable neural net is an efficient way to store the trained 
weights [8]. It can store the trained weights in an extra on-chip 
memory through frequent refreshing. 

In the hardware implementation of neural nets, both analog 
and digital techniques may be used. Because the analog 
design technique can realize more neurons with higher synapse 
density and parallel processing rate, however, it is more 
suitable for neural net implementation than the digital one in 
certain applications 161, 1111, [121. 

In this paper, a new modular structure is proposed to 
implement an analog neural net with on-chip learning. The 
basic concept is extracted from the Grossberg’s prediction and 
learning theory where a minimal structure that can be served as 
a classical conditioning learner and a general-purpose pattern 
learner is proposed and called the outstar [13]-[18]. In the 
outstar structure, a ratio-type memory that can on-chip store 
the trained analog weights is used. Thus it can perform learning 
and storage without extra memory devices. With the ratio- 
type memory, the outstar as a classical conditioning learner 
can learn the related things and be refreshed by reminding. 
Therefore, it can be used as an associative memory. As a 
general-purpose pattern learner, the outstar can memorize the 
relative strengths of the input pattern but not the absolute 
values. Moreover, the outstar has a modular structure which 
can be used to construct general learnable neural nets. 

In the following sections, the outstar model, architecture, 
CMOS (complimentary metal-oxide semiconductor) imple- 
mentation, and operating principles will be described. Then 
both simulation and experimental results are presented to 
verify the functions of the outstar circuits as associative 
memory and general-purpose pattern learning device. System 
applications and discussions are also given. 
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11. MODEL, ARCHITECTURE, AND CMOS IMPLEMENTATION 

According to the Grossberg model [ 131-[18], the minimal 
classical conditioning is called 

the outstar due re shown in Fig. 1 1171. 
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ucs be defined as the input I,@) of the form [13]-[15] 

I&) = B,I(t), j = 2, 3, . . . , n 
where 0, is an arbitrary, but fixed, nonnegative number and 
I ( t )  is a nonnegative continuous function. When the stimulus 

learning time is long enough [18]. So, the outstar can learn 
the relative strength of the inputs. Sometimes, the relative 
strengths of the inputs are much more important than the 
absolute ones because the information is always represented 
by the relative relationship. Because the outstar can learn the 
relative strength of the inputs, it can be used as a general- 

13(t) 
is applied, it can be shown that y1,(t) approaches 0, if the 

14(f) ucs 
+UCR 

x4 

purpose pattern learning device which can learn a pattern as 

According to (1)-(4), the block diagram of the outstar 
can be drawn and shown in Fig. 2. The architecture consists 

"ANn/ In(t> ucs completely as possible. 

*- xn 
of multipliers, dividers, multi-input adders, integrators, and 
pseudo-linear transfer functions. Since the outstar has many 
summing actions, it is very convenient to implement the outstar 
architecture in the current mode, where the current summing 
is very simple to realize and the power dissipation is low. 
Therefore, the analog current-mode design technique is applied 

CS : conditioning stimulus 
UCS: unconditioning stimulus 
UCR: unconditioning response 

Fig. 1. The outstar is the minimal anatomy that can be used to interpret the 
classical conditioning [ 171. 

to the design Of the outstar architecture in Fig. 2. 

A. Analog Current Multiplier Using Subthreshold 
CMOS Transistors 

In the subthreshold region with the drain-source voltage 
larger than 3V,, the MOSFET (MOS field effect transistor) 

The proposed outstar model can be described by the follow- 
ing nonlinear difference-differential equations [ 131-[ 15) 

(4) 

where z l ( t )  and ~ ~ ( t )  are the nonnegative neuron states (or 
short-term memory) variables, ( t )  are the nonnegative long- 
term memory state variables, g l ,  ( t )  are the nonnegative ratio 
or normalized memory variables, a,, /3, and U, are positive 
constants, I l ( t )  and I3 ( t )  are the nonnegative inputs, and 
r3 and v3 are the propagating delay times through the axon 
with j = 2, 3, . . . , n. Also, the initial data of this system 
must always be nonnegative and continuous. For convenience, 
z1,(0) > 0 is assumed. 

The outstar model described above has a special memory 
style in (3) so that the learning results can be stored in the 
network as long as possible. Although 21, ( t )  decays when the 
time is elapsed, the ratio relationship among zl3 ( t )  can keep 
each relative strength y ~ , ( t )  constant in the ideal case where 
all the decay rates a,, j = 1, 2, . . . , n, are equal and the same 
for u3. This means that the learning results can be memorized 
no matter how XI, ( t )  decays, without practicing overtly. 

Also, the outstar can memorize the stimulus relative 
strengths, i.e., it can learn spatial patterns. A pattern can 

drain current can be approximately expressed as [19], [20] 

ID = SIDoe-vBS[(l/nv,)-(l/Vt)le(VGS-VT)/nvt ( 5 )  

where 
S = geometrical shape factor of the transistor = W / L  

(effective width over effective length of the channel), 
n = a constant between 1 and 2,  
& = KT/q, where K is Botlzmann's constant, T is the 

device temperature in degrees Kelvin, and q is the 
charge of an electron, 

ID,  is the effective drain current in the subthreshold 
operation, 

V, is the threshold voltage, 
VGS is the gate-source voltage, and 
V& is the bulk-source voltage. 

Because the sum of two number logarithms is equal to 
the logarithm of the two number products, one can use this 
property to realize the two-number multiplication. Fig. 3(a) 
shows the conceptual circuit. Suppose that all MOSFET's are 
operated in the subthreshold region and properly matched, i.e., 
they have the matched Io ,  and n. By using the subthreshold 
current (5), the output current I,, can be expressed as 
functions of the input currents I,1 and I,a. The detailed 
derivations considering of the body effect are given in the 
Appendix. If the body effect is neglected and assume that 
Ibzasm is much larger than lorn, the (A-11) and (A-12) can 
be simplified as 
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Fig. 2. The block-diagram of the outstar where the architecture consists of multipliers, dividers, multi-input adders, integrators, and pseudo-linear functions. 

It can be seen from (6) that the analog current multiplier can 
be realized by using the subthreshold operated transistors. Due 
to the subthreshold operation, the total power dissipation can 
be kept low. 

The whole circuit of the analog current multiplier and its 
symbol are shown in Fig. 3(b) and (c), respectively. The 
dimensions of the transistors are also given. In Fig. 3(b), 
MM10, MM1 1, and MM12 are bias circuits for the bias current 
Ibzasm and Vb, is the bias voltage. Vbm can be used to adjust 
the gain of the multiplier. To reduce the errors due to the 
channel length modulation effect and geometric mismatches, 
long channel devices have been used in the subthreshold 
operated MOS current mirrors. In Fig. 3(b), MMR is operated 
in the linear region with the equivalent output resistance RM 
which is one of the parameters in the forgetting term aj or 
uJ in (l), (2), and (4). The equivalent output resistance RM 
of MMR is designed to have the value between 26.5 KCI and 
29.5 KR if the output voltage V,, varies from 0 V to -270 
mV. I,, in Fig. 3(a) is amplified through the current mirrors 
MM6, MM7, MM8, and MM9 by a factor of (' = 7. The 
output current I ,  is equal to the amplified Io, subtracted by 
the forgetting current in MMR. 

B. Analog Current Divider Using Subthreshold 
CMOS Transistors 

Similar to the multiplier, one can utilize the principle, the 
subtraction of two number logarithms is equal to the logarithm 
of the two number quotient, to build a current divider. The 
conceptual circuit is shown in Fig. 4(a). Assume that all 
MOSFET's also operate in the subthreshold region. Using (5)  
and the similar derivations given in the Appendix, the output 
current I o d  can be expressed as functions of the input currents 
I d 1  and Id,  as in (A-13) and (A-14). If the body effect is 

neglected, Iod can lbe simplified as 

(7) 

In (7), the bias current Ibzasd is used to stabilize the voltage 
Vo at the node D of Fig. 4(a). Without Ibzasd and MD3, the 
voltage VD would drift depending on the current level of I d 2  

and the divider would not work well. As may be seen from 
(7), the circuit of Fig. 4(a) performs the division operation and 
acts as an analog current divider. 

The whole circuit of the analog current divider and the 
transistor dimensions are shown in Fig. 4(b) where V b d  is the 
bias voltage for the bias current Ibzasd. To obtain a suitable 
output current level of the divider, Iod is further amplified 
by a factor of II, == 4 through the current mirror MD7 and 
MD8. Fig. 4(c) shows its symbol of the divider where N is 
the numerator input node and D is the denominator input node. 

C. Integrating Circuit and One-Half Absolute-Value Circuit 

It is well known 1,hat a capacitor can be used as an integrator 
if the input signal lis a current signal to be integrated into an 
output voltage signal. Thus all the integrator in Fig. 2 can 
be realized as a siimple capacitor. The output voltage signal 
of the simple capacitor integrator has to be changed into the 
current signal for realization of the pseudo-linear functions 
in the current mode. Thus, a transconductance amplifier is 
required at the integrator output. 

Although, there have been many proposed operational 
transconductance amplifiers (OTA's) [2 I], [22], a simple four- 
transistor transconductance amplifier [22] is chosen since the 
chip size and the linearity, rather than the frequency response, 
are the most important concern in this application. The circuit 
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complete circuit of the analog current multiplier with the forgetting resistor 
MMR. (c) The symbol representation of (b), where m l  denotes the first input 
node and m2 is the second input node. 

Fig 3 (a) The conceptual circuit of the analog current multiplier. (b) The 

diagram of the transconductance amplifier is shown in Figs. 5 
and 6 [22] where the four transistors are denoted as MG1, 
MG2, MG3, and MG4. The total transconductance gm which 
depends on the MOS device parameters can be tuned by the 
gate bias voltages V G ~  and V&. 

As mentioned previously, it has been shown that the outstar 
model is only for nonnegative signals. Because the real signal 
is represented by the negative voltage in the integrator, the 

GND 
T T T 

Fig. 4. (a) The conceptual circuit of the analog current divider. (b) The 
complete circuit of the analog current divider. (c) The symbol representation 
of (b), where iV denotes the numerator input node and D denotes the 
denominator input node. 

negative integrator output signal has to be converted into the 
nonnegative signal whereas the unwanted positive one has to 
be eliminated. This can be achieved by adding an inverted 
pseudo-linear function. By combining with the four-transistor 
transconductance amplifier and the current mirror circuits 
formed by MG5, MG6, and MG7 or MG71 of Figs. 5(a), 
6(a) and (c) and MG8 and MG9 in Fig. 6(a) and (c), two 
types of one-half absolute-value circuits (OHAVC’s) can be 
used to realize the inverted pseudo-linear functions. The type 
1 in Fig. 5(a) and (b) is used to implement (4), the learning 
equations. The output current Iotl is duplicated through the 
current mirrors for various current dividers. The type 2 in 
Fig. 6(a) and (b) is used in the master neuron N I ,  whereas 
the type 2 in Fig. 6(c) and (d) are used in the slave neuron 
N3 and j = 2 ,  3,  ... , n. In these two type 2 OHAVC’s, two 
kinds of the output currents are required. One is the neuron 
external output current Iot2 which is amplified by a factor of 
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Fig. 5. 
sentation of (a). 

(a) Type 1 OHAVC for learning equations. (b) The symbol repre- 

250 from Iot. The other is the neuron intemal output currents 
to be sent to various multipliers. They are duplicated from Iot 
through the current duplicators. 

Basically, these two types of OHAVC’s use the same core 
structure but different output circuits. The output currents Iotl 
in Fig. 5(a) and Iot2 in Fig. 6(a) and (c) can be derived as 

rot1 = GI ’ Ktl (8) 
I0t2 = G2 . Kt2 ( 9 4  
Iot = Y . IOt2 (9b) 

where GI = -gm . (W7/Wtj), G2 = -gm . [(WnWg)/(Ws 
Ws)l, Y = [(WSW8)/ (WnWg)], and Ktl and Ktz are 
nonpositive. The HSPICE simulated characteristic of the type 
1 OHAVC is given in Fig. 7(a). It can be seen from Fig. 7(a) 
that the OHAVC realizes the inverted pseudolinear function. 
The operation range of is from 0 V to -270 mV, whereas 
that of the output current is from 0-1.405 PA. The linearity 
analysis of the OHAVC is shown in Fig. 7(b). The offset output 
current is 1.97 nA when the input is 0 V. The error is below 
5%. 

D. Summing Circuit 
The summing circuit has a very simple structure because 

the system uses current-mode signals. The basic Kirchhoff 
summing circuit is shown in Fig. 8. The negative output 
currents ISk, for k = 2, 3, . . . .  n, at the node S are connected 
to Iotl of the type 1 OHAVC. The summed current ISum 
which realizes the denominator term E;=, Z l k  of (3) is the 
drain current of the PMOS (p-channel MOS) transistor MPS 
in Fig. 8 with its source grounded. The gate of MPS is shorted 

......................................................................... 

vss ........................................................................... 
current duplicator 

(C) 

vss : ............................ ~ .............................................. 

current duplicator 

(4 
Fig. 6.  Type 2 OHAVC’s. (a) Type 2 OHAVC for the master neuron. (b) 
The symbol representation of (a). (c) Type 2 OHAVC for the slave neuron. 
(d) The symbol representation of (c). 

to its drain to act as the master of the current mirrors which 
are used to distribute the summed current to the dividers. 



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 1, JANUARY 1996 

1 
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(b) 

Input voltage Val (mv) 

Fig. 7. (a) The HSPICE simulation result of the type 1 OHAVC where the 
inverted pseudolinear characteristic is shown between the input voltage and 
the output current with V D D  = 2.5 V, V S S  = -2.5 V, V G ~  = 2.5 V, 
and V G ~  = -2.2 V. (b) The linearity analysis of the type 1 OHAVC in (a). 

E. Input Circuit 

As described in (1) and (2) ,  the input current must be 
directly injected into the neuron. If the input current signals 
are directly connected to the neuron input nodes, however, 
some disturbances conling from outside to the input nodes may 
influence the characteristic of the whole system. To prevent 
this effect, a buffer at the input to reject the outside disturbance 
is used. The input circuit and its symbol are shown in Fig. 9. 
The MOS device MIR is operated in its linear region and its 
equivalent resistance is denoted as RI. RI together with R M ,  
GI, and Gz realize the decay terms ag in (1) and (2). The 
value of RI is designed in the range of 26.5-29.5 KO if the 
output node voltage V,,, varies from 0 V to - 270 mV. I,,, 
is compressed through the cascode current mirror MI1, MI2, 
MI3, and MI4 by a factor of < =lo. The output current I,,, 
is equal to the compressed I,,, subtracted by the forgetting 
current in MIR. 

.................................................. n-1 -. 

2 1  ................................................................... 
i ................................................. ] j  j 

GND j !  ! 

MS3 
5/15 

......... ................. vss ! To the denominator 
input Id1 O f  
the divider current duplicator 

Is2 --I Isum 
Is3 

Isn 

@) 

Fig. 8. 
sentation of (a). 

(a) The Kirchhoff current summing circuit. (b) The symbol repre 

MI1 
50f5 

5 0/5 
MI2 

GND 

Iiin 

-*= (b) 

Fig. 9. (a) The input circuit and (b) its symbol. 

F. Complete Circuit 

Using the above described basic building circuits, the whole 
outstar circuit can be formed from Fig. 2. The block diagram 
of the outstar circuit is shown in Fig. 10. As compared to 
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Fig. 10. The complete circuit of the outstar. 

Fig. 2, it can be seen that the neuron inputs 1,(t) are realized 
by the input currents I,. The neuron states 2,(t) are realized 
by IL3 for external use and I,, for internal use. From (9a) and 
(9b), we have Io3 = y.ILJ. The long-term memory states X I ,  ( t )  
are realized by the currents 11,. Using the circuit parameters, 
(1)-(4) can be rewritten as 

k=2 

where R = R M R I / ( R M  + RI) ,  K M I  = 57. K M ,  K M ~  = 
Cy2 . K M ,  KL = $I . K D ,  and r, and U, are the propagation 
delay times through the interconnection line. Notes that r, and 
w, affect the correlation and association rates, but they do not 
cause faulty function of the outstar. From the above equations, 
it can be clearly seen that the outstar can be realized by the 
CMOS circuits of Fig. 10. In Fig. 10, the PMOS switches M,, 
with the control clock V4 are added before C1,. With these 
switches, the outstar can be operated as associative memory 
or general-purpose pattern learner. This will be explained in 
Section 111. 

111. OPERATIONAL PRINCIPLES OF THE OUTSTAR CIRCUIT 

A. The Associative Memory 

To serve as an associative memory, the switches M,, in 
Fig. 10 are always on with V$J = -2.5 V. If the conditioning 
input stimulus 11 and the unconditioning input stimulus 1 2  are 
applied to the two neurons N I  and N2 simultaneously and 
no signals are applied to the other neurons N,(I, = 0, for 
T f l  and 2), the output signals IOl and 102 increase gradually 
according to (10) and (1 l), respectively. If the duration of the 
input signals is long enough, the type 2 OHAVC's ( T 2 1 ) ~ l  and 
(T22)~z  become saturated and go into the triggered state. On 
the other hand, the output I,, of N ,  still remains in the zero 
state. From (13), the cross correction of I,1 and I,2 make 112 

high and I,, makes IIT low. Assume that all the decay rates 
of I lk(k  = 2,  3, . . , n)  are equal, that is, all RM and RI are 
the same. Then, the memory (12) keeps y12 and 91, nearly 
constant for an infinitely long time. This is why the circuit has 
memory, Nevertheless, it is impossible to memorize all forever 
due to different circuit delay times, decay rates, and noise. 

Thereafter, the inputs are released with 1 1  = 12 = 0. 
The neuron outputs begin to decay due to the term 
--[l/(RG2)]I0,(b) and finally come back to the zero state 
or inactive state. But y 1 2 ( t )  is still memorized as described 
above. After elapsing some time, a trigger signal is sent to 
( T 2 1 ) ~ ~  and IoI is triggered. Due to the correlation term 
Kndl . Iol(t - 7i)y12(t), IO2 goes high. But I,, still keeps low 
owing to the low value of ylr(t). This, however, is the ideal 
case. Actually, I,, goes slightly high and then comes back to 
zero due to the slight memory loss of y l r ( t ) .  From the above 
descriptions, it is seen that if N I  is triggered by a stimulus, N 2  

can be triggered associatively and the other neurons N, remain 
inactive. Evidently, this system has learned the relationship 
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Fig. 11. 
responses. (c) The ratio memory states. 

The HSPICE simulation results of the three-neuron outstar as the associative memory. (a) The neuron input stimuli. (b) The neuron output 

between NI and Nz. Also, the memory loss can be restored 
from the above action. Because when I,, goes high, 102 

associatively goes high immediately and the correlation term 
of the learning (13) enhances 112 and decreases l l r .  Then g12 
can be restored to high and ylr to low. Now, the memory 
has been refreshed. This is the same as human. When we 
memorize a thing, we will forget something after certain time 
if we do not remember it. We have more clear reminiscence, 
however, if we remember it as often as we could. 

The HSPICE simulation results of the outstar as an asso- 
ciative memory is shown in Fig. 11 where three neurons are 
simulated. Fig. ll(a) shows the input stimuli and Fig. ll(b) 
shows the neuron output responses where one can find that 
1L2 has been associated correctly and IL3 goes slightly high 
and then comes back to zero due to the memory loss. From 
Fig. ll(c), it can be seen that the memory has been restored 
by reminding. Fig. 12 shows the HSPICE simulation results 
of the outstar that can correct the error learning by retraining. 
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Fig. 12. 
responses. (c) The ratio memory states. 

The HSPICE simulation results of the three-neuron outstar for the relearning association. (a) The neuron input stimuli. (b) The neuron output 

Fig. 12(a) shows the input stimuli, whereas Fig. 12(b) shows 
that the associated output has been corrected. Fig. 12(c) shows 
that the memory states have been changed through relearning. 

learning feedback loop, the environment of the memory nodes 
should be simplified after the learning has been finished. 
Otherwise, the memory nodes will be disturbed by the effects 
of mismatched parameters In Fig. 10 when Vd is low (-2.5 
V), the switch is on and the circuit is operated in the learning 
phase. When V4 is high (2.5 V), however, the switch is turned 
off to prohibit the feedback signals and the circuit is operated 
in the memory phase. In this phase, the memory nodes Z, in 
Fig. 10 only see the mismatches among the switches M,, and 

B. The General-Purpose Pattern Leaming Device 

To serve as a general-purpose pattern learning device, the 
outstar must memorize the relative strengths among the inputs. 
Because there may exist many mismatched parameters in the 
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the system can hold the relative strengths among the inputs 
much more accurately and steadily. 

Due to the inevitable leakage current at the memory node 
even when the switches M,, are off, the memorized weights 
still decay gradually. Due to the ratio memory, however, the 
outstar of Fig. 10 can effectively increase the memory storage 
time. The tolerance of the weights against various physical 
parameter variations can also be improved 

C. Device Nonideal Effects on the Outstar Operation 

Since the MOS devices in the analog'current multiplier and 
divider are operated in the subthreshold region, the device 
nonideal effects including the body effect, the channel length 
modulation effect, and the threshold voltage VT mismatch, 
may influence the outstar circuit performance. They are dis- 
cussed in the following. 

1) The Body Eflect: From (A-ll)-(A-14), it can be seen 
that both current multiplier and divider have nonideal fac- 

( I d ~ / I d ~ ) ~ l / ~ ~ ,  respectively, due to the body effect of the 
MOS devices. Since the n ratio is very close to unity, the 
terms (I,z)nz/nl and (Id2/Idl)nl/n4 only induce a small 
nonlinearity. 

As seen from Fig. 3(a), the difference of the bulk-source 
voltages V ~ S  in MM3 and MM1 is equal to that of the 
gate-source voltages of MM4 and MM2, which depends on 
Iom and Im2, respectively. Since I,, is proportional to Imz, 
VBSJ - VBsl has a small variation which reduces the variation 
of Knir(V~s1, VBSS).  Similar conclusion can be obtained for 
Ko(VBS1, VBSZ).  Thus the body effect can be suppressed. 

Moreover, because the multiplier output current is pro- 
portional to the inputs I,, and Im2 and the outstar uses 
the relative quantities to process the signals rather than the 
absolute ones, the nonideal factors KM and KO can be further 
suppressed. Thus, the body effect does not affect the outstar 
operation significantly. 

2) The Channel Length Modulation Effect: Due to the 
channel length modulation effect, the simple current mirror has 
some errors. Thus larger input currents to the current mirror 
lead to larger current-mirror output currents. This increases 
the signal ratio, as the ratio memory in the outstar does. Thus 
the channel length modulation effect in the simple current 
mirror does not disturb the outstar operation. Therefore, the 
simple current mirror is used. But the long channel devices 
are used to reduce the device mismatches. 

3) The Threshold Voltage VT Mismatch: As shown in the 
(A-12) and (A-14), the VT mismatch in both multiplier and 
divider has a significant effect on their gain values due to 
the exponential functions. The Monte-Carlo analysis in the 
HSPICE simulation is used to observe the V, mismatch effect 
on the circuit performance. According to the measured data 
from the wafer testing, the standard deviation of the NMOS 
(n-channel MOS) threshold voltage over a chip is about 2 mV 
and that of the PMOS threshold voltage is about 3 mV. Also, 
the threshold voltage variation is assumed to be the Gaussian 
random distribution over all the transistors in the chip. In 
this assumed worst case, all the MOS devices have different 

tors KM(VBs1, VBSS), ( L z ) ~ ~ / ~ ~ ,  and K ~ ( V s s 1 ,  VBSZ),  
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Fig. 13. (a) The measurement result of the analog current multiplier (b) The 
lineanty analysis of the analog current multiplier where Iom5 IS the multiplier 
output current with parameter Im2 = 10 PA. 

threshold voltages even though they may be close in layout. 
The simulation of the chip performance under VT mismatches 
is passed if the order of the output levels is the same as that 
of the input levels. The success rate is 60% over 30 trails. 

In the actual layout design, the subthreshold operated de- 
vices are carefully arranged by using the interdigitized layout 
technique [23]. Thus, the V, directional variations can be 
partially compensated. With small VT deviation and interdig- 
itized layout, the measured yield rate of the fabricated outstar 
circuit is about 90% over a wafer This is quite satisfactory 
in production. 

IV. EXPERIMENTAL RESULTS 

A. Analog Current Multiplier and Divider 
The designed analog current multiplier and divider have 

been fabricated by using 0.8 ,um double-poly double-metal 
n-well CMOS process. The measured characteristics of the 
analog current multiplier are shown in Fig. 13(a) where the 
horizontal axis represents the input current I,1 and the vertical 
axis represents the output current I,, with the parameter Im2 
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Fig. 14. (a) The measurement result of the analog current divider. (b) The relative ratio analysis of the analog current divider. 

from 0-10 pA at a step 2 pA. For observation convenience, 
the input operation range is from 0-500 nA whereas the 
output range is from 0-250 nA. The linearity analysis shown 
in Fig. 13(b) is analyzed by calculating the slope error of 
the output current Ioom5, where Iom5 is the multiplier output 
current measured in Fig. 13(a) with the largest parameter 
Im2 = 10 PA. In Fig. 13(b), the maximum error is about 4.2%. 

The measurement results of the analog current divider are 
shown in Fig. 14(a) where the horizontal axis represents the 
input denominator current I d 1  and the vertical axis represents 
the output current Iod  with the parameter I d 2  from 5-25 pA 
at a step 5 pA. The input current level is enlarged by 20 
times and the output current level by 100 times for observation 

and the output range from 0-10 pA. Because the divider is 
used to process the ratio of the signals, its performance can 
be evaluated by the output current difference at two different 
I d 2  values. In Fig. 14(b), it can be found the error is below 
&7% except at the low current level of I d 1  ( I d 1  < 1 PA). The 

convenience. The real input operation range is from 0-500 nA 

large error at the low current level is due to the leakage current 
which gradually dominates the divider current. 

B. The Associative Memory 

3.5 pm CMOS double-poly single-metal p-well technology 
is used to implement the three-neuron outstar shown in Fig. 10 
as a classical conditioning learner to test the associative 
memory capability [24]. The capacitors C ~ Z  and C13 are 1 
pF and C I ,  is the parasitic capacitor at the corresponding node 
where k =1, 2, 3. Fig. 15 shows the chip photograph and 
Fig. 16 shows the measurement results where I:,, and I& are 
obtained by adding a 1 KO resistor to the output node and 
measuring its voltage. In the measurement, the pulses that 
applied to I,, I,, and I3 have a duration of 500 ps.  The elapsed 
time between two pulses is 1.5 msec. Fig. 16(a) shows the 
associative waveforms which successfully verify the function 
of the fabricated associative memory as simulated in Fig. 11. 
Fig. 16(b) shows the relearning capability as simulated in 
Fig. 12. 
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Fig. 15. 
associative memory. 

The chip micrograph of the fabricated three-neuron outstar as the 

C. The Generul-Purpose Pattem Leaming Device 

To experimentally verify the function of the general-purpose 
pattern learning device, the outstar neural network in Fig. 10 
has been fabricated by 0.8 pm double-poly double-metal n- 
well CMOS process. The chip photograph is shown in Fig. 17. 
There are five neurons in the chip including one master neuron 
and four slave neurons. The storage capacitor Cl, is 1 pF 
where j =2, 3, 4, 5. Based on the test chip layout, it can 
have 381 ratio memories within a single chip with 100 111111’ 
die area. 

For convenience, a wide-range voltage to current converter 
is added at the input of the neuron so that the input voltage 
testing signals can be used. Fig. 18 shows the input voltage 
waveforms to test the ratio memory of the fabricated chip. 
To observe the memory retention time, both learning time 
and retrieving time in Fig. 18 are lengthened to several ms, 
although both can be smaller than 20 ps. In the learning 
phase, the input voltage of the master neuron V,1 is given 
as 1.2 V, whereas the input voltages of the four slave neurons 
Vz2, Vz3, V2q, and V25 are 0.8 V, 0.6 V, 0.4 V, and 0.2 V, 
respectively. After 0.8 ms has been elapsed (tl), the switches 
M,, are switched off by pulling up V4 to 2.5 V to hold the 
learned voltages. After 4.4 ms (t3), the input signal of 1.2 V 
is given to the master neuron to retrieve the stored relative 
strength in the slave neurons. As can be seen from Fig. 19, 
the slave neuron outputs have been retrieved in the sense that 
the ratio of the output currents is the same as that of the initial 
learned inputs. The maximum storage time t 3  can be as long 
as three minutes before two of the stored voltage levels decay 
to zero. Therefore, the fabricated outstar chip has stored the 
relative input strength. Although there are some offset voltages 
(100 mV) at the slave neuron outputs, the relative strength is 
not affected. 

In Fig. 10 with the switches Ms,, the voltages stored on the 
capacitors C1, decay gradually due to the leakage current. The 
measured decay characteristic of the stored voltages is shown 
in Fig. 20. The major leakage current is the junction diode 

101 ’ 

$02’ 

L3’ 

Fig. 16. (a) The measurement result of the fabricated three-neuron outstar 
as the associative memory. (b) The measurement result of the associative 
memory with relearning capability. 

reverse saturation current which is measured as about 0.8 fA. 
With this leakage current, the relative error of the outstar ratio 
memory is about 11.5% in the first minute as shown in Fig. 19. 
The absolute error, however, is 45.1% in the first minute. As 
can be seen in Fig. 20, initially, the relative memory denoted 
as yu increases gradually if the stored voltage is greater than- 
zuwe = (212 + 213 + 214 + %)/4, where 212, 213, 214, and 215 
are the held trained voltages. Otherwise, the relative memory 
y decreases gradually and is denoted as Y D .  Therefore, the 
outstar can enhance the contrast of the relative memory in 
this initial period. This property can be further used in some 
applications such as pattern classification. The useful contrast 
enhancement time period from measurement observation is 
about five minutes in the sense that one of the upper ratio 
memory yu (in this case, y13) decreases to below the average 
level of the initially trained ratio memory values (in this case, 
[y12(0) + y13(0) + ~ 1 4 ( 0 )  + y15(0)]/4). After five minutes, 
the memory continues to decay and gradually converge to the 
same voltage level. 
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Fig. 17. 
learning device. 

The photograph of the outstar chip as the general-purpose pattern 
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Fig. 18. 
ti = 0.8 ms, t 2  = 1.6 ms, t 3  = 5.2  ms, and tq = 6.0 ms. 

The input voltage signals of the outstar chip where t o  = 0 ms, 

Fig. 19. 
learning device. 

The measurement result of the outstar as the general-purpose pattern 

From the above experimental results, it has been shown that 
even without the refresh operation, the outstar neural network 
can have a long storage period. Moreover, as the outstar 
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Fig. 20. 
fabricated outstar circuit of Fig. 10. 

The measured decay characteristics of the stored voltages in the 

A single outstar 
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Fig. 21. The feedforward Hamming net using the outstar structure. 

memorizes the input patterns, the leakage current decays the 
storage voltages and causes the ratio memories to enhance the 
contrast of the stored pattern. In other words, when the time 
elapses, the ratio memory not only memorizes the training 
pattern but also processes the storage pattern with contrast 
enhancement. Because the contrast enhancement is one of the 
image processing technique, one can use the outstar circuit to 
realize the pattern recognition network. 

v. SYSTEM APPLICATIONS 
Using the outstar structure, the feedforward Hamming net 

for pattern recognition and classification can be constructed. 
As shown in Fig. 21, every outstar represents a class where Sc 
is the matching score function circuit. The first layer neurons 
x11, x12, . . . , x ln  are the slave neurons and the second layer 
neurons xzl , x22, . . , x2, are the master neurons. So there 
are TI outstars and they share the common slave neurons 
in the first layer. In the training phase, the neural net is 
trained by one outstar. After the outstar has been trained, it 
is isolated from other outstars and the next outstar is trained. 
This process continues until all the outstars have been trained. 
The typical training time of an outstar is about 20 ps.  Since 
the storage time of the outstar ratio memory can be as long 
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as five minutes, it is enough for the learning phase and the 
subsequent classification phase. To avoid the discontinuity 
of image classification due to the training time 20 ps,  the 
alternative ping-pong structure may be used to allow one net 
in training while the other is in classification and vice versa. 

In the classification phase, the input pattem is sent to the 
slave neurons and goes through the norm circuit which is 
the divider circuit of the outstar. Then it is compared with 
the internal exemplar pattem. After comparison, the matching 
score is produce and sent to the master neurons. A winner- 
take-all circuit is needed to choose the minimum score master 
neuron which represents the best matched class. 

Besides the feedforward neural nets, it is feasible that the 
outstar structure could be used to construct the feedback neural 
nets with learning, such as the learnable Hopfield net. With the 
features of the ratio memory, the feedback learnable neural 
nets may be used in many applications. 

VI. CONCLUSIONS AND DISCUSSIONS 
In this paper, the analog current-mode design technique is 

used to realize the outstar. Two outstar structures are proposed 
to serve as a classical conditioning (or associative memory) 
learner and a general-purpose pattern learning device. To 
implement on-chip learning and memory, an analog current 
multiplier and divider are developed. In addition, the ratio- 
type memory is realized to store the trained weight. In the 
classical conditioning learner, the memory could be lost due 
to the unequal decay. But it can be refreshed by reminding. 
This memory loss problem can be further improved by adding 
a switch before the integrator. In the general-purpose learning 
device, the switches before the integrators are added. When 
the switches are turned off, the trained weight values can be 
held in the ratio-type memory with less memory decay. Thus 
the relative relationship among the weights can be memorized 
in a longer period and also the relative information of the 
inputs. The fabricated outstars as the associative memory 
and the general-purpose pattern learning device have been 
measured and their functions have been successfully verified. 
The Hamming net constructed by the outstar is also described 
as an application example. 

Future research will be conducted to explore the applications 

From Fig. 3(a), it can be found that 

Substituting (A-4), (A-5), and (A-6) into (A-7), we have 

v G S 3  VGSl + VGS2 - vGS4 

[VTZ + vT2 - VT4 - (711 - 1)VBS1] 

Now, the drain current equation of MM3 can be written as 

IMM3 S3 IDo3 e- vB 5 3  { I1 / (n3 11 - (l/vt ) 1 

(A-9) . e(vGS3 -vT3 / (n3 v: 1. 

(A-10) 

VTl + VT2 - VT3 - VT4 

n3 v, + 
. ( 1 ~ ~ ) ~ 1 / ~ 3  . 

of the outstar circuits in image processing and feedback 
learnable neural nets. 

Because MM2 md MM4 have no body effect, therefore, 
VTZ = Y T ~ ,  n2 = n4, and  ID,,^ =  ID^^. Also, assume 
n1 M 113 and  ID^^ M  ID^^. Then 

APPENDIX 
THE ANALOG CURRENT MULTIPLIER 10, GZ KM(VBsi, V B S S ) .  lml(lm2)n2in1 (A-11) 

where AND THE ANALOG CURRENT DIVIDER 
In Fig. 3(a), all MOSFET’s are operated in the subthreshold 

region and properly matched. By using (3, the drain currents s, (S4)4n1 
S1(Sz)nz/nl ( I M M D 4 ) n Z / n l  

(121 - 1)(VBS3 - V B S l )  

KM(VBsl, VBs3) = 
of the devices MM1, MM2, and MM4, respectively, are 

(A-12) 

I M M Z D  = l m 2  For the current divider shown in Fig. 4(a), similar deriva- 
tions can be used to obtain the expression of the output current = S2 /,, e ( I’G 5 2  -%2 )/ (n2 vt ) (A-2) 
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