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Abstract—Three-dimensional (3D) design technology, which 
has potential to significantly improve design performance and 
ease heterogeneous system integration, has been extensively 
discussed in recent years. This emerging technology allows 
stacking multiple layers of dies and typically resolves the 
vertical inter-layer connection issue by through-silicon vias 
(TSVs). However, TSVs also occupy significant silicon estate as 
well as incur reliability problems. Therefore, the deployment of 
TSVs must be very judicious in 3D designs. In this paper, we 
propose an iterative layer-aware partitioning algorithm, 
named iLap, for TSV minimization in 3D structures. iLap 
iteratively applies multi-way min-cut partitioning to gradually 
divide a given design layer by layer in the bottom-up fashion. 
Meanwhile, iLap also properly fulfills a specific I/O pad 
constraint incurred by 3D structures to further improve its 
outcome. Experimental results show that iLap can reduce the 
number of TSVs by about 35% as compared to several existing 
state-of-the-art methods. We believe a good TSV-minimized 3D 
partitioning solution can serve as a good starting point for 
further tradeoff operations between TSV count and wirelength. 

Keywords- through-silicon via (TSV); 3D integration 
technology; layering; partitioning 

I. INTRODUCTION 

With the advance of semiconductor manufacturing 
process technology, ever-shrinking feature size and 
exponentially growing number of transistors on a single die 
are raising numerous tough challenges such as signal 
integrity, power integrity and dissipation, leakage power, 
clock distribution and yield issues [1]. In addition, the global 
interconnect delay fails to scale as the device delay does and 
is gradually dominating the system performance [1]. 
Therefore, a solution that can both alleviate the global 
interconnect delay bottleneck as well as provide new avenues 
to enable even advanced device and architecture innovations 
is eagerly demanded. While approaching the physical 
limitations, traditional scaling is no longer the best way for 
advancing manufacturing process technology, and hence 
three-dimensional (3D) technologies have been emerging in 
recent years [2]–[5]. 3D integrated circuit technologies 
enable stacking multiple dies on a single chip and provide 
several unique advantages compared to those conventional 
two-dimensional (2D) ones, such as higher system 
integration, better heterogeneous integration capability, and 
shorter global wirelength (i.e., better performance). 

Among those state-of-the-art 3D integration technologies, 
through-silicon via (TSV) is one of the most promising 
methods to accomplish vertical interconnects between 

different layers [4]. Fig. 1 illustrates a typical TSV-based 3D 
IC structure. By utilizing the wafer/die bonding techniques, 
TSVs cut across thinned silicon substrates to make inter-die 
connections, which results in high compatibility with the 
present typical CMOS processes. All external I/O signals 
must pass through those metal bumps located at the bottom 
of the 3D structure to bridge the internal logic and the 
external system. Nevertheless, compared with a typical 2D 
design, though a TSV-based 3D design can generally reduce 
the global interconnect delay, currently available TSV 
fabrication processes still suffer from relatively low yield as 
well as large TSV pitch size [6]. It is reported that in 22nm 
technology a TSV with 8μm pitch occupies roughly the same 
area as 1k SRAM cells (0.061μm2) [1], and TSV yield drops 
to about 80% in a 3D design with 2k TSVs [7]. Therefore, 
using less number of TSVs to complete a 3D design is highly 
desirable in terms of both yield and area cost. As a 
consequence, the issue of TSV minimization must be 
properly addressed in a design flow as stepping into the 3D 
IC era. 

In general, 3D IC backend flows can be roughly 
classified into two categories. The first one is to combine 
TSV minimization into later design processes such as 
floorplanning [8] and placement [9][10], which aims at both 
objectives at the same time. However, the above mix-in-one 
problem is likely to become too complicated to be well 
handled. Alternatively, the authors in [11]–[13] all suggest 
that it is crucial to make 3D partitioning an independent 
stage in the backend flow as shown in Fig. 2. The suggested 
flow first partitions a given design into different layers and 
then solves the remaining problem by classical 2D 
techniques or their simple extensions. Hence, this 
methodology efficiently reduces the problem complexity 
while keeping the quality of results nearly at the same level 
[11][12]. Since the outcome of 3D partitioning mainly 
determines the number of required TSVs, several previous 
studies have been proposed to tackle the problem of 3D 

 
Figure 1.  A TSV-based 3D structure. 
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partitioning for TSV minimization. One solution is to solve 
the problem using integer linear programming (ILP) [14]. 
However, it can only solve small-size problem since its 
runtime grows exponentially as problem size increases. In 
[15][16], each of them develops a modified FM-based [17] 
partitioning method to obtain the resultant layer assignment. 
However, all these methods only focus on minimizing the 
total amount of TSVs or die area, and do nothing about 
evenly distributing TSVs among layers. Meanwhile, the 
authors of 3D FPGA synthesis frameworks TPR [18] and 3D 
MEANDER [19] alternatively use a two-step approach – first 
applying the well-known partitioning algorithm hMetis [20] 
to divide a design into a set of layer-unaware partitions, and 
then associating each partition with a layer (i.e., layer 
assignment) – to accomplish 3D design partitioning. Though 
hMetis is an efficient and effective multi-way min-cut 
partitioning tool, it lacks for the notion of layer. In general, a 
typical 2D partitioning algorithm basically gives a similar 
weight to a cut between any two partitions, whereas those 
weights can vary a lot in 3D partitioning and highly depend 
on whether two partitions (i.e., layers) are close or far away 
from each other. 

Indeed, 3D designs can help minimize long interconnects 
through the extensive use of TSVs. However, utilizing too 
few TSVs may limit this benefit and even increase the total 
wirelength, while allocating too many TSVs surely enlarges 
design area size [6]. Though only focusing on TSV reduction 
cannot guarantee decrease of wirelength after placement and 
routing, a TSV-minimized (also area-minimized) partitioning 
technique should still be incorporated as a preprocessing 
stage in a 3D design flow, which provides a good starting 
point for further tradeoff between area and wirelength in the 

following stages. Therefore, in this paper, we propose an 
iterative layer-aware partitioning algorithm, named iLap, 
which can both minimize the number of TSVs and smooth 
the distribution of TSVs in 3D structures. Unlike [15][16], 
iLap is iterative and gradually produces the final result layer 
by layer. Also unlike [18][19], which first perform layer-
unaware partitioning then layering, iLap applies layer-aware 
partitioning at each iteration. Though iLap also utilizes 
hMetis as the kernel of its partitioning engine, the 
experiment results demonstrate that iLap can apparently do 
better TSV minimization than three other hMetis-based 
methods for various number of layers, and the required 
runtime is just few seconds. The rest of this paper is 
organized as follows. In Section II, we briefly introduce our 
motivations and the problem formulation. Section III details 
the proposed iterative layer-aware partitioning algorithm. 
The experimental results and analyses are reported in Section 
IV. Finally, the concluding remarks are given in Section V. 

II. PROBLEM DESCRIPTION 

A. Motivation 

Fig. 3 demonstrates a simple 4-layer 3D partitioning 
example. A given design with its 4-way min-cut partitioning 
result is presented in Fig. 3(a). Based on the same initial 
partitioning result given in Fig. 3(a), Fig. 3(b) and 3(c) 
respectively illustrate the worst possible and the best possible 
3D layering outcomes in terms of the number of TSVs. From 
the observations on Fig. 3, here we would like to highlight 
two key ideas. 

Firstly, all external I/O terminals must be located in the 
bottom-most layer. It implies those square vertices 
representing I/O pads must always be located in Layer 0. As 
a result, extra TSVs are required to properly relocate those 
I/O pads. As shown in Fig. 3(b), five additional signal paths 
(in dotted lines) suggest that 13 more TSVs are further 
required. Those extra signal paths are generally unconsidered 
in conventional multi-way min-cut partitioning algorithms. It 
also explains why there is a big difference between the total 
cut size (=8) in Fig. 3(a) and the number of total TSVs (=28) 
in Fig. 3(b). 

Secondly, different layer assignments usually result in 
different TSV requirements even the given initial 
partitioning result is identical. For instance, given the 
partitioning result shown in Fig. 3(a), the total number of 
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Figure 3. (a) A 4-way min-cut partitioned design, (b) the worst possible, and (c) the best possible 3D layering outcomes based on the partitioning in (a). 

 
Figure 2. Referenced backend flow for 3D ICs.
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TSVs can range from 21 to 28 after examining all possible 
layer assignments. Nevertheless, the best layering result with 
the minimum number of TSVs shown in Fig. 4(d) cannot be 
derived from the initial partitioning outcome shown in Fig. 
3(a), which is obtained from hMetis. 

According to the aforementioned discussions, it should 
be evident that conventional multi-way min-cut partitioning 
algorithms virtually have no chances to perform 3D 
partitioning well in their original forms due to their 
unawareness about the fundamentals of vertical die-stacking 
structure. Therefore, a layer-aware partitioning algorithm 
specifically dedicated to 3D structures is strongly demanded 
for advanced 3D IC design methodologies. 

B. Problem Formulation 

A design is modeled as a hypergraph G = (V, E), where V 
is a set of vertices including a set of functional cells (or 
blocks) C and a set of I/O pads I (i.e., V = C ∪ I, C ∩ I = ); 
and E is a set of hyperedges. For each vertex v  V, area(v) 
denotes the area cost of v. Each hyperedge is a subset of V, 
i.e., e  V  e  E. A k-layer disjoint partition set of G with 
all the I/O terminals residing in the bottom-most layer is 
represented as L = {L0=I, L1, L2 … Lk}, where Li is the 
partition assigned to the i-th layer and is a subset of C; i.e., Li 
 C   1  i  k; Li ∩ Lj =   i  j, 1  i, j  k; and L1 ∪ L2 
∪…∪Lk = C. 

For a vertex v, layer(v) indicates which layer v actually 
resides in. That is, layer(v) = i,   v  Li. The range pair of a 
hyperedge e is defined as rp(e) = (b, t) if e connects vertices 
from the lower b-th layer to the upper t-th layer; i.e.,  v  e, 
b  layer(v)  t. Then the number of TSVs required to 
complete e can be calculated as tsv(e) = t – b. The layer 
junction jcti is defined as the junction between the two 
adjacent layers Li–1 and Li,  1  i  k. The number of TSVs 
passing through jcti is further defined as cuti. Hence, the total 
number of TSVs, total_tsv, needed for a 3D partitioning 
solution L can be determined either by summing the required 
TSVs for all hyperedges (∑ ሺ݁ሻ௘∈ாݒݏݐ ) or by summing TSVs 
passing through all junctions ( ∑ ௜ݐݑܿ

௞
௜ୀଵ ). Consider the 

example shown in Fig. 3(b), rp(e1) = (1, 4) and thus tsv(e1) = 
3. Similarly, the total number of TSVs in Fig. 3(b) is 
total_tsv = ∑ܿݐݑ௜ = 5 + 9 + 9 + 5 = 28, including 15 TSVs 
connecting between cells, and 13 TSVs connecting cells and 
I/O pads. We would like to emphasize again that classical 
partitioning algorithms usually have no idea about the I/O 
pad connection constraint and always underestimate the real 
TSV demand even excluding those TSVs for connecting 
cells and I/O pads (8 vs. 15 in the case shown in Fig. 3(a) 
and 3(b)) due to their layer-unawareness. Those are the 
major reasons why the classical min-cut-based partitioning 
solutions are generally not well optimized in 3D cases 
(shown later). 

In this paper, we model the 3D partitioning problem as a 
layer-aware multi-way partitioning problem. Given a target 
3D structure consisting of k layers stacking vertically, a 
design G, and the I/O pad constraint, our proposed algorithm 
partitions G into k sub-designs and each sub-design is 
explicitly associated with a vertical layer so that the total 

number of TSVs is minimized. That is, given G = (V = C ∪ 
I, E) with layer(v) = 0   v  I, our algorithm directly finds 
the mapping, 1  layer(v)  k   v  C, such that total_tsv is 
minimized. 

III. PROPOSED ALGORITHM 

Here we propose our iterative partitioning framework 
that gradually constructs the solution from the bottom-most 
layer all the way to the topmost one. Consider that all I/O 
pads must reside in L0 by definition and then the number of 
TSVs through jct1 (i.e., cut1,) is always fixed to |I| no matter 
how other cells (or L1~Lk) get partitioned eventually. As a 
result, if we define G1 by compacting all the I/O pads into a 
supervertex vs and keeping all the connected hyperedges 
unchanged as shown in Fig. 4(a), it is evident that jct1 and 
cut1 should still remain unchanged in G1. Next, an arbitrary 
conventional k-way area-balanced min-cut partitioning 
algorithm is applied on G1 to get k partitions, where area(vs) 
is set to zero to avoid disturbing area balancing during 
partitioning. Among those k disjoint partitions, exactly one 
partition ps can contain vs, which further suggests that the 
cells residing in ps should be located as close to the I/O pads 
as possible for cut minimization and thus should be assigned 
to L1. For example, the four dashed circles in Fig. 4(a) 
indicate the 4-way area-balanced min-cut partitioning result, 
and hence L1 is ultimately set to {7, 8, 9} as Fig. 4(b) depicts. 

Similarly, once the elements of L1 are determined, cut2 is 
therefore fixed. The next task then becomes how to decide 
which vertices should reside in L2. Again, since L0 and L1 are 
fixed at this point, jct2 and cut2 are both fixed no matter how 
other remaining cells (or L2~Lk) get partitioned later. As one 
can easily discover that the situation here is very similar to 
that of identifying L1 previously. Hence, if we further derive 
G2 from G1 by compacting L1 into vs and apply (k–1)-way 

 
Figure 4. (a) Compact I/O pads into vs then apply 4-way partitioning, 

(b) assign {7, 8 ,9} to L1, (c) compact L1 into vs then apply 3-way 
partitioning, and (d) show the final layering result 
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min-cut partitioning on G2, L2 can then be identified in the 
same fashion (as shown in Fig. 4(c)). That is, at each 
iteration our proposed algorithm always derives Gn+1 from Gn 
by further compacting Ln into vs, then applies (k–n)-way 
area-balanced min-cut partitioning to get Ln+1. This iterative 
process is not terminated until Lk–1 is identified. Fig. 4(d) 
illustrates the final result generated by the proposed 
algorithm, and the total TSV count is merely 19, which is 
smaller than those in Fig. 3(b) and 3(c) (28 and 21, 
respectively). 

The proposed framework possesses following four 
unique features: 

 It invokes multi-way min-cut partitioning at every 
iteration. The major reason is to find the set of cells 
closest to the previously identified junctions, which 
potentially minimizes the TSVs of the current 
junction. To better mimic the final solution, min-cut 
partitioning helps distribute TSVs more evenly 
among all layers and hence potentially results in a 
more stable outcome. 

 Once a junction (and thus a cut) is fixed at some 
iteration, it is never altered at the following iterations. 
This ensures that good decisions made previously 
are never overthrown later. 

 At each iteration, only one partition is accepted and 
decisions for other partitions are actually discarded. 
Later, the updated graph topology is reexamined and 
better decisions are thus dynamically reacquired at 
the following iterations. For instance, L2 = {1, 3, 10} 
in Fig. 4(d) is not identical to any partition shown in 
Fig. 4(a). As a consequence, applying any one of 
conventional multi-way min-cut partitioning 
algorithms just once cannot get this kind of result. 

 From the traditional partitioning perspective, the 
result in Fig. 4(d) has a larger total cut size than the 
result given in Fig. 3(a) (9 vs. 8). However, we 
already show that the former one is actually a better 
3D partitioning solution. Hence, it is obvious that the 
total cut size, which is layer-unaware, is apparently 
not an appropriate metric in 3D partitioning. Again, 
this is another evidence that classical multi-way min-
cut partitioning algorithms can hardly compete with 
the proposed iterative framework. 

In this work, we adopt the well-known hMetis as the 
internal partitioning engine since it is one of the best 
partitioning engines we can find today. However, our 
proposed framework can obviously co-work with any multi-
way min-cut partitioning engines. It implies that a better 
engine (if any) may be adopted for better 3D partitioning 
results in the future. 

The pseudo code of the complete algorithm is given in 
Fig. 5. All I/O pads are first compacted into a supervertex vs 
during initialization. Each iteration starts with (k–n+1)-way 
min-cut partitioning. Once partitioning is done, the vertices 
residing in the partition where vs is present are assigned to 
the current layer, i.e., Layer n. The number n always 
increases by one at every iteration end. At the final iteration, 
where n = k–1, the elements of Layer k–1 are identified after 
2-way partitioning. Finally, the remaining cells are then 
automatically assigned to the topmost Layer k and the 
algorithm ends. That is, exact k–1 invocations of multi-way 
min-cut partitioning are required for getting one k-layer 3D 
partitioning result here. 

IV. EXPERIMRNTS 

A. Environmental Setup 

iLap has been implemented in C++/Linux environment. 
We demonstrate the effectiveness of iLap through a series of 
comparisons with three hMetis-based methods: 1) hMetis: 
partitions are further layered according to their original 
sequential tags (i.e., in random order basically); 2) EX-
hMetis: partitions are best layered through exhaustively 
examining all possible layer permutations; 3) EV-matrix: 
partitions are layered by the method described in [18]. Note 
that the three hMetis-based methods all start with the same 
set of partitions and thus the variances among their final 
results solely come from different layer assignments. We 
evaluate the performance of iLap and other three methods 
over a set of 14 test cases, consisting of 10 cases from the 
MCNC benchmark set [21], three large cases (cfft, aqua, and 
video) from Altera [22], and one in-house 128-point FFT 
design (fft128). They are intended to mimic complicated 
system designs integrating a large number of functional 
blocks. The number of blocks ranges from 1,047 to 53,491. 
Since the test cases selected in our experiments are all far 
larger than those used in [14], comparisons between iLap and 
the ILP-based approach proposed in [14] are therefore 
omitted in this paper. We perform ten experiment runs on 
every test case with different random seeds and take the 
average as the final result. 

B. Results and Analyses 

A set of experiments are conducted with various number 
of layers ranging from two to ten. Table I reports the TSV 
demands as the number of layers is set to 4. It seems EV-
matrix just performs equally well as plain hMetis. 
Meanwhile, given a set of 4 partitions generated by hMetis, 
EX-hMetis always picks the one with the lowest TSV count 
out of 4! = 24 different layer permutations and consequently 
EX-hMetis on average attains 16% TSV reduction as 
compared with hMetis. Nevertheless, iLap can reduce TSV 

Initialization 
1 n ← 1; 
2 compact all I/O pads into a supervertex vs; 
3 C ← C ∪ {vs}; 
Constructive Loop 
4 while(n < k) 
5  (k–n+1)-way min-cut partition(C); 
6  foreach vi  C – {vs} do 
7   if part(vi) == part(vs) do 
8    assign vi to Layer n; 
9    C ← C – {vi}; 
10    compact vi into vs; 
11  n ←n + 1; 
12 foreach vj  C – {vs} do 
13  assign vj to Layer k; 

Figure 5. Pseudo code of iLap. 
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count by 36% and 24% on average as compared to hMetis 
and EX-hMetis, respectively. Moreover, for the largest three 
test cases (cfft, aqua, and video), iLap even outperforms 
hMetis by more than 75%. Though hMetis is an excellent 
multi-way min-cut partitioning algorithm, unfortunately it 
fails to be a good 3D partitioner due to its layer-unawareness. 
Even EX-hMetis, with exhaustive layer permutations, still 
cannot defeat iLap. Therefore, it concludes that a dedicated 
layer-aware 3D partitioning algorithm, like iLap, should be 
regarded as one of the essential components while 
constructing a sophisticated 3D IC design environment. 

Next, Fig. 6(a) depicts the average TSV count over 14 
test cases as a function of the number of layers; and three 
points are worth pointing out. Firstly, the more layers a 
design gets partitioned into, the more TSVs it generally 
requires. Secondly, iLap is the all-time winner from 2 layers 
to 10 layers among four methods. Thirdly, unlike the other 
three methods, the number of TSVs required by iLap raises 
very smoothly as the number of layers increases. Taking 
hMetis as the baseline, Fig. 6(b) reveals the average ratios of 
TSV count over the number of layers; and two points are 
worth mentioning here. Firstly, iLap constantly and steadily 
outperforms hMetis by about 35% in TSV count regardless 
of the number of layers. Secondly, EX-hMetis always 
outperforms hMetis, as expected. 

Meanwhile, Fig. 7(a) presents the average standard 
deviations of TSV count over a different number of layers. 
Through constructing its outcome layer by layer, iLap can 
better balance the TSV count among junctions. From Fig. 
7(a), it is evident that the standard deviation of TSV count 
associated with iLap is far better than those of the other three. 
As previously mentioned, a TSV occupies significant silicon 
estate so that high standard deviation of TSV count 
potentially worsens area imbalance among individual layers 
and even lowers the yield of a design. Fig. 7(b) reports the 
average maximum TSV count at some junction of a design 
over a different number of layers; and iLap always possesses 
the lowest values regardless of the number of layers. In other 

words, a lower TSV count implies a smaller total area 
(including TSV area) after partitioning, and a smaller 
standard deviation of TSV count results in a more area-
balanced partitioning outcome. The above two facts suggest 
that iLap tends to generate a smaller overall footprint of a 3D 
chip implementation. From another perspective, for some 3D 
logic structures, like 3D FPGAs, the number of pre-
fabricated inter-layer TSVs is fixed. Hence a design mapping 
attempt is considered a failure as long as the required TSVs 
exceed the available ones only at one junction; and a high 
maximum TSV count definitely increases such chances. 
Lower maximum TSV count is considered a big plus 
especially in design flows for 3D regular logic structures 
such as 3D FPGAs. 

Regarding the runtime efficiency issue, Fig. 7(c) gives 
the average runtime of 14 test cases in second over a 
different number of layers. It is evident that both hMetis and 
EV-matrix are very time-efficient. The runtime required by 
iLap grows linearly as the number of layers increases. It is 
mainly because the number of invocations for multi-way 
partitioning inside iLap also grows linearly as the number of 
layers increases. However, given the tremendous 
performance in TSV minimization, the time complexity of 
iLap should be acceptable. For example, it only takes about 
fifty seconds for iLap to partition the largest test case video 
into ten layers. As for EX-hMetis, since it has to check all 
possible layer permutations to find out the best one, the 
required runtime is thus exponential to the number of layers. 
Even if EX-hMetis can be further improved (e.g., by pruning) 
so that not all permutations need to be examined, the 

TABLE I.  TOTAL NUMBER OF TSVS WITH K = 4 

4 layers *Total TSVs Normalized to hMetis

Design iLap hMetis 
EV- 

matrix 
EX- 

hMetis iLap 
EV-

matrix
EX-

hMetis

Tseng 304.2 356.3 361.2 346.1 0.85 1.01 0.97 
Diffeq 244.9 344.5 351.0 270.3 0.71 1.02 0.78 
Des 445.5 857.5 876.1 834.5 0.52 1.02 0.97 
Bigkey 629.2 666.2 669.2 650.6 0.94 1.00 0.98 
Frisc 655.2 714.1 719.0 688.7 0.92 1.01 0.96 
elliptic 590.3 709.9 690.0 643.1 0.83 0.97 0.91 
pdc 973.4 1049.5 1059.0 986.8 0.93 1.01 0.94 
fft128 1313.9 1506.0 1524.8 1489.2 0.87 1.01 0.99 
s38417 249.4 364.7 389.6 324.6 0.68 1.07 0.89 
s38584.1 391.4 673.8 762.6 536.7 0.58 1.13 0.80 
clma 491.4 721.2 654.6 496.5 0.68 0.91 0.69 
cfft 244.4 999.2 480.3 338.5 0.24 0.48 0.34 
aqua 909.6 7026.5 7167.4 4935.8 0.13 1.02 0.70 
video 763.8 8370.7 8757.1 7255.0 0.09 1.05 0.87 

Average - - - - 0.64 0.98 0.84 

*The reported number is the average of 10 experiment runs. 

 

 
Figure 6. The number of required TSVs in different layers. 
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improvement is limited to runtime efficiency only, while 
other TSV-related performance would still remain the same. 

V. CONCLUSION 

In this paper, we present an iterative layer-aware 
partitioning algorithm iLap targeting TSV minimization for 
3D structures. It utilizes a multi-way min-cut partitioning 
engine inside its iterative framework to gradually construct 
the final solution layer by layer in the bottom-up fashion. 
The experimental results clearly demonstrate that iLap is 
capable of reducing total TSV count by about 35% compared 
to layer-unaware hMetis, experiencing a smoother TSV 
increase as the number of layers raises, distributing TSVs 
more evenly among different vertical layers, preventing any 
layer junction from having a burst number of TSVs, and only 
requires an acceptable runtime. Consequently, compared to 
the prior art, we believe iLap can generate a better TSV-
minimized solution, which serves as a good starting point for 
further tradeoff between wirelength and number of TSVs in 
upcoming state-of-the-art 3D IC/FPGA design flows. 

ACKNOWLEDGMENT 

This work was supported in part by the National Science 
Council of Taiwan under Grant NSC 99-2220-E-009-037. 

REFERENCES 
[1] International Technology Roadmap for Semiconductor. 

Semiconductor Industry Association, 2009. 

[2] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a 
novel chip design for improving deep submicron interconnect 
performance and systems-on-chip integration,” Proc. IEEE, vol. 89, 
no. 5, pp. 602–633, 2001. 

[3] A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E. 
Steen, A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini and M. 
Ieong, “Three-dimensional integrated circuits,” IBM J. of Research 
and Development, vol. 50, no. 4/5, pp. 491–506, Jul./Sep. 2006. 

[4] G. Philip, B. Christopher, and P. Ramm, Handbook of 3D integration. 
Wiley-VCH, 2008. 

[5] C. Ferri, S. Reda, and R. I. Bahar, “Parametric yield management for 
3D ICs: models and strategies for improvement,” J. Emerging 
Technologies in Computing Systems, vol. 4, no. 4, Article ID 19, Oct. 
2008. 

[6] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim, “Through-silicon via 
management during 3D physical design: when to add and how many?” 
Proc. Int’l Conf. on Computed-Aided Design, pp. 387–394, 2010. 

[7] A.-C. Hsieh, T. Hwang, M.-T. Chang, M.-H. Tsai, C.-M. Tseng and 
H.-C. Li, “TSV redundancy: architecture and design issues in 3D IC,” 

Proc. Design, Automation & Test in Europe Conf. & Exibit., pp. 166–
171, 2010. 

[8] Z. Li, X. Hong, Q. Zhou, S. Zeng, J. Bian, W. Yu, H. H. Yang, V. 
Pitchumani, and C.-K. Cheng, “Efficient thermal via planning 
approach and its application in 3-D floorplanning,” IEEE Trans. on 
Computer-Aided Design of Integrated Circuits and Systems, vol. 26, 
no. 4, pp. 645–658, Apr. 2007. 

[9] B. Goplen and S. Sapatnekar, “Placement of 3D ICs with thermal and 
interlayer via considerations,” Proc. Design Automation Conf., pp. 
626–631, 2007. 

[10] J. Cong and G. Luo, “A multilevel analytical placement for 3D ICs,” 
Proc. Asia and South Pacific Design Automation Conf., pp. 361–366, 
2009. 

[11] Z. Li, X. Hong, Q. Zhou, Y. Cai, J. Bian, H. H. Yang, V. Pitchumani, 
and C.-K. Cheng, “Hierarchical 3-D floorplanning algorithm for 
wirelenth optimization,” IEEE Trans. on Computer-Aided Design of 
Integrated Circuits and Systems, vol. 53, no. 12, pp. 2637–2646, Dec. 
2006. 

[12] V. F. Pavlidis and E. G. Friedman, “Interconnect-based design 
methodology for three-dimensional integrated circuits,” Proc. IEEE, 
vol. 97, no. 1, pp. 123–140, Jan. 2009. 

[13] C. Chiang and S. Sinha, “The road to 3D EDA tool deadiness,” Proc. 
Asia and South Pacific Design Automation Conf., pp. 429–436, 2009. 

[14] I. H.-R. Jiang, “Generic integer linear programming formulation for 
3D IC partitioning,” 22nd IEEE Int’l SOC Conf., pp. 321–324, 2009. 

[15] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-
silicon-via impact on the 3D stacked IC layout,” Proc. Int’l Conf. on 
Computer-Aided Design, pp. 674–680, 2009. 

[16] Y. C. Hu, Y. L. Chung, and M. C. Chi, “A multilevel multilayer 
partitioning algorithm for three dimensional integrated circuits,” Proc. 
Int’l Symp. on Quality Electronic Design, pp. 483–487, 2010. 

[17] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for 
improving network partitions,” Proc. Design Automation Conf., 
pp.175–181, 1982. 

[18] C. Ababei, H. Mogal, and K. Bazargan, “Three-dimensional place and 
route for FPGAs,” IEEE Trans. on Computer-Aided Design of 
Integrated Circuits and Systems, vol. 25, no. 6, pp. 1132–1140, Jun. 
2006. 

[19] K. Siozios, A. Bartzas, and D. Soudirs, “Architecture-level 
exploration of alternative interconnection schemes targeting to 3D 
FPGAs: a software-supported methodology,” Int’l J. of 
Reconfigurable Computing, vol. 2008, Article ID 764942, 2008. 

[20] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel 
hypergraph partitioning: applications in VLSI domain,” IEEE Trans. 
on VLSI Systems, vol. 7, no. 1, pp. 69–79, Mar. 1999. 

[21] S. Yang, “Logic synthesis and optimization benchmarks user guide,” 
Technical Report 1991-IWLS-UG-Saeyang, Microelectronics Center 
of North Carolina, 1991. 

[22] http://www.eecs.berkeley.edu/~alanmi/benchmarks/altera/old/altera12
_blif_baf.zip. 

 

   

Figure 7. More statistics from the experiments. 
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