
Layer-Aware Design Partitioning for Vertical Interconnect Minimization

Abstract—Three-dimensional (3D) design technology, which
has potential to significantly improve design performance and
ease heterogeneous system integration, has been extensively
discussed in recent years. This emerging technology allows
stacking multiple layers of dies and typically resolves the
vertical inter-layer connection issue by through-silicon vias
(TSVs). However, TSVs also occupy significant silicon estate as
well as incur reliability problems. Therefore, the deployment of
TSVs must be very judicious in 3D designs. In this paper, we
propose an iterative layer-aware partitioning algorithm,
named iLap, for TSV minimization in 3D structures. iLap
iteratively applies multi-way min-cut partitioning to gradually
divide a given design layer by layer in the bottom-up fashion.
Meanwhile, iLap also properly fulfills a specific I/O pad
constraint incurred by 3D structures to further improve its
outcome. Experimental results show that iLap can reduce the
number of TSVs by about 35% as compared to several existing
state-of-the-art methods. We believe a good TSV-minimized 3D
partitioning solution can serve as a good starting point for
further tradeoff operations between TSV count and wirelength.

Keywords- through-silicon via (TSV); 3D integration
technology; layering; partitioning

I. INTRODUCTION

With the advance of semiconductor manufacturing
process technology, ever-shrinking feature size and
exponentially growing number of transistors on a single die
are raising numerous tough challenges such as signal
integrity, power integrity and dissipation, leakage power,
clock distribution and yield issues [1]. In addition, the global
interconnect delay fails to scale as the device delay does and
is gradually dominating the system performance [1].
Therefore, a solution that can both alleviate the global
interconnect delay bottleneck as well as provide new avenues
to enable even advanced device and architecture innovations
is eagerly demanded. While approaching the physical
limitations, traditional scaling is no longer the best way for
advancing manufacturing process technology, and hence
three-dimensional (3D) technologies have been emerging in
recent years [2]–[5]. 3D integrated circuit technologies
enable stacking multiple dies on a single chip and provide
several unique advantages compared to those conventional
two-dimensional (2D) ones, such as higher system
integration, better heterogeneous integration capability, and
shorter global wirelength (i.e., better performance).

Among those state-of-the-art 3D integration technologies,
through-silicon via (TSV) is one of the most promising
methods to accomplish vertical interconnects between

different layers [4]. Fig. 1 illustrates a typical TSV-based 3D
IC structure. By utilizing the wafer/die bonding techniques,
TSVs cut across thinned silicon substrates to make inter-die
connections, which results in high compatibility with the
present typical CMOS processes. All external I/O signals
must pass through those metal bumps located at the bottom
of the 3D structure to bridge the internal logic and the
external system. Nevertheless, compared with a typical 2D
design, though a TSV-based 3D design can generally reduce
the global interconnect delay, currently available TSV
fabrication processes still suffer from relatively low yield as
well as large TSV pitch size [6]. It is reported that in 22nm
technology a TSV with 8μm pitch occupies roughly the same
area as 1k SRAM cells (0.061μm2) [1], and TSV yield drops
to about 80% in a 3D design with 2k TSVs [7]. Therefore,
using less number of TSVs to complete a 3D design is highly
desirable in terms of both yield and area cost. As a
consequence, the issue of TSV minimization must be
properly addressed in a design flow as stepping into the 3D
IC era.

In general, 3D IC backend flows can be roughly
classified into two categories. The first one is to combine
TSV minimization into later design processes such as
floorplanning [8] and placement [9][10], which aims at both
objectives at the same time. However, the above mix-in-one
problem is likely to become too complicated to be well
handled. Alternatively, the authors in [11]–[13] all suggest
that it is crucial to make 3D partitioning an independent
stage in the backend flow as shown in Fig. 2. The suggested
flow first partitions a given design into different layers and
then solves the remaining problem by classical 2D
techniques or their simple extensions. Hence, this
methodology efficiently reduces the problem complexity
while keeping the quality of results nearly at the same level
[11][12]. Since the outcome of 3D partitioning mainly
determines the number of required TSVs, several previous
studies have been proposed to tackle the problem of 3D

Figure 1. A TSV-based 3D structure.

Ya-Shih Huang, Yang-Hsiang Liu, and Juinn-Dar Huang
Department of Electronics Engineering and Institute of Electronics

National Chiao Tung University, Hsinchu 30010, Taiwan
{sali, ktysliu}@adar.ee.nctu.edu.tw, jdhuang@mail.nctu.edu.tw

2011 IEEE Computer Society Annual Symposium on VLSI

978-0-7695-4447-2/11 $26.00 © 2011 IEEE

DOI 10.1109/ISVLSI.2011.16

144

partitioning for TSV minimization. One solution is to solve
the problem using integer linear programming (ILP) [14].
However, it can only solve small-size problem since its
runtime grows exponentially as problem size increases. In
[15][16], each of them develops a modified FM-based [17]
partitioning method to obtain the resultant layer assignment.
However, all these methods only focus on minimizing the
total amount of TSVs or die area, and do nothing about
evenly distributing TSVs among layers. Meanwhile, the
authors of 3D FPGA synthesis frameworks TPR [18] and 3D
MEANDER [19] alternatively use a two-step approach – first
applying the well-known partitioning algorithm hMetis [20]
to divide a design into a set of layer-unaware partitions, and
then associating each partition with a layer (i.e., layer
assignment) – to accomplish 3D design partitioning. Though
hMetis is an efficient and effective multi-way min-cut
partitioning tool, it lacks for the notion of layer. In general, a
typical 2D partitioning algorithm basically gives a similar
weight to a cut between any two partitions, whereas those
weights can vary a lot in 3D partitioning and highly depend
on whether two partitions (i.e., layers) are close or far away
from each other.

Indeed, 3D designs can help minimize long interconnects
through the extensive use of TSVs. However, utilizing too
few TSVs may limit this benefit and even increase the total
wirelength, while allocating too many TSVs surely enlarges
design area size [6]. Though only focusing on TSV reduction
cannot guarantee decrease of wirelength after placement and
routing, a TSV-minimized (also area-minimized) partitioning
technique should still be incorporated as a preprocessing
stage in a 3D design flow, which provides a good starting
point for further tradeoff between area and wirelength in the

following stages. Therefore, in this paper, we propose an
iterative layer-aware partitioning algorithm, named iLap,
which can both minimize the number of TSVs and smooth
the distribution of TSVs in 3D structures. Unlike [15][16],
iLap is iterative and gradually produces the final result layer
by layer. Also unlike [18][19], which first perform layer-
unaware partitioning then layering, iLap applies layer-aware
partitioning at each iteration. Though iLap also utilizes
hMetis as the kernel of its partitioning engine, the
experiment results demonstrate that iLap can apparently do
better TSV minimization than three other hMetis-based
methods for various number of layers, and the required
runtime is just few seconds. The rest of this paper is
organized as follows. In Section II, we briefly introduce our
motivations and the problem formulation. Section III details
the proposed iterative layer-aware partitioning algorithm.
The experimental results and analyses are reported in Section
IV. Finally, the concluding remarks are given in Section V.

II. PROBLEM DESCRIPTION

A. Motivation

Fig. 3 demonstrates a simple 4-layer 3D partitioning
example. A given design with its 4-way min-cut partitioning
result is presented in Fig. 3(a). Based on the same initial
partitioning result given in Fig. 3(a), Fig. 3(b) and 3(c)
respectively illustrate the worst possible and the best possible
3D layering outcomes in terms of the number of TSVs. From
the observations on Fig. 3, here we would like to highlight
two key ideas.

Firstly, all external I/O terminals must be located in the
bottom-most layer. It implies those square vertices
representing I/O pads must always be located in Layer 0. As
a result, extra TSVs are required to properly relocate those
I/O pads. As shown in Fig. 3(b), five additional signal paths
(in dotted lines) suggest that 13 more TSVs are further
required. Those extra signal paths are generally unconsidered
in conventional multi-way min-cut partitioning algorithms. It
also explains why there is a big difference between the total
cut size (=8) in Fig. 3(a) and the number of total TSVs (=28)
in Fig. 3(b).

Secondly, different layer assignments usually result in
different TSV requirements even the given initial
partitioning result is identical. For instance, given the
partitioning result shown in Fig. 3(a), the total number of

Layer 1

Layer 2

Layer 3

Layer 4

Layer 0

12

11

109

8

7

2 5

1

43

6

13

14

15
16

17

I/O pad

cell/block

15

2

5

4

1

6

3

1211
10

9

87

13 14
16

17

2

54

1

6

3

121110

9

87

1513 1416 17
Additional TSVs

connecting to I/Os

cut4 = 5

cut3 = 9

cut2 = 9

cut1 = 5

cut4 = 5

cut3 = 6

cut2 = 5

cut1 = 5

(a) (b) (c)

total cut size = 8

total_tsv = 28 total_tsv = 21

e1

Figure 3. (a) A 4-way min-cut partitioned design, (b) the worst possible, and (c) the best possible 3D layering outcomes based on the partitioning in (a).

Figure 2. Referenced backend flow for 3D ICs.

145

TSVs can range from 21 to 28 after examining all possible
layer assignments. Nevertheless, the best layering result with
the minimum number of TSVs shown in Fig. 4(d) cannot be
derived from the initial partitioning outcome shown in Fig.
3(a), which is obtained from hMetis.

According to the aforementioned discussions, it should
be evident that conventional multi-way min-cut partitioning
algorithms virtually have no chances to perform 3D
partitioning well in their original forms due to their
unawareness about the fundamentals of vertical die-stacking
structure. Therefore, a layer-aware partitioning algorithm
specifically dedicated to 3D structures is strongly demanded
for advanced 3D IC design methodologies.

B. Problem Formulation

A design is modeled as a hypergraph G = (V, E), where V
is a set of vertices including a set of functional cells (or
blocks) C and a set of I/O pads I (i.e., V = C ∪ I, C ∩ I = );
and E is a set of hyperedges. For each vertex v  V, area(v)
denotes the area cost of v. Each hyperedge is a subset of V,
i.e., e  V  e  E. A k-layer disjoint partition set of G with
all the I/O terminals residing in the bottom-most layer is
represented as L = {L0=I, L1, L2 … Lk}, where Li is the
partition assigned to the i-th layer and is a subset of C; i.e., Li
 C  1  i  k; Li ∩ Lj =   i  j, 1  i, j  k; and L1 ∪ L2
∪…∪Lk = C.

For a vertex v, layer(v) indicates which layer v actually
resides in. That is, layer(v) = i,  v  Li. The range pair of a
hyperedge e is defined as rp(e) = (b, t) if e connects vertices
from the lower b-th layer to the upper t-th layer; i.e.,  v  e,
b  layer(v)  t. Then the number of TSVs required to
complete e can be calculated as tsv(e) = t – b. The layer
junction jcti is defined as the junction between the two
adjacent layers Li–1 and Li,  1  i  k. The number of TSVs
passing through jcti is further defined as cuti. Hence, the total
number of TSVs, total_tsv, needed for a 3D partitioning
solution L can be determined either by summing the required
TSVs for all hyperedges (∑ ሺ݁ሻ௘∈ாݒݏݐ) or by summing TSVs
passing through all junctions (∑ ௜ݐݑܿ

௞
௜ୀଵ). Consider the

example shown in Fig. 3(b), rp(e1) = (1, 4) and thus tsv(e1) =
3. Similarly, the total number of TSVs in Fig. 3(b) is
total_tsv = ∑ܿݐݑ௜ = 5 + 9 + 9 + 5 = 28, including 15 TSVs
connecting between cells, and 13 TSVs connecting cells and
I/O pads. We would like to emphasize again that classical
partitioning algorithms usually have no idea about the I/O
pad connection constraint and always underestimate the real
TSV demand even excluding those TSVs for connecting
cells and I/O pads (8 vs. 15 in the case shown in Fig. 3(a)
and 3(b)) due to their layer-unawareness. Those are the
major reasons why the classical min-cut-based partitioning
solutions are generally not well optimized in 3D cases
(shown later).

In this paper, we model the 3D partitioning problem as a
layer-aware multi-way partitioning problem. Given a target
3D structure consisting of k layers stacking vertically, a
design G, and the I/O pad constraint, our proposed algorithm
partitions G into k sub-designs and each sub-design is
explicitly associated with a vertical layer so that the total

number of TSVs is minimized. That is, given G = (V = C ∪
I, E) with layer(v) = 0  v  I, our algorithm directly finds
the mapping, 1  layer(v)  k  v  C, such that total_tsv is
minimized.

III. PROPOSED ALGORITHM

Here we propose our iterative partitioning framework
that gradually constructs the solution from the bottom-most
layer all the way to the topmost one. Consider that all I/O
pads must reside in L0 by definition and then the number of
TSVs through jct1 (i.e., cut1,) is always fixed to |I| no matter
how other cells (or L1~Lk) get partitioned eventually. As a
result, if we define G1 by compacting all the I/O pads into a
supervertex vs and keeping all the connected hyperedges
unchanged as shown in Fig. 4(a), it is evident that jct1 and
cut1 should still remain unchanged in G1. Next, an arbitrary
conventional k-way area-balanced min-cut partitioning
algorithm is applied on G1 to get k partitions, where area(vs)
is set to zero to avoid disturbing area balancing during
partitioning. Among those k disjoint partitions, exactly one
partition ps can contain vs, which further suggests that the
cells residing in ps should be located as close to the I/O pads
as possible for cut minimization and thus should be assigned
to L1. For example, the four dashed circles in Fig. 4(a)
indicate the 4-way area-balanced min-cut partitioning result,
and hence L1 is ultimately set to {7, 8, 9} as Fig. 4(b) depicts.

Similarly, once the elements of L1 are determined, cut2 is
therefore fixed. The next task then becomes how to decide
which vertices should reside in L2. Again, since L0 and L1 are
fixed at this point, jct2 and cut2 are both fixed no matter how
other remaining cells (or L2~Lk) get partitioned later. As one
can easily discover that the situation here is very similar to
that of identifying L1 previously. Hence, if we further derive
G2 from G1 by compacting L1 into vs and apply (k–1)-way

Figure 4. (a) Compact I/O pads into vs then apply 4-way partitioning,

(b) assign {7, 8 ,9} to L1, (c) compact L1 into vs then apply 3-way
partitioning, and (d) show the final layering result

146

min-cut partitioning on G2, L2 can then be identified in the
same fashion (as shown in Fig. 4(c)). That is, at each
iteration our proposed algorithm always derives Gn+1 from Gn
by further compacting Ln into vs, then applies (k–n)-way
area-balanced min-cut partitioning to get Ln+1. This iterative
process is not terminated until Lk–1 is identified. Fig. 4(d)
illustrates the final result generated by the proposed
algorithm, and the total TSV count is merely 19, which is
smaller than those in Fig. 3(b) and 3(c) (28 and 21,
respectively).

The proposed framework possesses following four
unique features:

 It invokes multi-way min-cut partitioning at every
iteration. The major reason is to find the set of cells
closest to the previously identified junctions, which
potentially minimizes the TSVs of the current
junction. To better mimic the final solution, min-cut
partitioning helps distribute TSVs more evenly
among all layers and hence potentially results in a
more stable outcome.

 Once a junction (and thus a cut) is fixed at some
iteration, it is never altered at the following iterations.
This ensures that good decisions made previously
are never overthrown later.

 At each iteration, only one partition is accepted and
decisions for other partitions are actually discarded.
Later, the updated graph topology is reexamined and
better decisions are thus dynamically reacquired at
the following iterations. For instance, L2 = {1, 3, 10}
in Fig. 4(d) is not identical to any partition shown in
Fig. 4(a). As a consequence, applying any one of
conventional multi-way min-cut partitioning
algorithms just once cannot get this kind of result.

 From the traditional partitioning perspective, the
result in Fig. 4(d) has a larger total cut size than the
result given in Fig. 3(a) (9 vs. 8). However, we
already show that the former one is actually a better
3D partitioning solution. Hence, it is obvious that the
total cut size, which is layer-unaware, is apparently
not an appropriate metric in 3D partitioning. Again,
this is another evidence that classical multi-way min-
cut partitioning algorithms can hardly compete with
the proposed iterative framework.

In this work, we adopt the well-known hMetis as the
internal partitioning engine since it is one of the best
partitioning engines we can find today. However, our
proposed framework can obviously co-work with any multi-
way min-cut partitioning engines. It implies that a better
engine (if any) may be adopted for better 3D partitioning
results in the future.

The pseudo code of the complete algorithm is given in
Fig. 5. All I/O pads are first compacted into a supervertex vs
during initialization. Each iteration starts with (k–n+1)-way
min-cut partitioning. Once partitioning is done, the vertices
residing in the partition where vs is present are assigned to
the current layer, i.e., Layer n. The number n always
increases by one at every iteration end. At the final iteration,
where n = k–1, the elements of Layer k–1 are identified after
2-way partitioning. Finally, the remaining cells are then
automatically assigned to the topmost Layer k and the
algorithm ends. That is, exact k–1 invocations of multi-way
min-cut partitioning are required for getting one k-layer 3D
partitioning result here.

IV. EXPERIMRNTS

A. Environmental Setup

iLap has been implemented in C++/Linux environment.
We demonstrate the effectiveness of iLap through a series of
comparisons with three hMetis-based methods: 1) hMetis:
partitions are further layered according to their original
sequential tags (i.e., in random order basically); 2) EX-
hMetis: partitions are best layered through exhaustively
examining all possible layer permutations; 3) EV-matrix:
partitions are layered by the method described in [18]. Note
that the three hMetis-based methods all start with the same
set of partitions and thus the variances among their final
results solely come from different layer assignments. We
evaluate the performance of iLap and other three methods
over a set of 14 test cases, consisting of 10 cases from the
MCNC benchmark set [21], three large cases (cfft, aqua, and
video) from Altera [22], and one in-house 128-point FFT
design (fft128). They are intended to mimic complicated
system designs integrating a large number of functional
blocks. The number of blocks ranges from 1,047 to 53,491.
Since the test cases selected in our experiments are all far
larger than those used in [14], comparisons between iLap and
the ILP-based approach proposed in [14] are therefore
omitted in this paper. We perform ten experiment runs on
every test case with different random seeds and take the
average as the final result.

B. Results and Analyses

A set of experiments are conducted with various number
of layers ranging from two to ten. Table I reports the TSV
demands as the number of layers is set to 4. It seems EV-
matrix just performs equally well as plain hMetis.
Meanwhile, given a set of 4 partitions generated by hMetis,
EX-hMetis always picks the one with the lowest TSV count
out of 4! = 24 different layer permutations and consequently
EX-hMetis on average attains 16% TSV reduction as
compared with hMetis. Nevertheless, iLap can reduce TSV

Initialization
1 n ← 1;
2 compact all I/O pads into a supervertex vs;
3 C ← C ∪ {vs};
Constructive Loop
4 while(n < k)
5 (k–n+1)-way min-cut partition(C);
6 foreach vi  C – {vs} do
7 if part(vi) == part(vs) do
8 assign vi to Layer n;
9 C ← C – {vi};
10 compact vi into vs;
11 n ←n + 1;
12 foreach vj  C – {vs} do
13 assign vj to Layer k;

Figure 5. Pseudo code of iLap.

147

count by 36% and 24% on average as compared to hMetis
and EX-hMetis, respectively. Moreover, for the largest three
test cases (cfft, aqua, and video), iLap even outperforms
hMetis by more than 75%. Though hMetis is an excellent
multi-way min-cut partitioning algorithm, unfortunately it
fails to be a good 3D partitioner due to its layer-unawareness.
Even EX-hMetis, with exhaustive layer permutations, still
cannot defeat iLap. Therefore, it concludes that a dedicated
layer-aware 3D partitioning algorithm, like iLap, should be
regarded as one of the essential components while
constructing a sophisticated 3D IC design environment.

Next, Fig. 6(a) depicts the average TSV count over 14
test cases as a function of the number of layers; and three
points are worth pointing out. Firstly, the more layers a
design gets partitioned into, the more TSVs it generally
requires. Secondly, iLap is the all-time winner from 2 layers
to 10 layers among four methods. Thirdly, unlike the other
three methods, the number of TSVs required by iLap raises
very smoothly as the number of layers increases. Taking
hMetis as the baseline, Fig. 6(b) reveals the average ratios of
TSV count over the number of layers; and two points are
worth mentioning here. Firstly, iLap constantly and steadily
outperforms hMetis by about 35% in TSV count regardless
of the number of layers. Secondly, EX-hMetis always
outperforms hMetis, as expected.

Meanwhile, Fig. 7(a) presents the average standard
deviations of TSV count over a different number of layers.
Through constructing its outcome layer by layer, iLap can
better balance the TSV count among junctions. From Fig.
7(a), it is evident that the standard deviation of TSV count
associated with iLap is far better than those of the other three.
As previously mentioned, a TSV occupies significant silicon
estate so that high standard deviation of TSV count
potentially worsens area imbalance among individual layers
and even lowers the yield of a design. Fig. 7(b) reports the
average maximum TSV count at some junction of a design
over a different number of layers; and iLap always possesses
the lowest values regardless of the number of layers. In other

words, a lower TSV count implies a smaller total area
(including TSV area) after partitioning, and a smaller
standard deviation of TSV count results in a more area-
balanced partitioning outcome. The above two facts suggest
that iLap tends to generate a smaller overall footprint of a 3D
chip implementation. From another perspective, for some 3D
logic structures, like 3D FPGAs, the number of pre-
fabricated inter-layer TSVs is fixed. Hence a design mapping
attempt is considered a failure as long as the required TSVs
exceed the available ones only at one junction; and a high
maximum TSV count definitely increases such chances.
Lower maximum TSV count is considered a big plus
especially in design flows for 3D regular logic structures
such as 3D FPGAs.

Regarding the runtime efficiency issue, Fig. 7(c) gives
the average runtime of 14 test cases in second over a
different number of layers. It is evident that both hMetis and
EV-matrix are very time-efficient. The runtime required by
iLap grows linearly as the number of layers increases. It is
mainly because the number of invocations for multi-way
partitioning inside iLap also grows linearly as the number of
layers increases. However, given the tremendous
performance in TSV minimization, the time complexity of
iLap should be acceptable. For example, it only takes about
fifty seconds for iLap to partition the largest test case video
into ten layers. As for EX-hMetis, since it has to check all
possible layer permutations to find out the best one, the
required runtime is thus exponential to the number of layers.
Even if EX-hMetis can be further improved (e.g., by pruning)
so that not all permutations need to be examined, the

TABLE I. TOTAL NUMBER OF TSVS WITH K = 4

4 layers *Total TSVs Normalized to hMetis

Design iLap hMetis
EV-

matrix
EX-

hMetis iLap
EV-

matrix
EX-

hMetis

Tseng 304.2 356.3 361.2 346.1 0.85 1.01 0.97
Diffeq 244.9 344.5 351.0 270.3 0.71 1.02 0.78
Des 445.5 857.5 876.1 834.5 0.52 1.02 0.97
Bigkey 629.2 666.2 669.2 650.6 0.94 1.00 0.98
Frisc 655.2 714.1 719.0 688.7 0.92 1.01 0.96
elliptic 590.3 709.9 690.0 643.1 0.83 0.97 0.91
pdc 973.4 1049.5 1059.0 986.8 0.93 1.01 0.94
fft128 1313.9 1506.0 1524.8 1489.2 0.87 1.01 0.99
s38417 249.4 364.7 389.6 324.6 0.68 1.07 0.89
s38584.1 391.4 673.8 762.6 536.7 0.58 1.13 0.80
clma 491.4 721.2 654.6 496.5 0.68 0.91 0.69
cfft 244.4 999.2 480.3 338.5 0.24 0.48 0.34
aqua 909.6 7026.5 7167.4 4935.8 0.13 1.02 0.70
video 763.8 8370.7 8757.1 7255.0 0.09 1.05 0.87

Average - - - - 0.64 0.98 0.84

*The reported number is the average of 10 experiment runs.

Figure 6. The number of required TSVs in different layers.

0

1000

2000

3000

4000

5000

2 3 4 5 6 7 8 9 10
Layers

(a) TSV count

iLap

hMetis

EV-matrix

EX-hMetis

0.5

0.7

0.9

1.1

1.3

1.5

1.7

2 3 4 5 6 7 8 9 10
Layers

(b) Normalized TSV count

iLap

hMetis

EV-matrix

EX-hMetis

148

improvement is limited to runtime efficiency only, while
other TSV-related performance would still remain the same.

V. CONCLUSION

In this paper, we present an iterative layer-aware
partitioning algorithm iLap targeting TSV minimization for
3D structures. It utilizes a multi-way min-cut partitioning
engine inside its iterative framework to gradually construct
the final solution layer by layer in the bottom-up fashion.
The experimental results clearly demonstrate that iLap is
capable of reducing total TSV count by about 35% compared
to layer-unaware hMetis, experiencing a smoother TSV
increase as the number of layers raises, distributing TSVs
more evenly among different vertical layers, preventing any
layer junction from having a burst number of TSVs, and only
requires an acceptable runtime. Consequently, compared to
the prior art, we believe iLap can generate a better TSV-
minimized solution, which serves as a good starting point for
further tradeoff between wirelength and number of TSVs in
upcoming state-of-the-art 3D IC/FPGA design flows.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Council of Taiwan under Grant NSC 99-2220-E-009-037.

REFERENCES
[1] International Technology Roadmap for Semiconductor.

Semiconductor Industry Association, 2009.

[2] K. Banerjee, S. J. Souri, P. Kapur, and K. C. Saraswat, “3-D ICs: a
novel chip design for improving deep submicron interconnect
performance and systems-on-chip integration,” Proc. IEEE, vol. 89,
no. 5, pp. 602–633, 2001.

[3] A. W. Topol, D. C. La Tulipe, L. Shi, D. J. Frank, K. Bernstein, S. E.
Steen, A. Kumar, G. U. Singco, A. M. Young, K. W. Guarini and M.
Ieong, “Three-dimensional integrated circuits,” IBM J. of Research
and Development, vol. 50, no. 4/5, pp. 491–506, Jul./Sep. 2006.

[4] G. Philip, B. Christopher, and P. Ramm, Handbook of 3D integration.
Wiley-VCH, 2008.

[5] C. Ferri, S. Reda, and R. I. Bahar, “Parametric yield management for
3D ICs: models and strategies for improvement,” J. Emerging
Technologies in Computing Systems, vol. 4, no. 4, Article ID 19, Oct.
2008.

[6] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim, “Through-silicon via
management during 3D physical design: when to add and how many?”
Proc. Int’l Conf. on Computed-Aided Design, pp. 387–394, 2010.

[7] A.-C. Hsieh, T. Hwang, M.-T. Chang, M.-H. Tsai, C.-M. Tseng and
H.-C. Li, “TSV redundancy: architecture and design issues in 3D IC,”

Proc. Design, Automation & Test in Europe Conf. & Exibit., pp. 166–
171, 2010.

[8] Z. Li, X. Hong, Q. Zhou, S. Zeng, J. Bian, W. Yu, H. H. Yang, V.
Pitchumani, and C.-K. Cheng, “Efficient thermal via planning
approach and its application in 3-D floorplanning,” IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 26,
no. 4, pp. 645–658, Apr. 2007.

[9] B. Goplen and S. Sapatnekar, “Placement of 3D ICs with thermal and
interlayer via considerations,” Proc. Design Automation Conf., pp.
626–631, 2007.

[10] J. Cong and G. Luo, “A multilevel analytical placement for 3D ICs,”
Proc. Asia and South Pacific Design Automation Conf., pp. 361–366,
2009.

[11] Z. Li, X. Hong, Q. Zhou, Y. Cai, J. Bian, H. H. Yang, V. Pitchumani,
and C.-K. Cheng, “Hierarchical 3-D floorplanning algorithm for
wirelenth optimization,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 53, no. 12, pp. 2637–2646, Dec.
2006.

[12] V. F. Pavlidis and E. G. Friedman, “Interconnect-based design
methodology for three-dimensional integrated circuits,” Proc. IEEE,
vol. 97, no. 1, pp. 123–140, Jan. 2009.

[13] C. Chiang and S. Sinha, “The road to 3D EDA tool deadiness,” Proc.
Asia and South Pacific Design Automation Conf., pp. 429–436, 2009.

[14] I. H.-R. Jiang, “Generic integer linear programming formulation for
3D IC partitioning,” 22nd IEEE Int’l SOC Conf., pp. 321–324, 2009.

[15] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A study of through-
silicon-via impact on the 3D stacked IC layout,” Proc. Int’l Conf. on
Computer-Aided Design, pp. 674–680, 2009.

[16] Y. C. Hu, Y. L. Chung, and M. C. Chi, “A multilevel multilayer
partitioning algorithm for three dimensional integrated circuits,” Proc.
Int’l Symp. on Quality Electronic Design, pp. 483–487, 2010.

[17] C. M. Fiduccia and R. M. Mattheyses, “A linear time heuristic for
improving network partitions,” Proc. Design Automation Conf.,
pp.175–181, 1982.

[18] C. Ababei, H. Mogal, and K. Bazargan, “Three-dimensional place and
route for FPGAs,” IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, vol. 25, no. 6, pp. 1132–1140, Jun.
2006.

[19] K. Siozios, A. Bartzas, and D. Soudirs, “Architecture-level
exploration of alternative interconnection schemes targeting to 3D
FPGAs: a software-supported methodology,” Int’l J. of
Reconfigurable Computing, vol. 2008, Article ID 764942, 2008.

[20] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel
hypergraph partitioning: applications in VLSI domain,” IEEE Trans.
on VLSI Systems, vol. 7, no. 1, pp. 69–79, Mar. 1999.

[21] S. Yang, “Logic synthesis and optimization benchmarks user guide,”
Technical Report 1991-IWLS-UG-Saeyang, Microelectronics Center
of North Carolina, 1991.

[22] http://www.eecs.berkeley.edu/~alanmi/benchmarks/altera/old/altera12
_blif_baf.zip.

Figure 7. More statistics from the experiments.

0

50

100

150

200

250

300

3 4 5 6 7 8 9 10
Layers

(a) Standard deviation of TSV count

iLap

hMetis

EV-matrix

EX-hMetis
0

100

200

300

400

500

600

700

800

900

1000

2 3 4 5 6 7 8 9 10
Layers

(b) Maximum TSV count

iLap

hMetis

EV-matrix

EX-hMetis
0

500

1000

1500

2000

2500

3000

3500

2 3 4 5 6 7 8 9 10
Layers

(c) Runtime (seconds)

iLap

hMetis

EV-matrix

EX-hMetis

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

149

