US 20180309641A1
a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2018/0309641 A1

Wang et al. 43) Pub. Date: Oct. 25,2018
(54) METHOD AND SYSTEM FOR SIMULATING (52) US. CL

A NETWORK TOPOLOGY USING A CPC oo HO4L 41/145 (2013.01); HO4L 41/24

PHYSICAL MACHINE (2013.01); HO4L 43/50 (2013.01); HO4L

12/4641 (2013.01); HO4L 41/08 (2013.01)
(71) Applicants: ESTINET TECHNOLOGIES INC.,
Hsinchu (TW); National Chiao Tung (57) ABSTRACT
University, Hsinchu (TW)
A method and a system are disclosed for simulating a
network topology using a physical machine. A physical
switch with multiple ports is divided into multiple slice

(72) Inventors: Shie-Yuan Wang, HSINCHU CITY
(TW); I-Yun Lee, Tainan City (TW)

(21) Appl. No.: 15/727,692 switches according to a network topology. Each slice switch
simulates a node in a network. Every virtual port of the slice

(22) Filed: Oct. 9, 2017 switch corresponds to a physical port. In simulation opera-
tion, a port-mapping table is applied to allow the virtual port

(30) Foreign Application Priority Data to be one-to-one mapped to one physical port; a VLAN
conversion table is used to manage the VLAN IDs for the

Apr. 21, 2017 (TW) 106113462 virtual ports and to conﬁgure a VLAN tag app]ied to a

simulated packet so that the packet can operate in the slice

Publication Classification switch; an output port table is used to determine the output

(51) Int. CL port of the simulated packet; and a pop-off VLAN tag table
HO4L 1224 (2006.01) is used to allow the packet to restore to its original VLAN
HO4L 12/46 (2006.01) ID or non-VLAN tag state.

i 0 7 i
Inputting | comnection| determining whether . VLAN
packetsto | ot able 1 OF not the packets = conversion
slice switch D are given a VLAN tag table
acquiring outputting pop-off -
= a bridging | connection [—={ VLAN-tag [ogéiléttsmg
flow table port table table D

))))

55 56 57 58

US 2018/0309641 A1

Oct. 25,2018 Sheet 1 of 9

Patent Application Publication

[DI
(20:00:00) TOd (10:00:00) 1Dd
o o
anl

€11 \J/ 111
|
() (€) " (4) (1)
wi--| LAH_ ﬂu 1oegp
— |

| |
201 101

! ¢01
[0T “T1] = 93wer dIA NVIA | [OT ‘T]1=93ueI QIA NV'IA

\

Patent Application Publication Oct. 25,2018 Sheet 2 of 9 US 2018/0309641 A1

FIG. 2A

22
S
Controller

US 2018/0309641 A1

d¢ DI
90d

RIRENIRIEN

Oct. 25,2018 Sheet 3 of 9

—|

p [] ””F .-w W.- [] [[
e dite el LedLelile]]

Patent Application Publication

US 2018/0309641 A1

Oct. 25,2018 Sheet 4 of 9

Patent Application Publication

¢ DI

¢¢— Ior[0NU0d

08—

GOE — 20BLIAIUI JUSLIOS UL

0E—~

iwm
¢0€ —~ J0ssa001d Arowowx
|]
_ _
J[ORU0d X HJ PUodas Joronuod XHJ 1s1J

—10¢

bbbl LLLLALLL

Patent Application Publication Oct. 25,2018 Sheet 5 of 9

packets entering slice switch ~—S401

\

/

1dentifying the slice switch and a connection port

\

/

parsing

packets

——S405

\

/

giving a new VLAN tag —S407

\

/

applying a flow rule of a slice switch ~—S409

\

/

US 2018/0309641 A1

——S403

determining an output port according to destination information

—S411

\

/

popping off the given VLAN tag before outputting the packets

——S413

FIG. 4

US 2018/0309641 A1

Oct. 25,2018 Sheet 6 of 9

Patent Application Publication

¢ DI

wwm mfm owm mfm
8)(ep:4} 9[qel 1od J[qe1 MOo[J
mnm%%mm <+—{ 381-N VA (= UOTIOSUUO) f«—{ SUISPLIQ © |«
. Jo-dod sumndino surmboe
8)(¢ (! 3e) NV'TA © USAIS are YONMmS 01[S
UOISIOAUQD S1oyoed O} JOU IO (= quww%%ﬁm < 0] s1o30ed
NVIA IoIoym SUTUTWIONOP H gurnduy
123 139 (63 IS

Patent Application Publication Oct. 25,2018 Sheet 7 of 9 US 2018/0309641 A1

FIG. 6

Target Throughput (Gbit/sec)

10

SN oo >~ O wn»n o T on AN — O

(998/M19D) INAYFNOIY], PIASTYOY

Patent Application Publication Oct. 25,2018 Sheet 8 of 9 US 2018/0309641 A1

...

...

FIG. 7

...

Target Throughput (Gbit/sec)

10

SN oo >~ O wn»n o T on AN — O

(098/11q0)) UOTIRIAQ(T Indy3noIy],

Patent Application Publication Oct. 25,2018 Sheet 9 of 9 US 2018/0309641 A1

... xS
... - @
.. -1 co
.. - h Py

Q

g

=
... o L

&)

=]

o
[S SR SO SRR AR SR SR S SR B W ,gn w

e

é —_
___ 1< B

(D]

(o]

&
--- 4 on =
___ - N
... —
___ L o

o O O O o o o o o O
AN o~ O wn»n O F o N

(%) 93esn

US 2018/0309641 Al

METHOD AND SYSTEM FOR SIMULATING
A NETWORK TOPOLOGY USING A
PHYSICAL MACHINE

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates in general to a simu-
lation technology of a network, and more particularly to
utilizing physical network devices to simulate nodes of the
network so as to simulate a whole network topology.

2. Description of Related Art

[0002] An amount of tests may be required before actually
constituting a real network topology. A network topology is
firstly specified. For example, a test of network throughput
is used to ensure the throughput under the network topology.
Some other tests such as a load capacity test, a transmission
rate, and a linking layout test, and a communication protocol
operating test, and installation of physical devices are also
required.

[0003] One of the methods for testing the network topol-
ogy is to set up a real network with the physical network
devices. Although this is the most practicable way of imple-
menting the test, the problems of high cost and inefficiency
apparently cannot be avoided. Further, it costs much time to
reconfigure the network once the network topology is
changed.

[0004] Furthermore, using a software emulator to emulate
the network topology becomes an efficient way to conduct
the test since it saves the cost. The computer-implemented
network test is scalable in testing the various network
topologies and able to acquire the test result before actually
setting up a real network. However, since the software-based
network test relies on the capability for processing the
network data of the computer hardware, the hardware such
as the performance of CPU and memory generally affects the
test result. For example, the packets in the emulated network
may be unnecessarily delayed or dropped because the insuf-
ficient buffer space of the computer holds the backlogged
unprocessed packets. Therefore, the test result with respect
to the emulated network may show the problems of serious
performance fidelity and network scalability.

SUMMARY OF THE INVENTION

[0005] According to one of the embodiments of the system
and method for simulating a network topology using a
physical machine in accordance with the present disclosure,
the simulation method is generally adapted to a physical
switch that is configured to simulate the network topology.
The method is also applicable to a larger network topology
through multiple connected physical switches. Thus, the
method can effectively save the cost of using the physical
network devices to simulate the real network topology under
test. The disclosed method also solves the problem concern-
ing that the hardware limitations will incur the error test
result from the software-based emulation.

[0006] In the method for simulating the network topology
using a physical machine, in one embodiment, a physical
switch with multiple physical ports is provided to simulate
a plurality of slice switches according to a network topology.
Every slice switch includes multiple virtual ports. Each
virtual port corresponds to one physical port. In a process of

Oct. 25, 2018

simulation, the physical switch is divided into a plurality of
slice switches. One of the slice switches receives a packet;
a port-mapping table is applied to identify the slice switch
and a corresponding virtual port where the packet enters.
The virtual port corresponds to one physical port of the
physical switch. A destination of the entering packet can be
obtained by parsing the packet. The information of whether
or not a VLAN tag is carried by the packet is also parsed. A
VLAN conversion table is incorporated for giving a VLAN
tag to the packet in accordance with the virtual port receiv-
ing the packet. The VLAN tag records a VLAN ID. An
output port table is incorporated, and a flow rule is applied
to the packet. An output port is determined according to the
destination and the given VLAN ID with respect to the
packet. Before outputting the packet, the system pops off the
given VLAN ID from the packet, and restores the packet to
its original state.

[0007] Under a different situation, the packet entering a
slice switch may already carry an original VLAN ID. In this
case, a new VLAN ID is provided to substitute the original
VLAN ID. Otherwise, if the packet does not carry any
VLAN ID, a VLAN ID is given to the packet.

[0008] In the system for network topology simulation,
according to one embodiment, a physical switch having
multiple physical ports is provided. The system divides the
physical switch into a plurality of slice switches according
to a desired network topology. Every slice switch also
includes a plurality of virtual ports. Every virtual port
corresponds to one physical port. To simulate a network,
every slice switch is used to simulate a node of the network.
Every virtual port is used to simulate a connection port of the
node.

[0009] In the method using the physical switch to simulate
the plurality of slice switches, several lookup tables are
provided and stored in non-transitory storage medium. One
of the lookup tables records the information such as slice
switch numbers and virtual port numbers. A port-mapping
table is provided for recording the virtual port number of the
slice switch and the corresponding physical port number of
the physical switch. A VLAN conversion table is provided
and is configured to record a VLAN tag set to the slice
switch where a packet enters, in which a VLAN ID is
recorded in the VLAN tag corresponding to every virtual
port of every slice switch. An output port table is configured
to record the destination of a packet and an output port given
to the packet corresponding to the VLAN ID according to
the destination. A pop-off VLAN-tag table is configured to
record the VLAN ID and the original VLLAN ID correspond-
ing to the packet.

[0010] In one aspect of the method, the quantity and
numbers of the multiple virtual ports of every slice switch
are dynamically changeable in response to the network
topology. For the purpose of simulating a larger network, the
network topology can be expanded by assembling multiple
physical switches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0011] FIG. 1 shows a schematic diagram depicting a
system for simulating a network topology with a physical
switch that is used to simulate a plurality of slice switches;
[0012] FIG. 2A and FIG. 2B show a schematic diagram
depicting an arrangement of multiple connection ports of a
slice switch that is simulated by the physical machine in the
simulation system;

US 2018/0309641 Al

[0013] FIG. 3 shows a schematic diagram depicting a
circuitry system in the physical switch of the system in one
embodiment of the disclosure;

[0014] FIG. 4 shows a flow chart describing a method for
simulating the network topology in one embodiment of the
disclosure;

[0015] FIG. 5 shows another flow chart describing the
operation of the system for simulating the network topology
in another embodiment of the disclosure;

[0016] FIG. 6 shows a diagram showing the curves
describing the relationship of achieved throughput and the
target throughput obtained from the simulation method in
accordance with the disclosure and the conventional soft-
ware-based emulation;

[0017] FIG. 7 shows a diagram showing the throughput
deviation curves obtained from the simulation method in
accordance with the disclosure and the conventional soft-
ware-based emulation; and

[0018] FIG. 8 shows a diagram showing the CPU usage
curves obtained from the simulation method in accordance
with the disclosure and the conventional software-based
emulation.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

[0019] The present invention will now be described more
fully with reference to the accompanying drawings, in which
preferred embodiments of the invention are shown. This
invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi-
ments set forth herein; rather, these embodiments are pro-
vided so that this disclosure will be thorough and complete,
and will fully convey the scope of the invention to those
skilled in the art.

[0020] The present disclosure is related to a method and a
system for simulating a network topology using a physical
machine. The technological scheme is to simulate a real
network topology by a physical network device. In one
aspect, a physical switch with a plurality of connection ports
is provided. The physical switch is divided into a plurality of
slice switches according to the network topology to be
simulated. A number of connection ports of the slice switch
and the relationship among the connection ports can be
modified as needed. In the method, several lookup tables are
provided for converting the physical switch and the ports to
the slice switches and the ports, and vice versa. Thus the
system can implement a simulation method instead of using
a plurality of physical devices to simulate a real network.
Further, the system also overcomes the problem concerning
that the conventional software-implemented emulation can-
not actually simulate the packets traveling among the physi-
cal switches since the software-based emulation incurs an
inaccurate simulation result as the simulation is restricted by
the data-processing capability of the computer.

[0021] The object of simulation can be a Software-Defined
Network (SDN). SDN is a next-generation network frame-
work. A centralized controller is provided and used to
replace a control plane of a conventional switch in a dis-
tributed network system. The switch of the SDN is only
responsible for processing the data plane, and therefore the
performance of the centralized controller can be optimized.
For example, the controller of the SDN is optimized to
provide a better route arrangement. Further, an OpenFlow
protocol is provided to define a standard and public com-

Oct. 25, 2018

munication channel between the controller and the switches.
Through the standard and public protocol, the network, e.g.,
the SDN, will not be restricted by various rules made by
various manufacturers. The network administrator can there-
fore compose or optimize a controller for implementing a
plurality of multi-functional modules for various applica-
tions.

[0022] To constitute a system for simulating a network
topology using a physical machine, at least one physical
switch is prepared. A network topology to be simulated is
firstly given. A number of slice switches and the multiple
virtual ports of each slice switch should be defined accord-
ing to a number of nodes, e.g., the switches, and their
connection relationships of the network topology. An
example is exemplified as the network topology of the
system schematically shown in FIG. 1.

[0023] As FIG. 1 shows, a physical switch 10 is provided
for simulating a network topology. The shown physical
switch 10 has four physical ports, e.g., the ports 101, 102,
103 and 104, numbered as 1, 2, 3 and 4. The physical switch
10 is used to create two slice switches for simulating the
network topology with two switch nodes. According to the
connections between the nodes, the physical ports 101, 102,
103 and 104 of the physical switch 10 are divided into two
slice switches. The two slice switches are represented by a
first slice switch 10a and a second slice switch 105. Every
slice switch (10a or 105) is used to simulate one node of the
network.

[0024] In the current example, the four physical ports 101,
102, 103 and 104 are divided into two groups according to
the connection relationship of the network to be simulated.
The first slice switch 10qa includes the connection ports 101
and 102. The corresponding virtual port numbers can be
renumbered as needed. The second slice switch 105 includes
the connection ports 103 and 104. The corresponding virtual
port numbers can also be renumbered. The virtual ports of
every slice switch (10a or 105) are one-to-one mapped to
two of the physical ports 101, 102, 103 and 104. A port-
mapping table is incorporated. The port-mapping table is
used to store numbers of multiple virtual ports of every slice
switch and numbers of multiple physical ports of the physi-
cal switch. The port-mapping table allows the system to
inquire the correspondence among the virtual and physical
ports and refer to conversion among the ports. To solve the
possible conflicting problem when hosting multiple slice
switches on an SDN switch, a scheme for mapping between
the port number used in the slice switch and the port number
used in the original switch is used. The scheme gives each
slice switch a different and non-overlapping range of VLAN
1D space, e.g., the shown VLAN_VID range=[1, 10] and the
VLAN_VID range=[11, 20] for each slice switch.

[0025] The connection port 101 of the first slice switch
10a connects to a terminal device PC1 (MAC address:
00:00:01) via a physical wire 111. The connection port 102
of'the first slice switch 10 is connected to the connection port
103 of the second slice switch 105 via a physical wire 112.
The connection port 104 of the second slice switch 105 is
connected to a terminal device PC2 (MAC address: 00:00:
02) via a physical wire 113. When the physical connectivity
has been completed, the network topology with two inter-
connected switches (10a, 105) and two terminal devices
(PC1, PC2) is under simulation by the system. In an exem-
plary example, a packet is configured to be transmitted from
the terminal device PC1 to the terminal device PC2. In the

US 2018/0309641 Al

physical switch 10, the packet launches from the terminal
device PC1, passes through the physical wires 111, 112 and
113 between the first slice switch 10a and the second slice
switch 106, and arrives at the terminal device PC2. It is
worth noting that the transmission of the packet through the
physical network device and connections, e.g., RJ-45 or
fiber, can actually reflect the actual condition of the real
network.

[0026] In one embodiment, the physical switch includes
multiple physical ports that are divided for simulating mul-
tiple slice switches according to the network topology to be
simulated. The slice switches may have the same or different
numbers of virtual ports. The virtual ports of each slice
switch are one-to-one mapped to the physical ports of the
physical switch. In one embodiment, a quantity and numbers
of the multiple virtual ports of every slice switch are
dynamically changeable in response to the network topol-
ogy. References are made to FIG. 2A and FIG. 2B sche-
matically showing a port arrangement in a physical switch.
[0027] FIG. 2A shows a physical switch 20 that is a
16-port switch. The 16-port switch is used to simulate
multiple slice switches (201, 202, 203 and 204), that is a first
slice switch 201 with four ports, a second slice switch 202
with four ports, a third slice switch 203 with three ports, and
a fourth slice switch 204 with five ports. The number of the
connection ports for every slice switch is determined based
on the network topology to be simulated. It is not necessary
for the slice switches (201, 202, 203 and 204) to have the
same number of virtual ports. A management interface 205
is provided in the physical switch 20. The management
interface 205 connects with an external computer and allows
the administrator to set up the physical switch 20. For an
SDN, the management interface 205 is used to connect with
an SDN controller 22 that is specified to the SDN. The
management interface 205 is used to simulate a plurality of
connections between the slice switches (201, 202, 203 and
204) and the controller 22 according to the number of the
slice switches (201, 202, 203 and 204), and each connection
is identified by a network ID. In the current example, the
physical switch 20 simulates four slice switches (201, 202,
203 and 204). Accordingly, four connections between the
management interface 205 and the SDN controller 22 are
simulated. Each simulated connection corresponds to one
slice switch. An IP address or an ID can be used to identity
every connection.

[0028] The remote controller 22 connects with every slice
switch via one simulated connection. Every slice switch can
be a standalone switch that operates its independent task
under a specific communication protocol. Every standalone
slice switches (201, 202, 203 and 204) will not be influenced
by others. In the method, the controller 22 can still operate
under its original design, e.g., operating under the OpenFlow
protocol, since the controller 22 regards the connected slice
switches as the physical switches.

[0029] The system for simulating the network topology
using the physical machine is scalable since the network
topology can be expanded by assembling multiple physical
switches. The multiple physical switches can simulate more
slice switches that can be interconnected via multiple physi-
cal connections. The slice switches connect with the con-
troller 22 via multiple simulated connections by one or more
management interfaces. The controller 22 controls the slice
switches via the physical connections that are used to
connect with the physical switches.

Oct. 25, 2018

[0030] A front panel of the physical switch 20 is sche-
matically shown in FIG. 2B. There are 16 physical ports
disposed on the panel. The physical ports can be divided for
simulating multiple slice switches (201, 202, 203 and 204).
The slice switches (201, 202, 203 and 204) are intercon-
nected via one or more physical connections, e.g., the RJ-45
or fiber. The diagram also shows that the slice switches (201,
202, 203 and 204) connect with the terminal devices (PC3,
PC4, PC5 and PC6) respectively. The slice switches (201,
202, 203 and 204) are divided from the physical switch 20.
Every slice switch simulates the SDN switch in accordance
with the present disclosure.

[0031] It should be noted that only the slice switches and
virtual ports thereof being required to be reconfigured for the
original network topology are changed. The slice switches
and virtual ports thereof can be reconfigured by renumbering
the virtual port numbers and modifying the port-mapping
table that records the one-to-one connection relationship
between the physical ports and the virtual ports. Therefore,
the physical connections among the physical/virtual ports
need not be changed even if the network topology is
changed. Compared to the conventional network system or
the software-based simulation of the network, the simulation
system in accordance with the present disclosure provides an
easier and faster way to respond to the change of the network
topology by modifying various lookup tables. It is noted that
it is not easy for the conventional network system to change
its network topology, and the software-based simulation of
the network requires reconfiguring the test method so as to
respond to any change of the network topology.

[0032] In the simulation system, a control circuit for
processing the incoming and outgoing packets is installed in
the physical switch. The control circuit is such as a control
circuit for network physical layer (PHY) that is used to
control operations of the connection ports. While the system
simulates a specific network topology, the packets transmit-
ted among the connection ports and the different slice
switches operate in a line rate.

[0033] FIG. 3 shows a block diagram describing a circuit
system of the physical switch in one embodiment of the
present disclosure. One of the circuit components of a
physical switch 30 is a processor 303 that is used to process
the packets incoming and outgoing among physical ports 31
and 32. The processor 303 executes the simulation instruc-
tions according to the configuration of the virtual ports for
simulating the network topology. The processor 303 is also
used to manage the operation of PHY controllers 301 and
302 of multiple physical ports 31 and 32 of the physical
switch 30. The first PHY controller 301 and the second PHY
controller 302 respectively control a plurality of physical
ports (31) and physical ports (32). In the current example,
the first PHY controller 301 controls eight connection ports,
and the second PHY controller 302 controls the other eight
connection ports. Every physical port is used to connect to
one network device.

[0034] The first PHY controller 301 and the second PHY
controller 302 are respectively given their unique PHY IDs.
Every physical port (31 or 32) has its own interface ID, e.g.,
the port number. While the physical switch 30 is in opera-
tion, the packet transmitted through the connection ports
will carry the information such as the PHY IDs and interface
IDs corresponding to the sources and destinations. In par-
ticular, when the physical switch is divided into several slice

US 2018/0309641 Al

switches, those PHY IDs and interface IDs allow the packet
to be transmitted among the connection ports and the slice
switches.

[0035] It is worth noting that, when the slice switches are
used to simulate the network topology, the incoming and
outgoing packets among the slice switches are processed by
the first PHY controller 301 and the second PHY controller
302. The controllers (301, 302) are used to perform the
processes such as packet matching, forwarding and trans-
mission. Under this scheme, a specific line rate can be
implemented over the physical connections, but not be
affected by the data processing capability of the physical
switch 30. Therefore, the system for simulating the network
topology in accordance with the present disclosure retains a
high accuracy of the test since the simulation will not be
restricted by the hardware limitation of the processor 303 of
the physical switch 30.

[0036] In the method for simulating the network topology
with the physical switch 30 in accordance with the present
disclosure, the two sets of physical ports 31 and 32 of the
physical switch 30 can be divided for simulating the virtual
ports associated to the multiple slice switches. The virtual
ports are required to be renumbered. The information such
as the numbers of the virtual ports and their corresponding
physical port numbers is stored in a memory 304. In one
aspect of the disclosure, the memory 304 of the physical
switch 30 is non-transitory storage medium, and can be an
external storage. The memory 304 is electrically connected
with the processor 303. The data stored in the memory 304
includes operating programs for performing the simulation
method that are executed by the processor 303. The data in
the memory 304 also includes the information such as slice
switch numbers and the virtual port numbers that are used to
conduct the method. The above-mentioned scheme imple-
ments a set of conversion logics that allow the system to
operate multiple slice switches using one or more physical
switches. One of the approaches is to provide several lookup
tables. The lookup tables can effectively prevent the con-
flictions when the flow rules running in the multiple slice
switches are operated in one physical switch at the same
time.

[0037] The physical switch 30 has a management interface
305 for connecting with the external devices. The manage-
ment interface 305 is electrically connected with the pro-
cessor 303. The management interface 305 is used to con-
nect with the controller 33 of the network topology. The
controller 33 controls the multiple slice switches simulated
by the physical switch 33 according to the slice switch
numbers.

[0038] According to one of the embodiments of the simu-
lation method, the slice switches have their own flow rules.
The flow rule records the information regarding an output
port in response to the destination of the packet. The flow
rule allows the system to determine an output port according
to the destination parsed from the incoming packet and the
given VLAN ID. For example, in FIG. 1, the two slice
switches 10a and 105 respectively connected to the terminal
devices PC1 and PC2 form a network topology. The topol-
ogy forms consecutive connections among the terminal
device PC1, the first slice switch 10a, the second slice switch
105, and the terminal device PC2.

[0039] For example, a packet is created in the terminal
device PC1 and configured to be transmitted to the terminal
device PC2. The flow rule of the first slice switch 10a is used

Oct. 25, 2018

to know that the destination is the terminal device PC2
connected to the second slice switch 105, and determine that
the packet is forwarded through the connection port 101 and
outputted via the connection port 102. When the second slice
switch 105 receives the packet via the connection port 103,
the second slice switch 105 knows that the destination is the
terminal device PC2 by parsing the packet. A flow rule of the
second slice switch 105 is used to output the packet to the
terminal device PC2 via the connection port 104.

[0040] It should be noted that the flow rule of the first slice
switch 10a and the flow rule of the second slice switch 105
cannot be stored in the same flow table since the flow rules
of different switches may conflict with each other and the
processor of the physical switch cannot deal with the flow
rules in confliction. A mechanism of new port numbers or
IDs is therefore introduced. The mechanism that allows the
system to renumber the connection ports in the slice
switches is incorporated in the simulation system.

[0041] The connection ports of the physical switch are
firstly given port numbers such as the mentioned interface
IDs, and then the connection ports in the slice switches are
given the VL AN IDs. For overcoming the confliction among
the slice switches, each slice switch is also given a unique
range of the VL AN IDs for its ports. Therefore, the packet
will be given a port number and a VL AN ID when it passes
through every slice switch. The packet can be successfully
forwarded among the slice switches based on the informa-
tion of the ports and the VLAN IDs recorded in the lookup
tables.

[0042] Each slice switch is configured to have a unique
switch ID, e.g., a slice switch number. The slice switch
provides a routing function, and the slice switch numbers for
the slice switches are referred to as the datapath IDs for
identifying the routing paths while the packet is forwarded
in the slice switches. Every slice switch has a datapath ID
that allows the controller to identify the slice switch. The
virtual ports in every slice switch are configured to have the
virtual port numbers, e.g., vportl, vport2, etc. The virtual
port numbers may be renumbered starting from 1 or 0. Every
virtual port number corresponds to one physical port num-
ber, e.g., portl, port2, etc. The correspondences between the
virtual port numbers and the physical port numbers are
recorded in a port-mapping table. The port-mapping table is
used to store numbers of multiple virtual ports of every slice
switch and numbers of multiple physical ports of the physi-
cal switch.

[0043] The controller of the system is such as the SDN
controller. For the controller, every connected slice switch is
an independent and distinct switch. Every slice switch has its
own flow rules. Within a specific network topology, there is
a connection relationship between the slice switches. There-
fore, a forwarding flow rule will be formed based on the two
flow rules of the two slice switches. The forwarding flow
rule is recorded in a bridging flow table that is stored in the
memory of the physical switch. The bridging flow table
records at least one destination address, e.g., an IP address
or a port number, and VLAN IDs. The destination and a
VLAN ID will be carried in a header of the packet.

[0044] Each slice switch is given a certain range of
non-overlapped VLAN IDs different from other slice
switches. The distinct range of VLLAN IDs allows the system
to identify the flow rule of the slice switch in the bridging
flow table. In practice, the range of VLAN IDs can be
flexibly adjusted. If the field of VLAN ID recorded in the

US 2018/0309641 Al

bridging flow table and the packet header has 12 bits, the
number of available VLAN IDs reaches 2'?>=4096, which is
sufficient to allocate the distinct ranges of VLAN IDs to the
different slice switches.

[0045] Still referring to FIG. 1, the example shows two
slice switches (10a, 105) divided from one physical switch.
The example shows the range of VLLAN IDs of the first slice
switch 10a is given 1 to 10 ([1,10]), and the range of VLAN
IDs of the second slice switch 105 is given 11 to 20
([11,20]). When the packet entering one of the slice switches
does not carry any VLAN ID, namely no VLAN tag is
carried by the packet; the system will push a VLLAN tag into
the packet header and also give the packet a VLAN ID
according to the range of VLAN IDs of the slice switch
where the packet enters. This scheme allows the entering
packet without a VLLAN tag to match the flow rule recorded
in the bridging flow table by the given VLLAN tag. Therefore,
the flow rule of the slice switch can be applied to the entering
packet. The port-mapping table recording the conversion
between the virtual ports and the physical ports is also
applicable to the entering packet. The flow rules of the slice
switches will not be in confliction because different slice
switches are given different ranges of VLAN IDs.

[0046] The slice switch parses the header of the entering
packet so as to acquire destination information. The system
determines the virtual port number of an output port and
forwards the packet to be outputted from the current slice
switch according to the destination information. Before the
packet leaves a processing pipeline of the current slice
switch, the system will pop off the pushed VLAN tag and
restore the packet back to its original state. The packet is
then outputted from the slice switch.

[0047] The simulation method can be referred to in the
flow chart shown in FIG. 4.

[0048] A packet enters a node of a network under test in
step S401. The node of the network is such as a slice switch
divided from a physical switch. A port-mapping table shown
as Table 1 is applied to identify the slice switch receiving the
packet and the corresponding virtual port, as in step S403.
The Table 1 records the numbers of the virtual ports of the
slice switch and their corresponding numbers of the physical
ports of the physical switch. For example, the physical ports
are numbered as 1, 2, 3 and 4 that correspond to the
renumbered virtual port numbers 1/1, 1/2, 2/1 and 2/2
respectively to the slice switches 10a and 105. In the current
example, the physical ports numbered as 1 and 2 are for the
first slice switch, and the physical ports numbered as 3 and
4 are for the second slice switch.

[0049] A previous code “1” of “1/1” in the second column
indicates the first slice switch 10a. A later code ‘1 of “1/1°
in the second column indicates the first port number of the
first slice switch 10a. Similarly, a previous code ‘1’ of “1/2’
indicates the first slice switch 10a, and the later code ‘2’ of
‘1/2’ indicates the second port number of the first slice
switch 10a. Further, a previous code ‘2° of ‘2/1” in the
second column indicates the second slice switch 105, and the
later code ‘1’ of “2/1” indicates the first port number of the
second slice switch 105. Still further, a previous code ‘2° of
2/2” indicates the second slice switch 105, and the later code
2’ of “2/2’ indicates the second port number of the second
slice switch 105.

Oct. 25, 2018

TABLE 1

physical port number slice switch/virtual port number

1/1
172
211
212

Bowro o~

[0050] In step S405, a software-based process operating in
the switch parses the entering packet and obtains the infor-
mation of destination and whether or not the packet carries
a VLAN tag. In step S407, a VLAN conversion table shown
in Table 2 is applied to push a VL AN tag to the simulated
packet entering the slice switch. Applying the VLAN con-
version table for giving the packet the new VL AN tag is in
accordance with operation of the slice switch in the system.
The VL AN conversion table ensures that the packet can be
successfully forwarded in the system to the destination. The
VLAN conversion table is configured to record a VL AN tag
set to the slice switch where a packet enters, and store a
VLAN ID, recorded in the VLAN tag, corresponding to
every virtual port of every slice switch. The first column of
Table 2 records physical port numbers 1, 2, 3 and 4, and the
second column is used to record if the header of the packet
records any VLAN ID. When the second column of the
Table 2 is filled with -’, it shows non-VL AN tag state that
means no VL AN tag is carried in the header of the packet.
When the second column is not filled with -*, it shows that
an original VLAN ID has been set in the entering packet.
When the value of second column is ‘1°, it shows that the
original VLAN ID of the packet is ‘1’ entering from a
physical port. The information of the third column of Table
2 indicates that a new VLAN ID is pushed to the packet or
is used to replace the original VLAN ID. In the current
example, the first virtual port of the first slice switch ‘1/1°
corresponds to the physical port number ‘1°. If the entering
packet has no VLAN ID, indicated by the filled in the second
column of the Table 2, the system will push a new VLAN ID
‘1 to the packet. On the contrary, if the packet entering the
first slice switch via the virtual port “1/1” corresponding to
the physical port number ‘1’ has carried an original VLAN
1D “1°, the system will use a new VLAN ID ‘2’ to replace
the original VLAN ID ‘1’ of the packet. While the Table 2
is applied, the VLAN ID ‘1’ and the VLAN ID 2’ are for the
internal use of the first slice switch. The VLAN ID ‘11’ and
the VLAN ID ‘12’ are for the internal use of the second slice
switch. Before the packet leaves the first slice switch or the
second slice switch, the system will pop off the pushed
VLAN ID or restore the modified VLAN ID to its original
VLAN ID according to the Table 2.

[0051] It should be noted that the system provides a new
VLAN ID to substitute the original VLAN ID of the packet
if the entering packet has carried the original VLAN ID. The
system prevents the given VLAN ID from being redupli-
cated with the VLAN ID in use, namely each slice switch is
configured to have a range of multiple VLAN IDs and the
ranges of VLAN IDs do not overlap with those of other slice
switches.

TABLE 2

physical port number original VLAN ID VLAN ID

1 — 1
1 1 2

US 2018/0309641 Al

TABLE 2-continued

physical port number original VLAN ID VLAN ID
2 — 1
2 1 2
3 — 11
3 1 12
4 — 11
1 12

[0052] When the entering packet is pushed with a new
VLAN ID, the packet then belongs to the given VLAN. A
corresponding flow rule is then applied to the packet that
enters the slice switch. Table 3 shows an output port table
that is configured to record a destination of a packet and an
output port given to the packet corresponding to the VLAN
ID according to the destination. The flow rule allows the
system to process the packet with its new VLAN ID, as in
step S409. The flow rule is recorded in the bridging flow
table stored in the memory of the physical switch. The flow
rule is used to determine an output port according to the
destination parsed from the entering packet.

[0053] In step S411, the destination information can be
parsed from the packet. The destination is exemplified as the
terminal device PC1 (MAC address: 00:00:01) or the ter-
minal device PC2 (MAC address: 00:00:02) shown in FIG.
1. When a flow rule is applied to the packet, in view of the
Table 3 and Table 2, an output physical port can be deter-
mined according to the destination and the VLAN ID.

[0054] For example, references are made to Table 3 and
the embodiment shown in FIG. 1. When the destination of
the packet is the terminal device PC1 (MAC address:
00:00:01) and its new VLAN ID is ‘1°, the output physical
port will be the port with number ‘1.” When the destination
of the packet is the terminal device PC1 (MAC address:
00:00:01) and its new VLAN ID is “11°, the output physical
port will be the port with number ‘3.” When the destination
of the packet is the terminal device PC2 (MAC address:
00:00:02) and its new VLAN ID is ‘1°, the output physical
port will be the port with number ‘2.” When the destination
of the packet is the terminal device PC2 (MAC address:
00:00:02) and its new VLAN ID is ‘12, the output physical
port will be the port with number ‘4.

TABLE 3
destination VLAN ID output port number
00:00:01 1 1
00:00:01 2 1
00:00:01 11 3
00:00:01 12 3
00:00:02 1 2
00:00:02 2 2
00:00:02 11 4
00:00:02 12 4
[0055] Finally, such as in step S413, before the packet

passes through the output physical port, the system pops off
the given VL AN ID and restores back to its original VLAN
tag or non-VLAN tag state. The original content of the
packet will be completely retained. Table 4 is used to
perform the pop-off and restoration processes. Table 4 is a
pop-off VLAN-tag table that is configured to record every
VLAN ID and a corresponding original VLAN ID associ-

Oct. 25, 2018

ated with the packet. Table 4 shows a reversed correspon-
dence of Table 2. The first column of Table 4 records the
VLAN IDs of the slice switch. In the current example, the
VLAN IDs are exemplified as “1°, ‘2, ‘11” and ‘12.” The
pop-off process restores the packet to have its original
VLAN IDs 1°, and ‘1. The symbol on the second column
indicates that the pushed VLAN ID of the packet will be
restored to its non-VL AN tag state. The VLAN ID ‘1’ on the
second column means that the packet with the modified
VLAN ID ‘2’ or 12 after it enters the slice switch will be
restored back to its original VLAN ID 1’ before it leaves the
slice switch.

TABLE 4
VLAN ID original VLAN ID
1 _
2 1
11 —
12 1

[0056] The packet is then outputted via an output port. If
the packet is then forwarded to the other slice switches, the
procedure described in FIG. 4 will be repeated. Accordingly,
a new set of port-mapping table, VLAN conversion table,
output port table and pop-off VLAN-tag table will be
re-applied to the packet that enters the other slice switches.
[0057] Reference is made to FIG. 5 showing a flow chart
that describes the operation of the simulation system in one
embodiment of the present disclosure. The flow chart
describes the process when a packet enters the slice switches
that are simulated with a physical switch. The physical
switch is divided into multiple slice switches for simulating
a network topology. The packet is launched by a terminal
device connected to the network, e.g., a Software-Defined
Network. A controller connected to the physical switch
controls a whole operation of the system, namely the SDN
controller can connect with the slice switches via physical or
virtual connections and controls the flow rules of every slice
switch.

[0058] In the beginning, the terminal device generates the
packet. The packet enters the network via a virtual port of
one of the slice switches, such as in step 51. AVLAN ID, a
source address and a destination address can be obtained by
parsing the header of the packet. The simulation system is
implemented through a circuit system inside the physical
switch. A port-mapping table is incorporated, such as in step
52. The port-mapping table records the virtual port receiving
the packet and its corresponding physical port.

[0059] Next, the system determines whether or not the
packet carries an original VLLAN tag, such as in step 53. The
original VL AN tag may be given to the packet by a previous
network device. Without changing the original content of the
packet, the system incorporates a VLAN conversion table,
such as in step 54. If the packet does not carry any VLAN
tag, the system pushes a new VLAN tag to the packet in
response to the virtual port receiving the packet. The VLAN
conversion table is used to push a new VLAN tag. If the
packet has carried an original VLAN tag, the system uses a
new VLAN ID to substitute its original VLAN ID in
response to the virtual port receiving the packet. The infor-
mation regarding the correspondence between the pushed
VLAN tag and the original VLAN tag is buffered in a
memory.

US 2018/0309641 Al

[0060] A bridging flow table is then applied, such as in
step 55. The bridging flow table can be retrieved from the
SDN controller or a memory of the physical switch. When
a flow rule of the slice switch is applied, the system operates
with the new pushed VLAN ID. An output port table is used
to determine an output port according to the destination and
the given VLLAN ID, such as in step 56. Before the packet
is outputted, the system pops off the given VLAN tag
according to the pop-off VLAN-tag table, such as in step 57,
and restores the packet to its original state such as its
non-VL AN tag state or its original VLAN ID. The packet
with its original content is then outputted, such as in step 58.
[0061] The following charts show the experimental results
that are used to demonstrate the advantage of using a
physical machine to simulate a network topology in accor-
dance with the present disclosure as it compares with the
method of the conventional software emulation.

[0062] FIG. 6 is a chart showing two curves that indicate
the achieved throughputs respectively measured by the
simulation system using the physical machine and by the
software-based emulation under different target throughputs.
The experimental results of the average achieved through-
puts were based on six TCP flows in a 300-second period.
[0063] The vertical axis of the chart represents the average
achieved throughputs (Gbit/sec), and the horizontal axis
represents the target throughputs (Gbit/sec). An achieved
throughput curve 61 is measured by the system for simu-
lating the network topology using the physical machine in
accordance with the present disclosure. The achieved
throughput curve 61 shows that the achieved throughputs
increase greatly with the increment of the target throughputs,
and almost proportional to the target throughputs. The
achieved throughput curve 61 shows that the simulation
system can correctly reflect the actual condition of the
network. On the contrary, the achieved throughput curve 62
shows that the achieved throughputs simulated by the soft-
ware-based emulation cannot increase with the increment of
the target throughputs even though the curve 62 increases in
the beginning. When the target throughput reaches 6 Gbit/
sec, the achieved throughput curve 62 descends. The
achieved throughput curve 62 shows that the software-based
emulation cannot correctly reflect the actual condition of the
network to be simulated. The software-based emulation gets
stuck when it reaches a high target throughput.

[0064] FIG. 7 is a chart showing two throughput deviation
curves that respectively show the deviations when the simu-
lation system and the software-based emulation perform
network simulation. The wvertical axis represents the
throughput deviation (Gbit/sec) and the horizontal axis
represents the target throughput (Gbit/sec).

[0065] The chart shows that the throughput deviation
curve 71 made by the simulation system using the physical
machine retains in a small amount of deviation with the
target throughput increases. The chart also shows the
throughput deviation curve 72 made by the software-based
emulation stays a status with high throughput deviation.
Therefore, the system for simulating the network topology
using the physical machine in accordance with the present
disclosure does not produce excessive throughput deviation
even though it simulates a higher target throughput of the
network. Therefore the simulation system provides a better
simulation approach.

[0066] FIG. 8 is another chart showing the CPU usage
curves with respect to the simulation system using the

Oct. 25, 2018

physical machine and the software-based emulation. The
vertical axis represents the percentage of CPU usage (%)
and the horizontal axis represents the target throughput
(Gbit/sec).

[0067] The conventional software-based emulation is
operating in a computer system. The simulation relies on the
processing capability of the CPU and performance of the
memory or buffer of the computer. However, the hardware
performance will decrease as the amount of data increases.
The CPU usage curve 82 made by the software-based
emulation shows that the emulation costs a high CPU usage
(%) and the CPU usage varying with the target throughput
increases. As compared to the conventional software-based
emulation that may output incorrect simulation result
because its hardware strongly affects its simulation perfor-
mance, the network simulation running in the simulation
system will not be influenced obviously with the target
throughput that increases since the simulation system is a
hardware-based system using the physical switch that is
originally designed for processing the network packets. As
the CPU usage curve 81 shows, the CPU usage of the
simulation system retains at a low level even though the
system simulates a high target throughput.

[0068] To sum up, the simulation system of the present
disclosure utilizes a physical switch to run multiple slice
switches for simulating the network topology. The system
has scalability for expanding its simulated network topology
using one or more physical switches. The hardware-based
simulation method and system provide a stable and a high
performance network simulation according to the experi-
mental data, and also achieve a low-cost solution in which
a physical machine is used to simulate the multiple switches
of the network applicable to overcome the problems that the
software-based emulation would encounter.

[0069] It is intended that the specification and depicted
embodiments be considered exemplary only, with a true
scope of the invention being determined by the broad
meaning of the following claims.

What is claimed is:

1. A method for simulating a network topology using a
physical machine, wherein the method is adapted to a system
with a physical switch having a plurality of physical ports,
in which the physical switch is divided into multiple slice
switches according to a topology, every slice switch includes
a plurality of virtual ports in which every virtual port
corresponds to a physical port, every slice switch simulates
a node of a network, and every virtual port simulates a
connection port of the node; the method comprising:

one of the slice switches divided from the physical switch

receiving a packet;

applying a port-mapping table and identifying the slice

switch receiving the packet and a corresponding virtual
port, wherein the virtual port corresponds to a physical
port of the physical switch;

parsing the packet for acquiring information of a desti-

nation and whether or not any VL AN tag is carried by
the packet;

applying a VLAN conversion table to give the packet a

VLAN tag if the packet has not carried a VLLAN tag or
replace the original VL AN ID in the packet with a new
VLAN ID if the packet has carried the VLAN tag in
accordance with the virtual port receiving the packet,
wherein the VL AN tag records a VLAN ID;

US 2018/0309641 Al

applying an output port table and applying a flow rule to
the packet for determining an output port according to
the destination and the given VLAN ID; and

popping off the given VLAN tag from the packet if the
packet originally has not carried a VL AN tag or restor-
ing the modified VLLAN ID back to its original VLAN
ID if the packet originally has carried the VL AN tag,
and outputting the packet via the output port.

2. The method as recited in claim 1, wherein the network
topology is expanded by assembling multiple physical
switches.

3. The method as recited in claim 1, wherein, if the packet
entering the slice switch has already carried an original
VLAN ID, the VLAN ID is provided to substitute the
original VLAN ID; if the packet does not carry the original
VLAN ID, the VLAN ID is given to the packet.

4. The method as recited in claim 3, wherein every slice
switch is configured to have a range of multiple VLLAN IDs,
and the ranges of VLAN IDs are not overlapped among
other slice switches.

5. The method as recited in claim 4, wherein the network
topology is expanded by assembling multiple physical
switches.

6. The method as recited in claim 1, wherein the flow rules
of every slice switch are recorded into a bridging flow table
in a memory of the physical switch.

7. The method as recited in claim 6, wherein the flow rule
records an output port in response to the destination of the
packet.

8. The method as recited in claim 7, wherein the network
topology is expanded by assembling multiple physical
switches.

9. A system for simulating a network topology using a
physical machine, comprising:

a physical switch having multiple physical ports, the
physical switch being divided into a plurality of slice
switches according to a network topology, in which
every slice switch includes a plurality of virtual ports
and every virtual port corresponds to a physical port;
wherein every slice switch simulates a node in a
network, and every virtual port simulates a connection
port of every node; and

a non-transitory storage medium storing a slice switch
number for every slice switch and a virtual port number
for every virtual port, comprising:

Oct. 25, 2018

a port-mapping table configured to record numbers of
multiple virtual ports of every slice switch and
numbers of multiple physical ports of the physical
switch; and

a VLAN conversion table configured to record a VLAN
tag set to the slice switch where a packet enters, and
store a VLAN ID, recorded in the VLLAN tag, cor-
responding to every virtual port of every slice
switch;

an output port table configured to record a destination
of a packet and an output port given to the packet
corresponding to the VLAN ID according to the
destination; and

a pop-off VLAN-tag table configured to record the
VLAN ID and an original VLAN ID corresponding
to the packet.

10. The system as recited in claim 9, wherein the network
topology is expanded by assembling multiple physical
switches.

11. The system as recited in claim 9, wherein a quantity
and numbers of the multiple virtual ports of every slice
switch are dynamically changeable in response to the net-
work topology.

12. The system as recited in claim 9, wherein the physical
switch further comprises a management interface that is
used to connect to a controller of the network topology, and
the controller controls the multiple slice switches simulated
by the physical switch according to the slice switch num-
bers.

13. The system as recited in claim 12, wherein the
management interface is used to simulate a plurality of
connections between the slice switches and the controller
according to the number of the slice switches, and each
connection is identified by a network ID.

14. The system as recited in claim 13, wherein the
network topology forms a Software-Defined Network and
the controller is specified to the Software-Defined Network.

15. The system as recited in claim 14, wherein the
network topology is expanded by assembling multiple
physical switches.

16. The system as recited in claim 9, wherein non-
transitory storage medium stores a bridging flow table that
is used to store the flow rules for every slice switch.

17. The system as recited in claim 16, wherein the
network topology is expanded by assembling multiple
physical switches.

