US 20180357056A1

a2y Patent Application Publication o) Pub. No.: US 2018/0357056 A1

a9y United States

YANG et al.

43) Pub. Date: Dec. 13, 2018

(54) BINARY-CODE TRANSLATION DEVICE AND
METHOD

(71)  Applicant: NATIONAL CHIAO TUNG
UNIVERSITY, Hsinchu City (TW)

(72) Inventors: Wuu YANG, Hsinchu City (TW);
Tsung-Chun LIN, Taichung City (TW)

(21) Appl. No.: 15/712,158

(22) Filed: Sep. 22, 2017

(30) Foreign Application Priority Data

Jun. 9, 2017 (TW) o 106119320

Publication Classification

(51) Int. CL

GO6F 9/45 (2006.01)

200
~

\\ 3

source
Processor
4

220

~
Source

(52) US.CL
CPC oo GOGF 8/52 (2013.01); GOGF 8/4441
(2013.01)

(57) ABSTRACT

A binary-code translation device includes a translation cir-
cuit, a memory and a processor. The processor executes a
first program code translated from a second code by the
translation circuit. The first program code is temporarily
stored in the memory and has a program execution address.
At least one function library is temporarily stored in the
memory and includes a first and a second function, which
are located at a first and a second function address in the
memory respectively. When the processor is still executing
the first program code and calls the first function, the
translation circuit translates the first program code to acquire
the second function subsequent to the first function, and the
processor acquires the second function address. When the
first program code calls the first function and the first
function is executed completely, the processor directly
executes the second function without returning to the pro-
gram execution address.

100

i
{

target processory—1"

i

target program {4
code

{

program code

= 130
translation |4’
circuit
. ; NP {40
FOSTAM~-C
Wl P1OZ code P

receiving circuit




US 2018/0357056 Al

Dec. 13,2018 Sheet 1 of 6

Patent Application Publication

[ 'S

o Buraiz00r
aer || epoo-wesdord
2O
1 uonwsurh
3 . %
apod
~+—" wieiBosd 108m
071 %
et 30853003d 19810
011
S
\\\
001

apod wesdoxd

IJIN0S
077
¥
y 108san01d
- 3008
<
007




US 2018/0357056 Al

Dec. 13,2018 Sheet 2 of 6

Patent Application Publication

Z "S14

Pulets FurA12001
e
gt spos-weigord
PNoHD
~1 uonepsuen
ot H M ,
Ipoo
0FT wradosd o8 0c1
v /
e 308800034 108081 g AJOUHa
Ot
)
001




US 2018/0357056 Al

Dec. 13,2018 Sheet 3 of 6

Patent Application Publication

e

U9

¢ 314

JHERtcela]

Oraunyg

A

Mgkt

Jrqung

v

Ozsung
{1sung
0z ,H
] UMD
HEx UO1IRISUBL]
//i/ H
“a Ozaung
o Uraund
™ e = \\ﬁ
e '
T !




US 2018/0357056 Al

Dec. 13,2018 Sheet 4 of 6

Patent Application Publication

v "314

SS2IPPE uonndaxs urerdosd oyl 01 Fuiuinos MORA SSATPPE BoLOUNY
PUO3S oY) 32 P2IBd0] UCGHDUN] 10318 PUOISS O] SAM00N0 A[0anp
rossaooad 12881 2 “Aje1Rduos pamooxs st uonduny 1031w 185

U3 pu uonduny 108121 181 2 sfen opoo wiwidoud 108501 oy udym

e et

\
3720

ALOUIZEY QU3 Ul P2IEDO] UORouNy 10318} PUOSIS QU3 JO SERIPPR UONOUNY
1edieg puodes 213 sannbov 1osea001d 158181 oy pue ‘wousury i
150y 23 03 1uenbosqns uonouny 15311 PUOdIS K1 UILIGo 0} pajR{sURY
st opoo wridoad 3o3ar o1 ‘wonouny 10818y 18I O S[{ED pup
apos weadoad 1081w o Surnoox I8 51 J085000ud 10818} 3 udyM

Jossasoxd 3o8re) v Ag ynoago
UOTIB[SUBN 3 Ag patelsusy; apod wieadosd 108 oyl Sunnooxe

rmmnna?

\
O1ps

RO GonEsuUen B AQ 9poo
wieadoud 1081w v 01 3poo weadord 30un0s B Fuyssusy




US 2018/0357056 Al

Dec. 13,2018 Sheet 5 of 6

Patent Application Publication

G "SI

105$300xd 3108003 a1 AQ NONONISUY 51 31 FUN00XQ AfUo

sl
0LE8S
SHA
UCTFHIISUT PUODOS O} PUB UONMINISY] 381 13 //
USSMIIG ISIXSI JGRIIBA JY] LM JUBAS|IIH SUOLIDNIISUT [BISADS
1oy FUTUIIISIIP PUR “UOLONIISUI 351y 3y ¢} juanbasqns
$151X3 ALOWISUT OY} IO SS0IPPE PUOIIS ® 01 Y 3](RIIEA
] wﬁ, mﬁﬁmﬁm cmOww ﬁeﬁuz.ﬂwwﬂw @ﬁauum 1] u@ﬁw@ﬁg wﬂMngﬁmwO@
0565
I Y
AU 31 JO SSQIPPE UR (A JUBASIRL
A SO B1QuERA 93 pUE s0ssanoid a8 sy Aq AI0UIBW 2y JO SSAIppR
IXMN 1841 B 01 X QqRLIEA © SULIOIS JOJ UOBOnnsuL 151y 2 unnooys
apod wwidoud
.\\t!il\\ mw © @ ‘.Allllllllll
015s 23IN08 33 WO} pyejsusg opoo weadoxd jo8ses oy Aunnose




US 2018/0357056 Al

Dec. 13,2018 Sheet 6 of 6

Patent Application Publication

9 "31]

10s5a004d 19310 043 AQ BOUSNISH PUOSIS 24 SUNNDIND AJUO
o

0495

»dA

GOTINISUE PUONOS S} PUE UCTIMIFISUE 1811]
OU3 UOOMIS] 151X X O[IBLIZA U3 YA FUBASIILI} SUOLOTLISTY
[RI3A2S J2OYAMIUINTIIINIAP PUE ‘UOROTUISTL 18] 2y} 01 1uanbasgns

- S351X0 AIOUDL 31 WO J2ISIS2Y PUODas B 01 Y dJqeLiRa ON
0595 oy FUISSO008 SO UORIUISHL PUOXOS B IOYIdNM JUruitiinep
ALGUISUE 311 JO SSIPPE UR I JUBASIOL 81
e (X DTGBURA 3 PUR 10580001 19F0R) v AQ 103810 81 v 01 A0tau
0195 2 W04} X 2{gBLEA 7 SUISE300REO NONONNSUT 155 B FuUnosyo
3pos weadoxd
o15s FOH0s B windf paeisuey; opod wedoxd 1031w v Sunnooxo




US 2018/0357056 Al

BINARY-CODE TRANSLATION DEVICE AND
METHOD

CROSS-REFERENCE TO RELATED
APPLICATION

[0001] This application claims priority to Taiwan Appli-
cation Serial Number 106119320, filed Jun. 9, 2017, which
is herein incorporated by reference.

BACKGROUND

Field of Invention

[0002] The disclosure relates to a binary-code translation
device and method, particularly to a dynamic binary-code
translation device and method.

Description of Related Art

[0003] With booming of cloud calculation, cloud data are
accessed and applied between different platforms. Since
different processors are possibly used between the different
platforms and the cloud data are converted between the
different platforms, a cross-platform virtualization technol-
ogy emerges as the times require and becomes an important
key topic of a cloud technology. Dynamic binary-code
translation is a core technology for cross-platform virtual-
ization. In the dynamic binary-code translation process,
indirect branch caused by function returning may lead to a
problem that the processing speed is reduced and thus the
efficiency of the entire system is poor.

SUMMARY

[0004] The disclosure provides a binary-code translation
device including a translation circuit, a memory and a
processor. The translation circuit is configured to translate a
second program code to a first program code. The processor
is configured to execute the first program code translated by
the translation circuit. The first program code is temporarily
stored in the memory and has a program execution address,
at least one function library is temporarily stored in the
memory, the at least one function library includes a first
function and a second function, and the first function and the
second function are located at a first function address and a
second function address in the memory respectively. When
the processor is still executing the first program code and
calls the first function, the translation circuit is utilized to
translate the first program code to acquire the second func-
tion subsequent to the first function, and the processor
acquires the second function address of the second function
located in the memory. When the first program code calls the
first function and the first function is executed completely,
the processor directly executes the second function located
at the second function address without returning to the
program execution address.

[0005] The disclosure also provides a binary-code trans-
lation method including the following steps. A second pro-
gram code is translated to a first program code, wherein the
first program code is temporarily stored in a memory and has
a program execution address, at least one function library is
temporarily stored in the memory, the at least one function
library includes a first function and a second function, and
the first function and the second function are located at a first
function address and a second function address in the
memory respectively. The translated first program code is

Dec. 13,2018

executed by the processor. When the processor is still
executing the first program code and calls the first function,
the first program code is translated to acquire the second
function subsequent to the first function, and the processor
acquires the second function address of the second function
located in the memory. When the first program code calls the
first function and the first function is executed completely,
the processor directly executes the second function located
at the second function address without returning to the
program execution address.

[0006] The disclosure further provides a binary-code
translation device including a processor and a memory.
When the processor executes a first instruction for storing a
variable to a first position of the memory and the variable is
relevant with an address of the memory, if a second instruc-
tion for storing the variable to a second address of the
memory exists subsequent to the first instruction and several
instructions irrelevant with the variable exist between the
first instruction and the second instruction, the processor
only executes the first instruction.

[0007] The disclosure also provides a binary-code trans-
lation device including a processor and a memory. When the
processor executes a first instruction for accessing a variable
from the memory to a first register and the variable is
relevant with an address of the memory, if a second instruc-
tion for accessing the variable from the memory to a second
register exists subsequent to the first instruction and several
instructions irrelevant with the variable exist between the
first instruction and the second instruction, the processor
only executes the second instruction.

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] The invention can be more fully understood by
reading the following detailed description of the embodi-
ment, with reference made to the accompanying drawings as
follows:

[0009] FIG. 1 is a schematic view of binary-code transla-
tion between different devices illustrated in accordance with
an embodiment of the disclosure;

[0010] FIG. 2 is a schematic view of binary-code transla-
tion and execution in a target device illustrated in accor-
dance with an embodiment of the disclosure;

[0011] FIG. 3 is a schematic view of a target program-code
execution function illustrated in accordance with an embodi-
ment of the disclosure;

[0012] FIG. 4 is a flow chart of a method for binary-code
translation and execution in a target device illustrated in
accordance with an embodiment of the disclosure;

[0013] FIG. 5 is a flow chart of a method for binary-code
translation and execution in a target device illustrated in
accordance with another embodiment of the disclosure; and
[0014] FIG. 6 is a flow chart of a method for binary-code
translation and execution in a target device illustrated in
accordance with a further embodiment of the disclosure.

DETAILED DESCRIPTION

[0015] FIG. 1 is a schematic view of binary-code transla-
tion between different devices illustrated in accordance with
an embodiment of the disclosure. Referring to FIG. 1, a
source device 200 includes a source processor 210, and a
source program code 220 is a program code suitable for
being processed in the source processor 210. Further refer-
ring to FIG. 1, in an embodiment, a target device 100 utilizes



US 2018/0357056 Al

a program-code receiving circuit 140 to receive the source
program code 220 from the source device 200. Generally,
the target device 100 and the source device 200 are different
systems. In the target device 100, a translation circuit 130 is
used to translate the source program code 220 in the pro-
gram-code receiving circuit 140 to obtain a target program
code 120 suitable for being processed in a target processor
110.

[0016] Inan embodiment, the target processor 110 may be
an ARM processor, a system on chip (SoC), MIPS processor,
an x86 processor, a digital signal processor (DSP) or a
PowerPC.

[0017] In an embodiment, the source processor 210 may
be an ARM processor, an SoC, an MIPS processor, an x86
processor, a DSP or a PowerPC.

[0018] FIG. 2 is a schematic view of binary-code transla-
tion and execution in a target device 100 illustrated in
accordance with an embodiment of the disclosure. The target
device 100 includes a translation circuit 130, a memory 150
and a target processor 110. The translation circuit 130 is
configured to translate a source program code 220 to a target
program code 120. The target processor 110 is configured to
execute the target program code 120 translated by the
translation circuit 130.

[0019] FIG. 3 is a schematic view of a target program-
code execution function illustrated in accordance with an
embodiment of the disclosure. A target program code 120 is
a program code applicable to a target processor 110, and a
source program code 220 is a program code applicable to a
source processor 210. After a first source function FunS1( )
is called in the source program code 220, a second source
function FunS2( ) is called immediately. The first source
function FunS1( ) and the second source function FunS2( )
both exist in a source function library (not shown). Similarly,
a first target function FunD1( ) and a second target function
FunD2( ) also exist in the target program code 120 translated
from the source program code 220, and after the first target
function FunD1( ) is called in the target code 120, the second
target function FunD2( ) is called immediately. The first
target function FunD1( ) and the second target function
FunD2( ) both exist in the source function library 160.

[0020] FIG. 4 is a flow chart of a method for binary-code
translation and execution in a target device illustrated in
accordance with an embodiment of the disclosure. Referring
to FIGS. 2, 3 and 4 simultaneously, in Step S410, first of all,
a translation circuit 130 translates a source program code
220 to a target program code 120.

[0021] The target program code 120 is temporarily stored
in a memory 150 and has a program execution address. The
program execution address is namely a return address of a
first target function FunD1( ). Generally, the return address
is temporarily stored in a link register, so that after the
function is executed completely, a processor hops back to
the original program execution address to continually
execute the program code. A source function library 160 is
temporarily stored in the memory 150 and includes several
functions, wherein the source function library 160 includes
a first target function FunD1( ) and a second target function
FunD2( ). The first target function FunD1( ) and the second
target function FunD2( ) are located at a first target function
address and a second target function address of the memory
150 respectively.

Dec. 13,2018

[0022] In Step S430, a target processor 110 is configured
to execute the target program code 120 translated by the
translation circuit 130.

[0023] Generally, during static binary-code translation,
since the program code is translated completely, it is known
that it hops to the second target function address of the
second target function FunD2( ) after the first target function
FunD1( ) is executed. Therefore, the second target function
address can be learnt about easily for hopping. However,
during dynamic binary-code translation, since the program
code is not translated completely, and a next section is
translated while a section is executed, the second target
function address is unknown.

[0024] Therefore, in Step S450, the disclosure provides a
mechanism capable of improving processing efficiency of
dynamic binary-code translation. When the target processor
110 is still executing the target program code 120 and calls
the first target function FunD1( ) the target program code
120 is translated to obtain the second target function FunD2(
) subsequent to the first target function FunD1( ) and the
target processor 110 acquires the second target function
address of the second target function FunD2( ) located in the
memory 150.

[0025] Finally, in Step S470, when the target program
code 120 calls the first target function FunD1( ) and the first
target function FunD1( ) is executed completely, the target
processor 110 directly executes the second target function
FunD2( ) located at the second function address without
returning to the program execution address.

[0026] In accordance with the aforementioned steps,
before the first target function FunD1( ) returns, the target
processor 110 has translated the second target function
address from the source program code 220 and directly
executes the second target function FunD2( ) subsequent to
the first target function FunD1( ) by replacing the program
execution address (namely the return address) with the
second target function address, and thus the dynamic binary-
code translation can be more efficient.

[0027] FIG. 5 is a flow chart of a method for binary-code
translation and execution in a target device illustrated in
accordance with another embodiment of the disclosure. In
accordance with the following steps, redundant access of the
memory in the program code can be eliminated.

[0028] Reference is made to FIGS. 2 and 5 at the same
time. First, in Step S510, the target processor 110 executes
the target program code 120 translated from the source
program code 220. In Step S530, the target processor 110
executes a first instruction for storing a variable X0 to a first
address of the memory 150, and the variable XO is relevant
with an address of the memory 150. In Step S550, it is
determined whether a second instruction for storing the
variable X0 to a second address of the memory 150 exists
subsequent to the first instruction, and it is determined
whether several instructions irrelevant with the variable
exist between the first instruction and the second instruction.
If so, it proceeds to Step S570, in which the target processor
110 only executes the first instruction. If not, it returns to
Step S510, in which the target program code 120 is executed
continually.

[0029] Reference is made to FIGS. 2 and 5 and the
following instruction code. The following instruction code is
an example of an instruction for storing data to a memory
according to a step in FIG. 5. An address of the memory is
located in the variable X0, and this definite address can be



US 2018/0357056 Al

learnt only during execution. Between two access instruc-
tions on the same global variable for emulating a register, a
second instruction (it is an access instruction) cannot be
cancelled. It is because in the static binary-code translation
process, it cannot be leant whether an address of an instruc-
tion for storing data to the memory is the same as an address
of the global variable for emulating the register. However, in
the dynamic binary-code translation process, the address of
the memory is an instruction for storing data to the memory
in the variable X0, this address is translated from an opera-
tional instruction of a source memory, and the memory
instruction operating range is a source binary-code image or
an emulated stack provided by a binary-code translation
system. However, the memory address of the global variable
for emulating the register is in the binary-code translation
system itself, and memory blocks of the two instructions are
different. Thus, the second instruction can be cancelled. That
is, in Step S570, the target processor 110 only executes this
first instruction.

%2=load i64*@X0
store 164%0, 164*%1%
%3=load i64*@X0

[0030] Reference is made to FIGS. 2 and 5 and the
following program code. The following program code is an
embodiment of an instruction for storing data to a memory
according to a step in FIG. 5. An address of the memory is
located in the variable X0. Between two storage and access
instructions on the same global variable for emulating a
register, an access instruction (i.e., a second instruction) on
the global variable for emulating the register can be can-
celled (in Step S570). That is, data of the storage instruction
on the global variable for emulating the register is directly
taken for use.

store 164 %2, i64*@X0
store 64 %0, i64* %1
%?3=load i64*@X0

[0031] FIG. 6 is a flow chart of a method for binary-code
translation and execution in a target device illustrated in
accordance with a further embodiment of the disclosure. In
accordance with the following steps, redundant access on
the memory in the code can be cancelled.

[0032] Reference is made to FIGS. 2 and 6 at the same
time. First, in Step S610, a target processor 110 executes a
target program code 120 translated from a source program
code 220. In Step S630, the target processor 110 executes a
first instruction on accessing a variable X0 from a memory
150 to a first register, and the variable X0 is relevant with an
address of the memory 150. In Step S650, it is determined
whether a second instruction for accessing the variable X0
to a second register from the memory 150 exists subsequent
to the first instruction, and it is determined whether several
instructions irrelevant with the variable X0 exist between the
first instruction and the second instruction. If so, it proceeds
to Step S670, in which the target processor 110 only
executes the second instruction. If not, it returns to Step
S610, in which the target program code 120 is executed
continually.

[0033] Reference is made to FIGS. 2 and 6 and the
following program code. The following program code is an

Dec. 13,2018

example of an instruction for accessing data from the
memory according to a step in FIG. 6. An address of the
memory is located in the variable X0. Between two storage
instructions on the same global variable for emulating a
register, a first storage instruction (namely a first instruction)
can be cancelled. That is, in Step S670, the target processor
110 only executes the second instruction.

store 164 %1, i64*@X0
%3=load i64* %0

store 164 %2, i64*@X0

[0034] Although specific embodiments of the disclosure
have been disclosed with reference to the above embodi-
ments, these embodiments are not intended to limit the
disclosure. Various alterations and modifications can be
performed on the disclosure by those of ordinary skills in the
art without departing from the principle and spirit of the
disclosure. Thus, the protective scope of the disclosure shall
be defined by the appended claims.

What is claimed is:

1. A binary-code translation device, comprising:

a translation circuit configured to translate a second

program code to a first program code;

a memory; and

a processor configured to execute the first program code

translated by the translation circuit;

wherein the first program code is temporarily stored in the

memory and has a program execution address, at least
one function library is temporarily stored in the
memory, the at least one function library comprises a
first function and a second function, and the first
function and the second function are located at a first
function address and a second function address of the
memory respectively;

wherein when the processor is still executing the first

program code and calls the first function, the translation
circuit is utilized to translate the first program code to
acquire the second function subsequent to the first
function, and the processor acquires the second func-
tion address of the second function located in the
memory;

when the first program code calls the first function and the

first function is executed completely, the processor
directly executes the second function located at the
second function address without returning to the pro-
gram execution address.

2. The device of claim 1, wherein the second program
code is able to be executed on a second processor, and the
second processor and the processor are processors of dif-
ferent types.

3. The device of claim 1, wherein after the translation
circuit has translated the second program code to the first
program code completely, the processor executes the first
program code.

4. The device of claim 1, wherein when the translation
circuit has not translated the second program code to the first
program code completely, the processor executes the first
program code.

5. A binary-code translation method, comprising:

translating a second program code to a first program code,

wherein the first program code is temporarily stored in
amemory and has a program execution address, at least
one function library is temporarily stored in the



US 2018/0357056 Al

memory, the at least one function library comprises a
first function and a second function, and the first
function and the second function are located at a first
function address and a second function address of the
memory respectively;

causing the processor to execute the translated first pro-

gram code;

translating the first program code to acquire the second

function subsequent to the first function and causing the
processor to acquire the second function address of the
second function located in the memory when the pro-
cessor is still executing the first program code and calls
the first function; and

causing the processor to directly execute the second

function located at the second function address without
returning to the program execution address when the
first program code calls the first function and the first
function is executed completely.

6. The method of claim 5, wherein the second program
code is able to be executed on a second processor, and the
second processor and this processor are processors of dif-
ferent types.

7. The method of claim 5, wherein after the second
program code is translated to the first program code com-
pletely, the processor executes the first program code.

8. The method of claim 5, wherein when the second
program code has not translated the second program code to
the first program code completely, the processor executes the
first program code.

Dec. 13,2018

9. A binary-code translation device, comprising:
a processor; and
a memory,

wherein when the processor executes a first instruction for
storing a variable to a first address of the memory and
the variable is relevant with an address of the memory,
if a second instruction for storing the variable to a
second address of the memory exists subsequent to the
first instruction and several instructions irrelevant with
the variable exist between the first instruction and the
second instruction, the processor only executes the first
instruction.

10. A binary-code translation device, comprising:
a processor; and
a memory,

wherein when the processor executes a first instruction for
accessing a variable from the memory to a first register
and the variable is relevant with an address of the
memory, if a second instruction for storing the variable
from the memory to a second register exists subsequent
to the first instruction and several instructions irrelevant
with the variable exist between the first instruction and
the second instruction, the processor only executes the
second instruction.

#* #* #* #* #*



