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Theory of Nernst Effect in Layered Superconductors

B D Tinh and B Rosenstein
Department of Electrophysics, National Chiao Tung University, Hsinchu 30050, Taiwan,
Republic of China

E-mail: tinhdhsp.ep95g@nctu.edu.tw

Abstract. We calculate, using the time-dependent Ginzburg-Landau (TDGL) equation with
thermal noise, the transverse thermoelectric conductivity αxy, describing the Nernst effect, in
type-II superconductor in the vortex-liquid regime. The method is an elaboration of the Hartree-
Fock. An often made in analytical calculations additional assumption that only the lowest
Landau level significantly contributes to αxy in the high field limit is lifted by including all
the Landau levels. The resulting values in two dimensions (2D) are significantly lower than the
numerical simulation data of the same model, but are in reasonably good quantitative agreement
with experimental data on La2SrCuO4 above the irreversibility line (below the irreversibility
line at which αxy diverges and theory should be modified by including pinning effects).

1. Introduction
The electric field is induced in a metal under magnetic field by the temperature gradient ∇T
perpendicular to the magnetic field H, phenomenon known as Nernst effect [1] (direction of
the electric field being perpendicular to both ∇T and H). Recently the Nernst effect in high
Tc superconductors attracted attention both theoretically [1, 2, 3, 4, 5, 6] and experimentally
[7, 8, 9, 10, 11, 12, 13, 14]. In these materials effect of thermal fluctuations is very strong leading
to depinning of Abrikosov vortices created by the magnetic field in type II superconductor below
second critical field Hc2 (T ). In the mixed state the Nernst effect is large due to vortex motion,
while in the normal state and in the vortex lattice or glass states it is typically smaller. The
Nernst effect therefore is a probe of thermal fluctuations phenomena in the vortex matter, but in
principle could shed some light on the underlying microscopic mechanism of superconductivity
in cuprates.

In low critical temperature superconductors no sign of superconducting fluctuation was
reported as the temperature was raised above Tc2 (H) [15]. In sharp contrast, the appearance
of a fluctuation tail above the critical temperature in the Nernst signal was observed in several
different high-temperature superconductors [8, 9, 10, 11, 14]. The related Ettignhausen effect
was detected as well [7]. At the same time thermal fluctuations in high Tc materials lead to
many other remarkable phenomena, most notably vortex lattice melting and thermal depinning
well studied both experimentally and theoretically over the last two decades, so that the theory
of the Nernst effect should be consistent with the theory of these phenomena.

Theory of the electronic and heat transport (including the Nernst effect) starting from the
phenomenological TDGL equation strongly fluctuating superconductors was developed long ago
[1, 2]. More recently within the same framework Ussishkin et al. [3] calculated perturbatively
the low-field the Nernst effect for T > Tc due to contribution of Gaussian fluctuations and
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obtained results in agreement with microscopic Aslamazov-Larkin [1] calculation. Mukerjee et
al. [5] numerically simulated two dimensional TDGL equation with Langeven thermal noise for
T < Tc and obtained results in reasonable agreement with experimental data on LaSCO at
lower temperature, but the thermoelectric conductivity became independent of magnetic field
at higher temperatures in contrast to experiment. The simulation of this system, even in 2D,
is difficult and it was one of our goals to supplement it with a reliable analytical expression in
the region of the vortex liquid, see Fig. 1. Recent understanding of the vortex matter phase
diagram is summarized in Fig. 1. There are four phases separated by two transition lines [16]:

Bragg glass

Glass

Liquid

Tc

Hc2

Figure 1. The thermodynamic phase diagram

the first order melting line (sometimes called the order - disorder line at lower temperatures,
dashed line in Fig. 1) and the irreversibility (or glass) continuous transition. The melting line
separates crystalline phases from a homogeneous phases, while the glass line (dotted line in
Fig. 1) separates pinned phases from the unpinned ones. The mean field Hc2(T ) line (solid
line in Fig. 1) in strongly fluctuating superconductors becomes a crossover. Both pinning and
crystalline order lead to a strong reduction of the Nernst signal and will not be considered here.
Therefore we will concentrate on the vortex liquid phase (dashed area in Fig. 1) and discuss the
melting line and disorder only as limits of applicability of the theory. The quantitative theory
of the vortex liquid have been developed recently and it was established that the Hartree-Fock
approach for the thermodynamic is close to the convergent Borel-Pade one in the wide region
of the vortex liquid phase [17].

In this paper we revisit the Hartree-Fock calculation in TDGL originally done in Ref. [2] to
obtain explicit expressions for the transverse thermoelectric conductivity αxy in 2D. Typically
only the lowest Landau level contribution was investigated. We extend it to higher Landau
levels necessary for exploring the experimentally accessible parameter region and find range
of applicability of the results due to approximations made, disorder and crystallization. In
this theory the strength of the thermal fluctuations is described by just one dimensionless
adjustable parameter η (closely related to the Ginzburg number Gi). The value of the parameter
is consistent with the melting line calculated in [18].
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2. The Ginzburg-Landau Model in 2D
2.1. Relaxation dynamics and thermal fluctuations
To describe fluctuation of order parameter in thin films or layered superconductors one can start
with the Ginzburg-Landau free energy:

F = s

∫
d2x

h̄2

2m∗ |Dψ|2 + a|ψ|2 +
b′

2
|ψ|4, (1)

where A = (−By, 0) describes a constant and practically homogeneous magnetic field (we
generally neglect small fluctuations of the magnetic field due to magnetization of order
1/κ2 << 1 in the region of interest) in Landau gauge and covariant derivative is defined
by D ≡ ∇ − i(2π/Φ0)A, with Φ0 = hc/e∗, e∗ = −2e > 0. For simplicity we assume
a(T ) = α(T − TΛ), although the temperature dependence can be easily modified to better
describe the experimental coherence length. The “mean field” critical temperature TΛ depends
on the ultraviolet (UV) cutoff Λ specified later. It is higher than measured critical temperature
due to thermal fluctuations on the mesoscopic scale. The thickness of a layer is s. We apply
this model to describe experiments on overdoped LaSCO [12].

Since we are interested in transport phenomena, it is necessary to introduce some kind of
dynamics for the order parameter. The simplest is a gauge-invariant version of the “type A”
relaxational dynamics,

τ

(
∂

∂t
+ i

e∗

h̄
φ

)
ψ = − δF

δψ∗
+ ζ, (2)

called in the present context TDGL equation. Explicitly the TDGL equation for the
superconducting order parameter is

τ

(
∂

∂t
+ i

e∗

h̄
φ

)
ψ =

h̄2

2m∗D
2ψ − aψ − b′|ψ|2ψ + ζ, (3)

where φ (x) is the scalar potential describing electric field. To incorporate the thermal
fluctuations via Langeven method, the noise term ζ (x, t), having Gaussian correlations

s〈ζ∗(x, t)ζ(x′, t′)〉 = 2Tτδ(x− x′)δ(t− t′), (4)

introduced. Here δ(x− x′) is the two-dimensional δ function of the in-plane coordinates.

2.2. The heat and the electric transport
We start from the definition of the transport coefficients. Generally the electric and heat
transport current densities, j(e) and j(h), in metal are related to the applied (sufficiently weak)
electric field and the temperature gradient by

j
(e)i
tr = σijEj − αij∇jT, (5)

j
(h)i
tr = α̃ijEj − κij∇jT, (6)

where, σ, α, α̃, and κ are the electrical, the thermoelectric, the electrothermal, and the thermal
conductivity components of the conductivity tensor (i, j = x, y). The Onsager relations implies
α̃ = Tα. The Nernst coefficient (νN ), under the condition jetr = 0 , is expressed in terms of the
above coefficients as

νN =
Ey

(−∇T )xB
=

1
B

αxyσxx − αxxσxy

σ2
xx + σ2

xy

. (7)
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If the system shows no significant Hall effect (only such systems will be considered), then σxy = 0
and the expression simplifies:

νN =
αxy

Bσxx
. (8)

Since near Hc2 (T ) magnetization is very small (of order 1/κ2 ' 10−4 for high Tc materials
and in most of the cases the magnetization contributions vanish), we replace the transport
currents by the total currents

〈
jh

〉
= − h̄2

2m∗

〈(
∂

∂t
− i

e∗

h̄
φ

)
ψ∗

(
∇− i

2π

Φ0
A

)
ψ

〉
+ c.c. (9)

These assumptions were extensively discussed in a textbook [1] and [5].

3. The transverse thermoelectric conductivity in the vortex liquid phase
At low temperatures vortex matter organizes itself into a (usually, but not always) hexagonal
vortex lattice. When disorder can be effectively neglected (either in very clean materials or
when thermal depinning occurs), one can consider transport of the vortex lattice as a whole.
Expressions for the electric and the thermal conductivities near Hc2 (T ) neglecting thermal
fluctuations were obtained in [2], and according to results the Nernst effect is generally very
small compared to one in the vortex liquid. This can be qualitatively understood as a result of
rigidity of the lattice. Below the melting line the situation in this respect does not change much.
Moreover due to unavoidable presence of disorder, the vortex lattice is pinned forming a Bragg
glass in most of its domain [16]. However in high Tc superconductors thermal fluctuations are
strong enough (especially for high anisotropy and high magnetic fields) to destroy the expectation
value of the condensate 〈ψ〉 = 0. We always assume that thermal fluctuations melted away and
in addition temperature is high enough to thermally depin the vortex liquid (avoiding the “vortex
glass”). As a consequence impurities in the vortex liquid are neutralized.

Due to thermal fluctuations the expectation value of the order parameter in vortex liquid is
zero 〈ψ(x, t)〉 = 0. Therefore contribution to the expectation values of physical quantities like
the electric and the heat current come exclusively from the correlations. The most important is
the quadratic one

C(x, t;x′, t′) =
〈
ψ(x, t)ψ∗(x′, t′)

〉
, (10)

called the correlation function of the order parameter.
In particular the superfluid density is

〈|ψ(x, t)|2〉 = C(x, t;x, t). (11)

A simple approximation which captures the most interesting fluctuations effects in the Hartree
approximation, in which the cubic term in the GL equation Eq. (3) b′|ψ|2ψ is replaced by a
linear one b′

〈|ψ|2〉 ψ

τ
∂

∂t
ψ(x, t) =

(
h̄2

2m∗D
2 − ã

)
ψ(x, t) + ζ(x, t), (12)

leading the “renormalized” value of the coefficient:

ã = a + b′〈|ψ|2〉. (13)

The formal solution of this equation is

ψ(x, t) =
∫

dx′
∫

dt′G0(x, t;x′, t′)ζ(x′, t′), (14)
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where G0 is the equilibrium Green function which is most easily accomplished by expanding G0

in terms of the Landau eigenfunctions.
The evaluation of 〈|ψ(x, t)|2〉 gives

εb = ε̃b − b′T
2πs

m∗ωB

h̄ (αTΛ)2

Nf∑

n=0

1
ε̃b + 2nb

, (15)

where the reduced temperature is defined as ε = a/αTΛ, εb = ε + b, (with similar expression
for ε̃ and ε̃b) with b = B/Hc2(0) being the scaled magnetic field, Hc2(0) = Φ0/2πξ2 the zero-
temperature critical field and ξ = (h̄2/2m∗αTc)1/2 the zero-temperature coherence length. The
UV cutoff was introduced. It effectively limits the number of Landau levels to Nf = Λ

b − 1. The
“bubble” sum, which diverges logarithmically, can be performed:

b

π

Nf∑

n=0

1
2nb + ε̃b

=
1
2π

log Λ + u′, (16)

where the function u′ is related by

u′(ε̃b, b) =
1
2π

[f ′s(ε̃b/2b)− log(2b)], (17)

to the polygamma function f ′s:

f ′s(x) =
∞∑

n=1

[
1

n + x
−

∫ n+1/2

n−1/2

1
(y + x)

dy

]
+

[
1
x
− log (x + 1/2)

]
. (18)

Thus the critical temperature Tc is significantly renormalized:

εr
b = εb +

b′T
4πs

m∗ωb

h̄ (αTΛ)2
log Λ = ε̃b − ηξ2Te∗Hc2(0)

2h̄cTc
u′(ε̃b, b), (19)

where η is a dimensionless fluctuation parameter

η =
b′Tc

ξ2 (αTc)
2 s

, (20)

introduced in [5]. The relation between η and more often used two dimensional Ginzburg number

[1, 17], Gi2D ≡ 1
2

(
8e2κ2ξ2Tc/πc2h̄2s

)2
, is

η = 4
√

2Gi2Dπ2. (21)

Let us assume that the weak electric field E is along the y axis, generated by the scalar
potential φ = −Eyy. The heat current in the vortex liquid phase is given by [2]

〈
Jh

〉
= − h̄2

2m∗

[
D (x)

(
∂

∂t′
− i

e∗

h̄
φ

(
x′

))
+ D∗ (

x′
) (

∂

∂t
+ i

e∗

h̄
φ (x)

)]
C(x, t;x′, t′)|x=x′;t=t′ ,

(22)
where

C(x, t;x′, t′) =
2τT

s

∫

x1,t1
G(x, t;x1, t1)G∗(x′, t′;x1, t1), (23)

International Conference On Superconductivity and Magnetism (ICSM2008) IOP Publishing
Journal of Physics: Conference Series 153 (2009) 012030 doi:10.1088/1742-6596/153/1/012030

5



with G is the Green function of the linearized TDGL equation in the presence of the scalar
potential. One finds correction to the Green function to linear order in the electric field

G(x, t;x′, t′) = G0(x, t;x′, t′)− i
e∗τ
h̄

∫

x1,t1
φ(x1)G0(x, t;x1, t1)G0(x1, t1;x′, t′). (24)

In order to determine the transverse thermoelectric conductivity, we need to compute the x
component of the heat current to first the electric field. In the chosen gauge, the electrothermal

conductivity α̃xy = jh
x

Ey
(averaged over x) takes a form

α̃xy =
e∗Tb

h̄πs

Nf∑

n=0

[
n + 1/2
2nb + ε̃b

− n + 1
2(n + 1/2)b + ε̃b

]
=

e∗T (b− ε̃b)
2h̄bs

[
u′(ε̃b, b)− u′(ε̃b + b, b)

]
, (25)

where function u′ was defined in Eq. (17). Using the Onsager relation one obtains the transverse
thermoelectric conductivity αxy = α̃xy/T . The vortex liquid energy gap ε̃b as a function of εb,
and substituting the results into Eq. (25). Equations (19) and (25) agree with the calculation
of Ullah and Dorsey [2].

4. Comparison with experiment and MC simulation
The experiment results of Y. Wang et al. [12] obtained from the Nernst effect and resistivity
measurements on an overdoped LaSCO sample with x = 0.2 and Tc = 28K . The comparison is
presented in Fig. 2 (low temperatures in (a) and close to Tc in (b)). The parameters used in the
calculation are (see definitions above) Hc2(0) = 45T (thus ξ = 27Ao) and layer spacing s = 16Ao.
The fluctuation parameter is η = 0.25 and provides a reasonable quantitative agreement between
theory and experiment. Below irreversibility line where the theory should be modified including
both pining and crystalline phase in Fig. 2(a). The deviation develops roughly at the location of
the irreversibility line. However, our results are in good quantitative agreement with experiment
data for temperature close to Tc in Fig. 2(b), where the numerical simulation gives a nearly
constant αxy, while the experiment shows more variation.
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Figure 2. Points are αxy for different temperatures of LaSCO Ref. [12], with x=0.2 (overdoped,
Tc = 28K). The dashed line is the simulation value of αxy Ref. [5]. The solid line is the
theoretical value of αxy, using Hc2(0) = 45T, s = 16Ao, η = 0.25.
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5. Conclusion
We obtained, using TDGL equation with thermal noise, explicit expressions for the transverse
thermoelectric conductivity αxy in 2D including all Landau levels in type-II superconductor
in the vortex-liquid regime. The method is the Hartree-Fock. We also obtained the relation
between the strength of the thermal fluctuation η and the Ginzburg number Gi. We compared
the results to the 2D simulation and the experiment results. Our results in 2D are significantly
lower than the simulation and experiment data below the irreversibility line at which theory
should be modified by including both pinning and crystalline effects, but are in reasonably good
quantitative agreement with experimental data on La2SrCuO4 for temperature close to Tc. In
the future work, we will compare with other materials.
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