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Level statistics and eigenfunctions of square torus billiards:
Manifesting the transition from regular to chaotic behaviors
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We thoroughly analyze the level statistics and eigenfunctions in concentric as well as nonconcentric square
torus billiards. We confirm the characteristics of quantum and classical correspondence and the existence of
scarred and superscarred modes in concentric square torus billiards. Furthermore, we not only verify that the
transition from regular to chaotic behaviors can be manifested in nonconcentric square torus billiards, but also
develop an analytical distribution to excellently fit the numerical level statistics. Finally, we intriguingly observe
that numerous eigenstates commonly exhibit the wave patterns to be an ensemble of classical diamond trajectories,
as the effective wavelengths are considerably shorter than the size of internal hole.
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I. INTRODUCTION

Two-dimensional billiards has long been a useful tool for
studying quantum chaos issues due to its simplicity [1,2]. The
dynamical behaviors, from the most regular (integrable) to
the most chaotic (nonintegrable), are found to depend on the
geometry of the billiard boundary. The integrable systems with
classical trajectories confined to an invariant torus in phase
space display the Poisson distribution in level spacing statistics
[3]. In contrast, the nonintegrable systems with ergodic
trajectories have been verified to obey the Wigner statistics
of level spacing [4]. Besides the two extreme classes, there
is a diverse category called pseudointegrable systems whose
phase space trajectories are not fully ergodic but are bounded
on invariant multihandled spheres (topological structure with
genus 2 � g < ∞) [5–7]. Pseudointegrable billiards, such as
rational polygons, staircase billiards, and integrable billiards
with singular scatter inside, have been widely explored in
the last few decades [8–13]. It was found that the energy
spectra in pseudointegrable systems could reveal intermediate
cases between integrable and chaotic ones [12,14,15]. The
existence of intermediate cases attracts considerable attention
with regard to investigating the transition between the two
limiting behaviors. It has been verified that there is a systematic
change from Poisson-like toward Wigner-like behavior with
increasing the genus number in pseudointegrable systems
[16–18]. To the best of our knowledge, the exploration for the
continuous transition between integrable and chaotic behaviors
for the pseudointegrable system with a fixed genus number has
not been performed in depth.

Square torus billiards, a genus 5 pseudointegrable system
with special geometry similar to the Sinai billiard, has the po-
tential to explore field chaos problems in the coaxial waveguide
[19,20]. It was found [6] that the eigenenergies of eighth square
torus billiards exhibit the level repulsion phenomenon with
level statistics lying between Poisson and Wigner distributions.
This finding leads us to conjecture whether nonconcentric
square torus billiards is a paradigm system with a fixed genus
number for exploring the transition between integrable and
chaotic behaviors. Nonconcentric square torus billiards means
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that the position of the internal square hole deviates from the
center of the external square boundary.

In this work we perform thorough numerical analyses to
verify that the level statistics of nonconcentric square torus
billiards can manifest the transition between integrable and
chaotic behaviors. We first analyze the level statistics and
eigenfunctions of concentric square torus billiards to confirm
the validity of the numerical computation based on the expan-
sion method [21,22]. The Fourier-transformed length spectrum
of numerical energy levels is clearly found to reveal quantum
and classical correspondence. The scarred and superscarred
modes [23–25] are noticeably observed to further validate
the numerical analysis. We then employ the same numerical
method to analyze the level statistics and eigenfunctions
of nonconcentric square torus billiards. It is found that the
transition from regular to chaotic behaviors can be manifested
with continuously offsetting the position of the internal square
hole. The transition property can be further confirmed from the
Fourier-transformed length spectra. Finally, we systematically
explore the morphologies of eigenfunctions from low-order
to very high-order eigenstates for nonconcentric square torus
billiards with different offsetting conditions. We observed
that when the effective wavelengths are considerably shorter
than the hole size, numerous eigenstates commonly exhibit
the wave patterns to be an ensemble of classical diamond
trajectories, independent of offsetting conditions.

II. CONCENTRIC SQUARE TORUS BILLIARDS

Rational polygon billiards is a system with only rational
interior angles niπ/mi , where ni,mi ∈ N and at least one
ni > 1. For this kind of pseudointegrable billiards, the genus
number can be described by [6,26]

g = 1 + M

2

J∑
i=1

ni − 1

mi

, (1)

where J is the number of interior angles and M is the least
common multiple of mi . Figure 1(a) shows the geometry
of square torus billiards whose side-length of outer square
boundary and inner square hole are a and b, respectively.
According to Eq. (1), square torus billiards with eight rational
interior angles (four equal to π/2and four equal to 3π/2) can
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FIG. 1. (Color online) Geometries of (a) concentric square torus
billiards and (b) nonconcentric square torus billiards.

be classified as genus 5 with phase space to be a five-handled
sphere. We exploit the expansion method [22] to calculate
the eigenenergies and eigenfunctions of square torus billiards.
Since the matrix elements of the Hamilton can be analytically
expressed with the help of eigenstates φm(⇀r) of square
billiards, only a few minutes are taken to obtain about 2000
reliable energy levels by a conventional personal computer.

We give a brief synopsis for the expansion method as
follows. The time-independent Schrödinger equation for bil-
liard problems can be written as Ĥψn(⇀r) = Enψn(⇀r), where
En is the eigenenergy and ψn(⇀r) is the eigenfunction of
the Hamiltonian operator Ĥ . With the help of eigenstates
φm(⇀r) of square billiards, the eigenfunction ψ(⇀r) for square
torus billiards can be expanded as ψ(⇀r) = ∑

m cmφm(⇀r). By
substituting this expression into the differential equation, we
obtain a linear matrix problem of Hmncm = Ecn with matrix
elements of Hmn = H 0

mn + V0vmn, where H 0
mn is the matrix

element of square billiards, V0 is a sufficiently large constant
to approximate the infinite potential of billiards, and vmn is
the matrix element to be associated with the geometry of
billiards. The matrix element vmn can be written as vmn =∫
�

d2φ∗
m(⇀r)φn(⇀r), where � includes all regions with infinite

potential. For square torus billiards, the matrix element vmn is
explicitly given by

vmn =
(

2

a

)2 [∫ (a+b)/2

(a−b)/2
sin

(
m1πx

a

)
sin

(
m2πx

a

)
dx

]

×
[∫ (a+b)/2

(a−b)/2
sin

(
n1πy

a

)
sin

(
n2πy

a

)
dy

]
, (2)

where we denote m = (m1,m2) and n = (n1,n2). Since the
matrix elements Hmn can be integrated analytically, the time
consumption is significantly reduced in the calculation of
eigenenergies and eigenfunctions.

The number of reliable eigenstates was found to be nearly
1850s when we used 2100 eigenstates of square billiards in
the calculation. We employed the periodic orbit theory [2,27]
to analyze the calculated energy spectra for confirming the
accuracy of computation. According to the Gutzwiller trace
formula, the characteristics of classical periodic orbits can
be extracted from the Fourier-transformed spectra of the
eigenvalue density:

ρFT (L) =
∞∑

n=1

∫ ∞

−∞
δ(k − kn)eikLdk =

∞∑
n=1

eiknL

=
∞∑

n=1

∑
μ

ρν,μδ(L − νLμ), (3)

where index μ labels the periodic orbits, and ν = 1,2,... run
over all recurrences of such orbits. Equation (3) indicates
that the Fourier length spectrum ρFT (L) is formed by a
series of intense peaks at multiples of the lengths of classical
periodic orbits, i.e., at L = νLμ. For numerical evaluation,
we substituted all the calculated energy levels into the
expression ρN (L) = ∑N

n=1 eiknL, where N is the total number
of energy levels. Figure 2 depicts the Fourier length spectrum
|ρN (L)|2of a square torus billiard with b = a/5. It is clearly
seen that there is a series of sharp peaks at the lengths
corresponding to classical periodic orbits. We also investigated
the eigenfunctions and confirmed the existence of superscarred
[24,25] modes in the pseudointegrable system, as shown in
Figs. 3(a)–3(c). To our surprise, an anomalous mode which
is wave-function localized on unstable periodic orbit can also
be observed in our square torus model, as seen in Fig. 3(d),
so-called scarred modes [23]. Scarred and superscarred modes
have been confirmed to play an important role in interpreting
the lasing modes of microcavity lasers [28–30]. Besides, we
found that the scarred mode indicated in Fig. 3(d) is one kind
of diffractive orbit studied in semiclassical physics [31,32].
The diffractive effects of quantum waves may be important in
analyzing the energy spectra of pseudointegrable systems. In
our square torus model, the numerical wave functions asso-
ciated with the diffractive orbits can be found; however, their

FIG. 2. (Color online) Fourier-transformed length spectrum |ρN (L)|2for numerical energy levels of concentric square torus billiards with
b = a/5. A series of intense peaks in accord with classical periodic orbits.

026202-2



LEVEL STATISTICS AND EIGENFUNCTIONS OF SQUARE . . . PHYSICAL REVIEW E 85, 026202 (2012)

FIG. 3. (Color online) (a, b, c) Superscarred modes and (d)
scarred mode observed in the eigenfunctions of concentric square
torus billiards with b = a/5.

contribution to the characteristic length spectrum |ρN (L)|2 is
rather insignificant, as shown in Fig. 2.

Next, we analyzed the probability distribution of the
normalized spacing si = (Ei+1 − Ei)/ 〈s〉 to investigate the
level statistics, where Ei+1and Ei are two consecutive energy
levels and 〈s〉 is the mean spacing. Figure 4 depicts the
numerical histograms for the level spacing statistics. We also
plot the Poisson distribution pP (s) = e−s and the Wigner
distribution pW (s) = (πs/2) exp(−s2π/4) in the same figure
for comparison. It can be seen that the level statistics of
concentric square torus billiards exhibit the level degeneracy
phenomenon and are quite close to Poisson distribution. The
level degeneracy mainly comes from the high symmetry
along the three reflecting axes for square geometry, i.e., the
horizontal, perpendicular, and diagonal lines passing the center
of the outer square boundary. Next, we employ the same
numerical method to explore how the level degeneracy is split
by offsetting the internal square hole away from the center of
the external square boundary.

III. NONCONCENTRIC SQUARE TORUS BILLIARDS

As shown in Fig. 1(b), nonconcentric square torus billiards
can be completely specified by the size b and the location

FIG. 4. (Color online) Level spacing statistics of concentric
square torus billiards with b = a/5.

(d, θ ) of the internal hole, where d is the offsetting distance
from the center and θ is the offsetting direction with respect
to the horizontal axis. It was numerically found that if the
offsetting direction is along the symmetric axes of square torus,
i.e., θ = 0, π/4, and π/2, the level spacing statistics always
display the Poisson distribution, independent of the size b

and the offsetting distance d. In other words, the parameter θ

plays a critical role in determining the basic property of level
spacing statistics of nonconcentric square torus billiards. In
contrast, as long as the offsetting direction θ deviates from
the symmetric axes, the level spacing statistics is numerically
found to gradually change from Poisson distribution toward
Wigner-like distribution by increasing the offsetting distance
d or increasing the size b.

Without loss of generality, we demonstrate the calculated
results using the offsetting distance d as a variable for all
cases with a fixed size b and a fixed direction θ . Hereafter,
unless otherwise noted, the hole size and offsetting direction
are fixed to be b = a/5 and θ = 3π/8, respectively. Figure 5(a)
depicts the level spacing statistics of nonconcentric square
torus billiards for different offsetting distances (curves with
histogram). It can be clearly seen that the level spacing
statistics exhibit a conspicuous transition from regular to
chaotic behavior with increasing the offsetting distance d.
The value of smax, indicating the mean spacing for maximum
probability of level statistics, clearly shifts from 0 to 2/π ,
corresponding to the transition from Poisson to Wigner
distribution. With the calculated energy levels we compute
the Fourier-transformed length spectra ρN (L) for all cases.
As shown in Fig. 5(b), not only the amplitudes but also the
total numbers for the resonant peaks prominently decrease
with increasing the offsetting distance d. From a classical
point of view, some of the stable periodic orbits originating
by reflection on the central hole will be removed due to this
kind of shift. Also, the shift may cause a large amount of
periodic orbits in the square billiard to be blocked by the
central hole. However, some of the family of stable periodic
orbits will split into different classes with different lengths,
as indicated in Fig. 5(b). For the case of d = a/5, only
principal peaks corresponding to the bouncing-ball mode and
the recurrence survive in the length spectrum. To be brief, both
the level spacing statistics and the characteristic length spectra
of nonconcentric square torus billiards noticeably display the
continuous transition from regular to chaotic behavior.

An analytical distribution is practically useful for quantita-
tively describing the intermediate properties between regular
and chaotic systems. Berry and Robnik [33] previously
proposed an analytical formula formed by the superposition of
Poisson and Wigner distributions:

pBR(s) = w(s)pP (s) + [1 − w(s)] pW (s), (4)

where w(s) is the weighting function derived from the phase
space of the pseudointegrable system. Although the Berry-
Robnik distribution can describe the variation from level clus-
tering to level repelling for small spacing, it cannot precisely
illustrate the smax shifting of the numerical histograms shown
in Fig. 5(a).

Lenz and Haake [34,35] also derived a distribution
for the level statistics of pseudointegrable systems with
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FIG. 5. (Color online) (a) Level spacing distribution: numerical statistics (histograms), analytical fitting distribution with Eq. (6) (solid
line), and Wigner distribution (dashed line). (b) Fourier-transformed length spectra corresponding to each case in (a).

approximating the Hamiltonian as Hλ = (1 + λ2)−1/2(H0 +
λV ), where H0 and V belong to Poisson and Gaussian
orthogonal ensemble (GOE) contributions, respectively. The
coupling coefficient λ can describe the system changing from
regular to fully chaotic behavior by varying its value from 0 to

∞. The Lenz-Haake distribution is given by

pLH(s; λ) = u(λ)2

λ
se−[u(λ)s/2λ]2

∫ ∞

0
e−(x2+2xλ)I0(u(λ)xs/λ)dx

(5)
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FIG. 6. (Color online) Dependence of the fitting parameters λ and
γ on the offsetting distance d in nonconcentric square torus billiards.

with

u(λ) = √
πU (−1/2,0,λ2),

where I0(x) is the modified Bessel function and U (a,b,x)
is the Kummer function. We found that the Lenz-Haake
distribution could fit the smax shifting of level spacing
statistics of nonconcentric square torus billiards. However,
pLH(0; λ) is always equal to zero for any λ �= 0. Consequently,
the Lenz-Haake distribution pLH(s; λ) cannot characterize
intermediate cases in the neighborhood of s = 0 very
well .

We combine the Berry-Robnik and Lenz-Haake models
to develop an analytical distribution in terms of pBR(s) and
pLH(s; λ) for fitting the numerical histograms of nonconcentric
square torus billiards:

p(s; λ,γ ) = γpP (s) + (1 − γ )pLH(s; λ), (6)

where γ is the weighting parameter for characterizing the
detailed structure of level spacing statistics. Note that the
parameter λ in pLH(s; λ) mainly exemplifies the peak po-
sition of level spacing statistics. As shown in Fig. 5(a),
the distribution p(s; λ,γ ) in Eq. (6) can fit the numerical
histograms of level spacing statistics very well. Figure 6
depicts the dependence of parameters λ and γ on the
offsetting distance d to quantitatively manifest the rate of
transition from regular to chaotic properties. It can be seen
that there is an abrupt change for both parameters λ and γ

in the region of small offsetting distance d = 0 ∼ 0.02a. In
contrast, both γ and λ evolve smoothly for the offsetting
distance d greater than 0.02a. These results confirm that
nonconcentric square torus billiards is an excellent pseudointe-
grable system for revealing the continuous transition between
regular and chaotic behaviors without changing the genus
number.

Furthermore, we investigate the morphologies of eigen-
functions of nonconcentric square torus billiards. We select
two representative cases with a hole size of b = a/10 for
illustration, one with a small offsetting distance of d = 0.054a

and the other with a relatively large distance of d = 0.224a.

FIG. 7. Wave patterns from low-order to high-order eigenstates
for nonconcentric square torus billiards with a hole size of b = a/10
under two different offsetting conditions: (a) d = 0.054a and (b) d =
0.224a.

Figure 7 shows the typical wave patterns of the two cases for
different orders ranging from hundreds to thousands. For the
eigenstates with order between the 100th and 300th states,
the wave patterns of the case with d = 0.054a are found
to be similar to the symmetric and regular morphologies of
the eigenstates in concentric square torus billiards. On the
other hand, the wave patterns of the case with d = 0.224a

are found to be quite irregular because of a greater symmetry
breaking. For the eigenstates with order between the 400th
and 1100th states, the wave patterns are found to display
rather disordered morphologies. For the eigenstates with order
greater than the 1800th state, the effective wavelengths are
conspicuously shorter than the hole size and the wave patterns
of numerous states are found to exhibit an ensemble of
classical diamond trajectories, as seen in Fig. 7. This intriguing
feature of particlelike trajectories reveals the importance of the
comparison between the effective wavelength of eigenstates
and the hole size of the billiards.

Finally, it is worthwhile to mention that the energy spectra
may be obtained from the periodic orbits and the length spectra.
Although this approach is somehow more intricate, it has been
performed for several systems [36–39]. In principle, a similar
procedure is possible to obtain the energy spectra for the square
torus model. However, the current difficulty is to establish
a relationship between the periodic orbits and the offsetting
distance d.

IV. CONCLUSIONS

We have thoroughly analyzed level statistics and eigen-
functions for square torus billiards to explore the quantum and
classical correspondence and the transition between integrable
and chaotic behaviors. For concentric square torus billiards, we
not only confirmed the Fourier-transformed length spectrum of
numerical energy levels to clearly display the characteristics of
quantum and classical correspondence, but we also observed
the existence of scarred and superscarred modes. For noncon-
centric square torus billiards, we verified that the transition
from regular to chaotic behaviors can be manifested with con-
tinuously offsetting the position of the internal square hole. The
transition property can be revealed as well from the Fourier-
transformed length spectra. We also developed an analytical
distribution to fit the numerical level statistics of nonconcentric
square torus billiards in an excellent way. Finally, we observed
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that numerous eigenstates commonly exhibit the wave patterns
to be an ensemble of classical diamond trajectories when the
effective wavelengths are considerably shorter than the hole
size.
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