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Lattice Quantization of Phases for
Equal Gain Transmission
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Abstract—Equal gain transmission (EGT) requires only the
feedback of phase information and is known to enjoy several
implementational advantages compared to maximum ratio
transmission (MRT). This paper investigates the use of lattice
quantization for quantizing phases in EGT systems. In practice,
the feedback rate is finite and the lattices need to be truncated to
have finite code rate. The truncation of lattices results in boundary
effect; hence, earlier results developed for untruncated lattices,
e.g., fast algorithm and mean-square error (MSE) analysis, cannot
be applied directly. Exploiting the fact that the quantized signals
are phases, we show how to quantize using truncated lattices so
that there is no boundary effect. Moreover, we propose efficient
methods to convert between lattice codewords and binary digits
so that the lattice quantization can be used in practical systems.
Furthermore, the mean-square quantization error is analyzed for
several useful truncated lattices. We also show how to analyze the
signal-to-noise ratio (SNR) loss when the proposed quantization is
applied to an EGT system.

Index Terms—Beamforming, EGT, equal gain transmission,
Grassmannian, lattice, Lloyd, phase quantization, precoding.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) beam-
forming (precoding) techniques are widely used in

current wireless communication standards, e.g., IEEE 802.11n,
IEEE 802.16 family and Long Term Evolution (LTE). The
diversity gain provided by beamforming techniques enables the
systems to achieve reliable link quality for long transmission
distance without increasing transmit power and bandwidth.

When the transmitter has complete channel information,
the optimal beamforming scheme, i.e., maximum ratio trans-
mission (MRT), can be used. MRT maximizes the received
signal-to-noise ratio (SNR), by using the right singular vector
corresponding to the largest singular value of channel matrix.
In a wireless system where complete channel information is not
available to the transmitter, the beamforming vectors need to
be quantized before they are sent back to the transmitter. Since
both magnitude and phase information need to be quantized,
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codebook-based vector quantization (VQ) is usually used for
quantizing MRT. In [1], the authors proposed beamforming
schemes with finite-rate feedback to achieve the minimum
outage probability. In [2], a codebook-based VQ scheme called
Grassmannian beamforming was proposed to minimize the
chordal distance between the true and quantized beamforming
vectors for a given feedback rate. When the number of transmit
antennas is large, a codebook with a large size is needed.
However, constructing large Grassmannian codebooks may not
be an easy task [2]. Also, large amount of memory is required at
the transmitter and receiver for codebook storage. In addition,
exhaustive search is usually needed to determine the closest
codeword in the codebook; the computational complexity
increases with the code size and so dose the feedback latency.

When the elements of the beamforming vectors have the same
magnitude, the beamforming scheme is called equal gain trans-
mission (EGT) [3], [4]. Although EGT is not the optimal beam-
forming scheme, it only leads to a 1.05-dB SNR loss compared
to the optimal MRT [5]. Moreover, the design of power ampli-
fier is easier for EGT than that for MRT, because the transmit
power of EGT is a constant [6]. It was shown in [3] that full di-
versity order can be achieved by quantized EGT. Scalar quanti-
zation (SQ) has been suggested for quantizing the beamforming
vectors of EGT; e.g., see [4]–[6]. The capacity loss of quantized
EGT with SQ was analyzed in [4]. The SNR loss of the quan-
tized EGT with SQ was analyzed in [5]. Since there is no closed-
form solution for the best MIMO EGT, an iterative MIMO EGT
design and the corresponding bit allocations with SQ were pro-
posed in [6]. When the code size is small, it was shown in [7] that
quantized EGT beamforming can achieve the same optimal per-
formance as quantized MRT by carefully choosing the columns
from a discrete Fourier transform (DFT) matrix; an extended
discussion on this topic was given in [8].

One advantage of SQ is that it does not require pre-com-
putation of codebooks and the result can be used for arbitrary
number of transmit antennas. However, when SQ is used in
EGT, the code rate is restricted to be an integer multiple of

, where is the number of transmit antennas. This
limits the choice of quantization rates, especially for large .
More flexible code rate and better performance can be achieved
using VQ [3], [4], [9]. Although VQ may be designed for an ar-
bitrary code rate and has better performance than SQ, in general
it is a codebook-based quantization and hence requires code-
book storage, more computations for codeword selection. It is
also more difficult to design for large .

Lattice quantizer is a special class of vector quantization,
which has a highly regular structure. Due to the regular struc-
ture, there is no need to store the codebook. Moreover, fast
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quantization algorithms are available for several kinds of lattices
[10]. The mean-square error (MSE) for lattice quantization has
been analyzed in [11]–[13]. However, in the development of fast
algorithms and MSE analysis [10], [11], [14], [15], it is gener-
ally assumed that the lattice is not truncated and the codebook
size is infinite. In practice, truncation of lattices is needed so that
the codebook size is finite. A constant 2-norm criterion was
proposed in [11] for lattice truncation. The corresponding code
rate is in general not an integer, which is more
difficult to implement in practical applications. Truncation of
lattices leads to boundary regions, for which the regularity of
lattice is no longer followed. In these boundary regions, fast al-
gorithms developed for untruncated lattices cannot be applied
and extra computations are needed [15]. As the Voronoi regions
are of irregular shapes and of different areas, the MSE analysis
for untruncated lattices does not carried over.

In this paper, we propose a lattice truncation scheme for quan-
tizing phase vectors by exploiting the wrapping-around prop-
erty of phases, i.e., and yielding the same phase. With the
proposed lattice truncation, we can avoid boundary effect all to-
gether. All Voronoi regions are of the same shapes and areas;
fast algorithms designed for untruncated lattices [10] can be ap-
plied in a straightforward manner. Moreover, integer code rate

is achievable using the proposed lattice truncation. MSE can
be given as a closed form due to the regular structure of lattices.
The MSE result provides a useful design reference. Analytical
results show that the MSE of the proposed lattice quantization is
0.4–0.65 dB smaller than that of a scalar quantizer. Furthermore,
we will analyze the SNR loss when the proposed method is used
to quantize phase vectors in EGT. Simulation results show that
the performance of the proposed lattice quantizer is comparable
to those of the Lloyd-codebook [4] EGT beamforming and the
Grassmannian beamforming [2].

The rest of this paper is organized as follows. The system
model is presented in Section II. Lattice quantization is reviewed
in Section III. In Section IV, we introduce the quantization of
phase vectors using the lattice . These quantization using
truncated lattices and are introduced in Section V. The
mean-square quantization error of phase quantizers using trun-
cated lattices is analyzed in Section VI and the SNR loss of
EGT with lattice quantization is analyzed in VII. Simulation re-
sults are provided in Section VII. Finally, concluding remarks
are given in Section IX.

Notations: Boldfaced lowercases and boldfaced uppercases
denote vectors and matrices, respectively. is the expecta-
tion of random variable . and denote the conjugate and
transpose of , respectively. is the conjugate transposition
of . is the variance of . is the floor function of .

II. SYSTEM MODEL OF EGT SYSTEM

The block diagram of an EGT beamforming system with
transmit antennas and one receive antenna is shown in Fig. 1.
At the first stage, one transmit symbol is sent to branches
for beamforming. The symbol is multiplied by in the
branch. The transmitted vector is given by

Fig. 1. A block diagram of the EGT beamforming system.

, where . At the receive
side, the received scalar is

(1)

where is an channel vector and
is the additive channel noise with a complex Gaussian distribu-
tion. Detection is applied on , where denotes
conjugation. We can express as the sum of a signal term
and a noise term , i.e.,

(2)

The instantaneous SNR of , defined as , is given by [5]

(3)

The instantaneous SNR can be maximized by choosing (see [3],
[5], and [6]))

(4)

For notation convenience, let and define the phase
vector

(5)

The transmitter needs to know the phase vector to achieve
the best EGT performance. It is generally reasonable to assume
that the channel information is available to the receiver, and the
transmitter relies on the feedback from the receiver. In practice,
however, the number of feedback bits is limited; hence quanti-
zation of is needed before feedback. When vector quantization
is used, the receiver looks into the codebook and finds the code-
word that best represents . Then, the index of the codeword is
sent back to the transmitter.

III. REVIEW OF LATTICE QUANTIZATION

The review material in this section can be found in [10], [11],
and [13]. A lattice is a set of vectors that can be generated using
a generation matrix. Let be an generation matrix of a
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Fig. 2. An untruncated � lattice.

lattice with . The corresponding lattice is the collection
of vectors of the form , where the elements of are integers,
i.e., . An example of lattice generated by

is given in Fig. 2, which is a special use of the

lattice defined by [11]

is even (6)

An -dimensional generation matrix of is given by

...
...

...
...

(7)

Lattice quantization of a vector finds the lattice point that is
closest to , i.e.,

(8)

where is called the closest lattice point given the vector .
Note that the design criterion in (8) is MSE instead of mini-
mizing the maximum chordal distance in [2] and [7]. Hence, the
EGT using lattice quantization in this paper is suboptimal. How-
ever, the beamforming vectors obtained by minimum MSE cri-
terion can serve as a good candidate of optimal solution (see [7,
p. 1904, column 1]). Simulation in Section VIII will show that
with the proposed lattice quantization, the EGT can achieve per-
formance comparable to the benchmark Lloyd EGT proposed
in [4].

Exploiting the regular structure of lattices, Conway and
Sloane have developed fast algorithm to find the closest lattice
point (encoding) [10]. Let us use as an example to explain
this. To quantize a vector to the closest vector in , we first
compute , where quantizes to the closest integer
vector; then we find the element that has the largest absolute
quantization error, requantize this element the wrong way and
call the resulting vector . Thus, and are the
same except that the worst element of is rounded the wrong
way. Next, we compute the summations of the elements for

and , respectively. One of the two sums will be even
and the other will be odd. The one with an even sum is the

lattice point in . For instance, let .
Since the first element has the largest absolute error 0.4, we
have and . Since the
sum of is 2 and that of is 1, is the lattice point
closest to . Thanks to the fast algorithms, there is no need
of codebook storage. However, when lattice VQ is applied to
practical systems, we need to truncate the lattice to have a finite
code size. Lattice truncation using the 2-norm criterion, i.e.,

was considered in [11]; the code size
can be given in terms of . Truncation of lattices usually leads
to boundary effects [9] since the Voronoi regions of the lattice
points on the boundary are not of the same shape as others, i.e.,
irregular. Also, the code rate is generally not an
integer using the 2-norm criterion. To have an integer code rate

, some codewords need to be removed or added. Also the
constant 2-norm criterion may not be suitable for quantizing
phase vectors. For instance, if the dimension is , the
region to be quantized for the phase vector is a
square, i.e., , instead of a circle. In the following
sections, we propose a novel lattice truncation that is more
suitable for quantizing phases and integer code rate can be
attained without boundary effect.

IV. PHASE QUANTIZATION USING LATTICE

In this section, we consider the use of lattice for quan-
tizing phase vectors. The -dimensional lattice is defined
by (6) and a generation matrix is given in (7). The lattice
achieves the smallest mean-square quantization error among all
lattices known for dimension [11] if the code size is in-
finite, i.e., the overload MSE of the boundary lattice points is
ignored (see [11, p. 61]).

A. Proposed Truncation of

Now, we would like to truncate for the quantization of
the phase vector in (5). The elements in are bounded by

, where . As each has the same
lower and upper bounds, we propose to truncate the lattice by
keeping lattice points in an -dimensional cube. Such a code-
book is given by

(9)

where is a positive value related to code size, to be chosen
later. We scale by

where (10)

Then, is bounded between and . The vector is quan-
tized to the closest codeword in , i.e.,

(11)

The reconstructed phase vector is then given by

(12)

Given the lattice and scalar , we can determine the number
of vectors in in a straightforward manner. However, the ap-
plication here is the quantization of phases. Because and
give the same phase, some vectors may lead to identical phase
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Fig. 3. Truncation for lattice � : (a) � � � and (b) � � .

vectors. For instance, let and , then . The lat-
tice points in are shown in Fig. 3(a). Consider the following
four vectors in : and . The
four reconstructed phase vectors are , ,
and , respectively. They are identical phase vectors and
only one codeword is needed. There are 13 lattice points in ,
but these 13 lattice points yield only 8 distinct phase vectors
(filled circles) and we can use code size in this case.
Therefore, for the quantization of phases, the code size is
the number of distinct phase vectors represented by the lattice
points in , rather than the number of vectors in . It turns
out that for lattice , is related to in a very simple manner
as shown in the following proposition.

Proposition 1: When is a positive integer, the number of
distinct phase vectors represented by the lattice points in in
(9), i.e., the code size , is given by

(13)

Proof: Let us first show that if is a lattice point of
with the th element , then, the vector , with the th
element equals to and all the other elements the same as ,
is also a lattice point of . As is a lattice point of , the
sum of the elements is even, i.e.,

is even (14)

Summing up the elements of , we have

(15)

Since is even, the value in (15) is also even. Then is also a
lattice of . Consider the reconstructed phase vector
and . Observe that and are identical phase vector
due to the wrapping-around property. Hence, the codebook can
be written as

(16)

In this case, all the lattice points in the set lead to distinct code-
words and the codebook size is equal to the number of vectors
in . Hence, all the elements of the lattice points in only
have allowable values , i.e., total possible
values. For an -dimensional lattice point, there are pos-
sible combinations. By [11], can be obtained by picking up
one for every two from points. Therefore, the code size of

is .
Choice of . Using (13), we can choose so that is a

power of 2; the resulting is then an integer that can be im-
plemented straightforwardly in practical systems. For instance,
suppose , , then the code size and code
rate , an integer. Note that the choice of affects not only
the code size but also the computational complexity. When is a
positive integer, the Voronoi regions of distinct codewords are of
identical shapes due to the wrapping-around property. Take
as an example, the use of results in 8 distinct codewords as
shown in Fig. 3(a). The Voronoi regions of the 8 distinct code-
words labelled with numbers from 0 to 7 are of identical shapes,
similar to the case of untruncated lattice. For instance, codeword
0 covers the quantization regions originally covered by lattice
points , , and and hence the Voronoi region
of codeword 0 are identical to other codewords. Since all code-
words are of identical shapes, the fast algorithm developed for
the untruncated in [10] can be used for lattice quantization.
Now consider an example where is not an integer, e.g.,
in Fig. 3(b). There are 13 distinct codewords in this case and
8 of them are in the boundary regions. The Voronoi regions of
the boundary lattice points are of different shapes; the fast algo-
rithm in [10] cannot be directly applied and extra computation
is needed to deal with those lattice points.

B. Codewords Ordering and Generation

In EGT application, the phase vector is quantized to the
closest lattice point (codeword) and the index of the codeword
needs to be fed back to the transmitter. For a truncated lattice,
the codebook depends on the way truncation is applied. Using
the definition of in (6), we can obtain the codewords by gen-
erating all the tuples with
and keeping only the vectors such that is even.
It turns out that the proposed truncation of allows a more
efficient codebook generation. To see this we will introduce a
systematic ordering of the codewords. Each codeword in the
codebook is associated with an index between 0 and .
Given a codeword the index can be found efficiently; and
given an index the codeword can be generated in a real-time
manner. Therefore, there is no need of codebook storage at the
transmitter and receiver.

The indexing of codewords is given in Algorithm 1. Given a
codeword from the codebook in (16), we first add to the
elements of ; then satisfies .
Next we multiply each by a weight and then sum them up
to form the codeword index , i.e., . The value
of can be determined as follows: Beginning with , set all

to zero except , i.e., . In this
case, there are possible lattice points since has pos-
sible values, i.e., , and needs to be even
to satisfy the even-sum condition in (6). Hence, we choose
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to be . Now consider . Setting all to zero except and

, i.e., , there are possible lat-

tice points. Hence, the value of can be . Using a similar

argument, we can obtain the value of to be . There-

fore, we have a general form for weight . By this
general form . However, the index should be an integer
and so is . Hence, we add floor function for . There are

codewords in the codebook using the proposed codeword
ordering, which matches the codebook size in (13).

Algorithm 1: Codewords indexing for .

Suppose the codeword is .

1: , .

2: The index , where .

By reversing Algorithm 1, we can generate the codeword
given the index, in Algorithm 2. The index is first divided by

to obtain the quotient and residue . Then, is
divided by to obtain the quotient and residue .
Using a similar procedure, we can obtain and until .
Note that when is a power of 2, we can use a shifter instead
of a divider to obtain the quotients and residues. To determine

, we notice that is even if is even, and it is odd
if is odd. This is due to the following two reasons: First,

, where is even since it
is a lattice point of . Second, an even value plus an even
value results in an even value, and an even value plus an odd
value results in an odd value. Therefore, for an even , we first
check whether is even; if it is, ; otherwise

. On the other hand, for an odd , if
is even; otherwise . The reconstructed code-

word is obtained by .

Algorithm 2: Generation of codewords from indexes for

Suppose is the codeword index.
1: Let . If is even, and ;

otherwise and . Compute (with the order
from to ) using

and

and for

if is even;
otherwise.

2: The codeword is , where .

Example 1: Design example of EGT using lattice. Let
and (thus ). Using Proposition 1 the

corresponding code size is . Let the channel be

Then, the corresponding phase vector to be quantized is given
by

The scaled phase vector is

Using the fast algorithm in [10] and let ,
is quantized as the lattice point . Corre-

spondingly, . From (4), the optimal
beamforming vector is thus given by

.
Now consider the feedback of the quantized phase to the

transmitter. From Algorithm 1 , we can obtain the following
parameters:

and

where is the codeword index sent to the transmitter. At the
transmitter side, the received index is decoded using Algo-
rithm 2, resulting in the following parameters:

and

Using the proposed conversions in Algorithms 1 and 2 and the
fast algorithm in [10], there is no need for codebook storage and
exhaustive codeword search.

V. PHASE QUANTIZATION USING LATTICES AND

Among the lattices that have existing fast algorithms, we
found lattices and have nice results like lattice when
the lattices are truncated to have a finite codebook. That is, there
is no boundary effect due to lattice truncation, fast algorithms
developed for untruncated lattice can be applied directly, and it
is very easy to obtain a codebook with integer code rate .

A. Phase Quantization Using Lattice

The lattice is called the dual lattice of . It is the union
of the -dimensional integer lattice and the translate of
by the vector (see [10] and [11]), i.e.,

(17)

The lattices , , and are the best lattice quantizers
known for dimensions 3, 4, and 5, respectively, in terms of
mean-square quantization error if infinite code size is used (see
[11, p. 61]). A generation matrix of is given by

...
...

. . .
...

... (18)
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Similar to the case of in (9), we propose to truncate
using an dimensional cube, i.e.,

(19)

where is either a positive integer or a positive half integer. We
scale by the formula in (10), and derive the number of distinct
codewords in in the following proposition.

Proposition 2: When is either a positive integer or a positive
half integer, the number of distinct phase vectors represented by
the codewords of in (19), i.e., the code size , is given by

(20)

Proof: Again, let us first show that if is a lattice point
of with the th element , the vector , with the th
element and all the other elements the same as , is
also a lattice point of . From (17), all the elements of a lattice
point in should be either integers or positive half integers. If

is an integer, is also an integer; is, hence, still a lattice
point in . Similar argument can be applied to the case when

is a positive half integer.
Suppose the phase vectors corresponding to and are
and , respectively. Then, and represent the same

phase. Hence, for either or , possible values of
elements for can be , i.e.,
a total of values; possible values of elements for
can be ; there are total values
as well. Thus, there are possible combinations for either

or . Therefore, there are a total of
lattice points in the codebook.

From (20), if is chosen as a power of 2, the code rate
is an integer. Similar to the case of , there is no need

to store the codebook. The codewords can be indexed efficiently
(Algorithm 3), and conversely given an index the codeword can
be generated easily (Algorithm 4).

Algorithm 3: Codewords indexing for .

Suppose the codeword is .
1: Compute the two scalars and by

and for
and for .

2: .
3: Compute , where .

Algorithm 4: Generation of codewords from indexes for
.

Suppose is the codeword index.

1: Let , and let for even and for
odd . Compute (with order from to ) using

and

and

for

2: The codeword is , where .

B. Phase Quantization Using Lattice

The lattice in the even coordinate system is defined as

or is even

(21)
The lattice in the odd coordinate system can be defined simi-
larly by constraining the sum to be odd instead of even. Note that

is the best lattice quantizer known for dimension in
terms of minimum mean-square quantization error if the code
size is infinite (see [11, p. 61]). A generation matrix of is
given by

(22)

Similar to the case of in (9), we propose to truncate
using an dimensional cube, i.e.,

(23)

where is a positive integer. We scale by the formula in (10)
and derive the number of distinct codewords in in the fol-
lowing proposition.

Proposition 3: When is a positive integer, the number of
distinct phase vectors represented by the codewords of in
(23), i.e., the code size , is given by

(24)

Proof: From the definition in (21), the lattice points in
can be divided into two groups. The first group is the collection
of lattice points satisfying

is even (25)

and the second group is the set of lattice points satisfying

is even (26)

The first group is actually equivalent to . From Proposition 1,
the number of lattice points in the first group is . Now, let
us examine the second group. All the elements of codewords
in the second group are half integer. Possible values of are

, i.e., a total of values. To
satisfy the condition in (26), we should keep one out of every
two lattice points of . Similarly, the number of lattice

points in the second group is . The total number of lattice
points in the first and the second groups is thus .

If is chosen as a power of 2, the code rate is an integer.
Similar to the case of , the codewords of can also be in-
dexed efficiently, i.e., see Algorithm 5. Given an index, the cor-
responding codeword can also be generated using Algorithm 6.
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Algorithm 5: Codewords indexing for .

Suppose the codeword is .
1: Compute the two scalars and by

and for
and for .

2: , .
3: The index , where

.

Algorithm 6: Generation of codewords from indexes for .

Suppose is the codeword index.
1: Let , and let for even and for

odd . Compute (starting from to ) using

and

and

is even;
otherwise.

2: The codeword is , where .

VI. MSE ANALYSIS

The MSE of untruncated lattice quantization was analyzed
in [11], i.e., infinite code size. However, the MSE in [11] was
given as a dimensionless quantity and hence it is independent
of the choice of the scaling factor (see p. 59 in [11]). In this
section, we would like to include the scaling factor into the MSE
analysis, so that we can see how MSE is related to the code
rate . The average mean-square error per dimension is given
by [12]

(27)

where is the Voronoi region for codeword , is the
volume of the Voronoi region , and is the probability
density function of . Assuming that is a constant , (27)
can be rewritten as

(28)

From the discussion in Sections IV and V, we know the Voronoi
regions of all codewords are of identical shape and area when

is chosen properly. Hence, , where is the
volume of the Voronoi region of the all-zero codeword. In addi-
tion, using the equality [14]

(29)

where is the second moment of the Voronoi region of
lattice , which could be (scalar quantization), , or

. Values of for various lattices can be found in [11, p.
61]. The MSE in (28) can be expressed as

(30)

By [14], is equal to the determinant of the generation ma-
trix. As discussed in Section IV-A, a scaled version of the phase
vector is quantized. This is equivalent to quantizing the phase
vector using scaled lattice codewords. That is, the effective
generation matrix is . Hence, is given by

(31)

The following proposition summarizes the above discussion.
Proposition 4: The mean-square error of phase quantization

using the proposed truncated lattices for , , and can
be expressed as

(32)

Let be the average number of bits per dimension for
quantizing the phase vector. Given , the following corollary
computes the required .

Corollary 1: The required number of bits per dimension as
a function of the mean-square error for , and can
be expressed by

(33)

Proof: We prove the case for . The proof for other types
of lattices can be done using a similar procedure. Combining
(10) and (13), we have

(34)

For , we know (see [11, pp. 5 and 117]). From
(7), (32), and (34), we have

(35)

Taking of both sides of (35), we can arrive at (33).
We see that increasing by one will decrease the mean-square

error by 6 dB, which is consistent with the result for scalar quan-
tization in [16]. To compare the mean-square quantization error
of lattice quantizers and scalar quantizers, we compute the av-
erage mean-square error per dimension for scalar quantizers,
which can be shown to be

(36)

The mean-square error for different quantizers depend on
. For the introduced lattice quantizers in this paper,

the best known lattice quantizers for 3, 4, 5, and 8
are , , and ; the corresponding
are , ,

and [11]. When ,
using leads to a 0.4098 dB smaller mean-square error
per dimension than scalar quantization; when , using

leads to a 0.6513-dB reduction in mean-square error per
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Fig. 4. Mean square error for lattice� as a function of� for various dimen-
sion �: Theoretical versus simulation results.

dimension. On the other hand, the required number of bits for a
given mean-square error can also be used for comparison; that
is, from (33), for the same variance the extra number of bits per
dimension required for scalar quantizer is given by

(37)

For example, scalar quantization requires extra
bit to achieve the same MSE

as . These results show the advantages of using lattice
quantizers in higher dimension quantization.

Example 2: MSE: Theoretical versus simulation results.
In this example, the theoretical result of derived in (35) is
demonstrated to be the same as the simulation result for lattice

. In the simulations, the channel is assumed to have com-
plex Gaussian distribution and is defined as in (5). The fast
algorithm in [10] is used to determine the closest codewords.
The simulated value of is obtained by averaging
for 60 000 channel realizations. For the theoretical result, (35)
is used and is the code rate. The theo-
retical and simulated results are shown in Fig. 4. The simulated
result corroborates the theoretical result.

VII. SNR LOSS OF EGT USING LATTICE QUANTIZERS

Let us analyze the SNR loss between the EGT without quan-
tization and the EGT using lattice quantization. Let the number
of transmit antennas be . From (5), the number of elements
in the phase vector to be quantized is . Define the th
quantization error of phase vector as . Assume each
element of the channel vector is complex
Gaussian with zero mean and variance . The instantaneous
SNR of the unquantized EGT is as given in (3). According to
the encoding procedure for lattice in Section IV-A, we may
argue that for each beamforming vector only one element of
depends on and the other elements should be uncorrelated and
uniformly distributed. When grows larger, the effect of corre-
lation becomes less pronounced and the distribution of tends
to be uniform. Thus, we may assume that is uniformly dis-
tributed and is uncorrelated for different . Similar arguments

can be applied to lattices and . Let be the instantaneous
SNR of EGT with quantized phase vector; it is shown in the
Appendix A that the expectation of may be approximated by

(38)

where , . When ,
the above equation reduces to the case of no quantization, i.e.,

[5]. The quantities
and in (38) can be approximated

as follows. Using the Taylor series expansion, we can approxi-
mate as

(39)

It is shown in Appendix B that

(40)
Using (39) and (40), can be approximated as
a function of given by

(41)

We have verified by the Monte Carlo simulation that using
in (41), we can achieve a satisfactory approximation. Simi-

larly using the Taylor series expansion and (53) in Appendix B,
can be approximated as

(42)

Proposition 5: The SNR loss of the EGT due to lattice quan-
tization can be approximated by

(43)

where

and depends on the type of lattice, given by
(see (35)).

Proof: Letting in (41), we have

(44)

From (42) and letting , we have

(45)

From (38), (44), and (45), and the derivation of the SNR for
EGT without quantization in [5], the SNR loss due to the lattice
quantization can be calculated as in (43).
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Fig. 5. SNR loss as a function of � for different � : theoretical result versus
simulated result.

Note that when tends to , and thus
. In this case, the SNR loss is

0 dB. Also, for , we may approximate to the first order
of and the corresponding SNR loss can be approximated by

VIII. SIMULATION RESULT

In the simulations, the channel coefficients are i.i.d. complex
Gaussian random variables with zero mean and unit variance.
One receive antenna is used. The symbol transmitted is rectan-
gular 16-QAM with equally probable constellation points (see
[17, p. 175]). There are 60 ,000 different channel realizations
used, and 6000 different 16-QAM symbols are used in each
channel. The SNR is defined as . The number of total feed-
back bits is and the dimension of phase vectors is .
The average number of bits per dimension is .

Example 3: SNR loss of EGT due to quantization effect.
The SNR loss of the EGT using lattice , as a function of for
different is shown in Fig. 5. The theoretical result is obtained
by (43). The theoretical result is close to the simulation result;
hence (43) can be used as a useful reference in practical design.
Moreover, the SNR loss is within 1 dB for . As increases,
the performance gap becomes smaller.

The bit error rate (BER) performance of with different
for 3, 5, 8, and 16 is shown in Fig. 6. The code rate
is chosen according to (13) for and , which

corresponds to and ,
respectively. The SNR loss in Fig. 6 generally matches the result
in Fig. 5. For instance consider . The code rates are

for and for . The corresponding
SNR losses are around 0.8 and 0.2 dB, respectively, observed
from Fig. 6 at BER . In Fig. 5, the SNR losses are
around 0.8 dB for and , and 0.2 dB for
and (see the diamond-curve for

and , respectively). This result shows that
the analysis of SNR loss can be a satisfactory estimation for the
BER performance (see also [2] and [18]). Note that in the BER

Fig. 6. Quantization effect using lattice � .

Fig. 7. BER comparison between lattices and Lloyd vector quantizations [4]
in 3T1R and 4T1R EGT beamforming.

simulation, Gray mapping is used and thus if symbol error rate
performance is needed, it can be approximated by bit error
rate using the relationship .

Example 4: BER performance. In this example, we compare
the proposed lattice quantization with codebook design using
Lloyd algorithm in [4]. The codebooks generated by Lloyd al-
gorithm can in general achieve nearly minimum mean-square
quantization error in vector quantization [4], [9]. The BER com-
parison is shown in Fig. 7, for and . The figure
shows that the performance gap between these two quantization
schemes is small. With minor performance loss, the proposed
lattice quantizations enjoy great implementational advantages.
That is, codebook storage in both transmitter and receiver is not
required. Also, there is no need to search exhaustively to find
the closest codeword.

We also compare the proposed lattice codebook with other
vector quantization schemes including the Grassmannian code-
book in [2] and [21], and the DFT-based EGT codebook in [3].
The simulation result is shown in Fig. 8. We observe that for
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Fig. 8. Comparison of various beamforming schemes in a 3T1R channel envi-
ronment.

, the proposed EGT codebooks performs only about
0.2 dB worse than the Grassmannian codebook, which quan-
tizes both magnitude and phase information; also lattice with

performs about 0.1 dB worse than the Grassmannian
codebook with . Moreover, the lattice with
can achieve nearly the same performance as DFT-based EGT
codebook with .

Example 5: EGT with large numbers of transmit an-
tennas. In some modern MIMO systems, a large number of
transmit antennas is used to increase the diversity or multi-
plexing gain [19]. To achieve full diversity order for EGT, it is
suggested in [3] that around at least one bit per transmit antenna
is needed. Hence, the number of quantization bits needs to
be increased as the number of transmit antennas increases. For
a large , the design of codebook-based EGT is more difficult
and even impractical since it needs large memory size to store
codebooks and exhaustive-search computations. In this case,
non-codebook-based quantizations such as scalar quantization
and the proposed lattice quantizations are more suitable. This
example evaluates non-codebook-based quantizations for EGT
with large numbers of transmit antennas.

The BER performance of EGT with scalar and the proposed
lattice quantizations is shown in Fig. 9, for and .
When and , the proposed lattice outperforms
scalar quantization by around 0.75 dB. With one-bit increase in

, i.e., -bit increase per transmit antenna, with
has a gain of around 2 dB, compared to scalar quantization with

at . Note that we could not use
for scalar quantization when . This is because for

scalar quantization, each antenna uses the same number of bits
for quantization; hence in scalar quantization is a multiple of

, i.e., 8, 16, 24, for . By using a combination
of different lattices, we can have a more flexible code rate. Let

. We also show the BER of for , and scalar
quantization for . In the same figure, one-bit increase
in , i.e., -bit increase per transmit antenna, with

Fig. 9. BER comparison between lattices and scalar quantizations in 9T1R and
16T1R EGT beamforming.

can result in a 1.5-dB performance gain, compared to scalar
quantization with at BER .

IX. CONCLUSION

We proposed truncations of various lattices for quantizing
phase vectors in EGT systems. There is no boundary effect using
the proposed truncations and integer code rate can be easily ob-
tained. In addition, fast algorithms can be used to quantize phase
vectors; hence there is no need to search exhaustively and the
feedback latency is small. In addition, we found the codewords
can be ordered efficiently so that each codeword is associated
with a specified codeword index. That is, given a codeword,
the index can be obtained with few computations. Conversely
given an index, the codeword can be generated easily. As a re-
sult, codebook storage is not needed at the transmitter and re-
ceiver. Moreover, the mean-square quantization error was ana-
lyzed for several truncated lattices. We also showed how to ana-
lyze the SNR loss when the proposed quantization is applied to
EGT system. Simulation results showed that EGT with lattice
quantization can achieve satisfactory performance comparable
to Lloyd EGT beamforming; also, the use of lattices not only
outperforms scalar quantization but also provides more flexible
number of code sizes. Furthermore, the application of the pro-
posed lattice quantizer for phase vectors is not limited to EGT
only; it can be used in any system that requires quantization
of phase vectors. For instance, the compressed beamforming in
[20] decomposes the singular vectors using Givens rotation. The
signals to be quantized are also phase vectors. Finally, it is in-
teresting to observe that equal-gain Grassmannian codebooks
have regular structure. For instance, the codebook with
and in [21] is an equal gain codebook. This codebook
has regular structure and the 4 1 codeword can be generated

by . Al-
though such codebooks cannot be generated by truncating the
three types of lattices discussed in this paper, it is still interesting
to explore whether such codebooks have lattice-like structure,
and this problem is still open.



832 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 60, NO. 2, FEBRUARY 2012

(46)

APPENDIX

A. Proof of (38)

See (46) at the top of the page. Let , and define
the quantization error of phase as , ,
where is the optimal phase. In MISO channels,

, and thus . Since and
, we separate the terms for and as follows:

(47)

Assume the quantization error is independent of channel realiza-
tion and using the fact that is real, we have

(48)

Using the assumption that tends to be uniformly distributed
and uncorrelated for different as grows, and using the prop-
erty that [5], we can obtain the approximation in
(38).

B. Proof of (40)

By using the binomial theorem, we have

(49)

Assume is uncorrelated for ,
. Assume is uniformly distributed in

. The probability density function of is an even func-
tion; hence , for is odd; and ,
for is odd. We can rewrite (49) as

(50)

Using the property that the th moment ( is even) of a random
variable uniformly distributed in is

(51)

The th moment of , i.e., , can be written as

(52)

Since is uniformly distributed in , the 2nd moment of
is . We can rewrite (52) as

(53)

Substituting (53) into (50), we have the equality in (40).
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