
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 1, JANUARY 1996

Practical Stability Issues in CMAC Neural Network Control Systems
Fu-Chuang Chen and Chih-Homg Chang

Abstruct- The cerebellar model articulation controller
(CMAC) neural network is a practical tool for improving
existing nonlinear control systems. A typical simulation study
is used to clearly demonstrate that the CMAC can effectively
reduce tracking error, but can also destabilize a control system
which is otherwise stable. Then quantitative studies are presented
to search for the cause of instability in the CMAC control system.
Based on these studies, methods are discussed to improve system
stability. Experimental results on controlling a real world system
are provided to support the findings in simulations.

I. INTRODUCTION

EREBELLAR model articulation controller (CMAC)
was proposed by Albus [l], [2] in 1975. It is basically

a look-up-table method, very easy to implement, and at the
same time it is a powerful and practical tool for nonlinear
control. There has been convergence result on the CMAC
learning [5]. Recently, Miller et al. [3], [4] proposed to
combine CMAC and traditional controller, and have reported
very good results in robotics control. According to their
scheme, the control is mainly contributed by the constant gain
controller (e.g., PID or proportional integral derivative) in
the early stage of the control process; as CMAC gradually
learns the inverse dynamics of the plant, the control is shifted
from the constant gain controller to CMAC, and then accurate
control is achieved. The control scheme of Miller et al. [3] ,
141 is a unique contribution to learning control research, and
is a promising tool for practical applications as well. Our
simulations, however, reveal that the CMAC control scheme
based on [3], [4] may eventually go unstable, despite the fact
that initially the CMAC significantly improves the tracking
error. Therefore, it is necessary to carry out some fundamental
study about Miller’s scheme, to bring out important hidden
features and clearly show the advantages and disadvantages
of this scheme.

The main purposes of this paper are: to introduce the
CMAC control system from an industrial point of view; to
describe the unstable phenomenon; to quantitatively study how
the system parameters such as controller gain, quantization,
generalization, learning rate, etc., are related to the instability
of the system; to suggest ways to improve system stability;
and to provide some experimental evidence. This paper will
not provide unified theories, but will discuss the issues posted
above via simulation and experiment around simple examples.

Manuscript received April 25, 1994. Recommended by Associate Editor, G.
W. Davis. This work was supported in part by the National Science Council
of the Republic of China under Grant 81-0404-E-009-582,

The authors are with the Department of Control Engineering, National
Chiao Tung Universitv, Hsinchu. Taiwan. R.O.C.

II. THE CMAC CONTROL SYSTEM

For meaningfully presenting things in a concise way, the
discussions and illustrations in Sections 11-V will be made
around the following nonlinear discrete-time plant

Y (k + 1) = 0.5Y(k) + sin [Y (k)] + U (k) (1)

where Y (k) is the system output and U (k) is the control input.
The overall control scheme is depicted in Fig. 1, in which the
control signal U is the sum of the CMAC output U, and the
proportional controller output U,. This control scheme was
originally proposed by Miller et al. [3], [4] (in continuous-time
format) and has raised much interests in applying it to various
control problems. This scheme does not evolve from traditional
control theory, but rather it is based on the following intuition:
use a workable traditional controller to stabilize the plant and
to help the CMAC learn to provide precise control; much
like adults help small children to learn walking. This idea,
if workable, can have important implications for industrial
applications. The majority of existing industrial and defense
feedback control systems are controlled by PID controllers;
the PID gains are adjusted based on experiences, and very
often, what the PID provide are tolerable solutions, not desired
solutions. The CMAC may very cost-effectively improve these
existing systems. As depicted in Fig. 1, the CMAC loop is
added-onto the traditional control loop, without affecting the
original control design.

The functioning of CMAC is described in the following.
Initially the CMAC table is empty. In each time step 5, the
CMAC involves a recall and a learning process. The recall
process uses Yd(k + 1) and Y (k) as the address to generate
the control signal from the CMAC table, where Y d (k + 1) is
the desired system output for the next time step. That is, the
CMAC has two inputs and one output. In the learning process,
U (k) is treated as the desired output to modify the CMAC
content stored at location Y (k) , Y(k + l), where Y(k + 1)
is the actual system output at time step k + 1. To speed up
the initial learning and to achieve better generalization, the
generalization technique is employed, i.e., each input vector
to CMAC for recall and learning will map to a number of
memory locations instead of only one memory location. How
precisely the CMAC can approximate a function is mainly
determined by the quantization in each dimension of the
input vector. Reducing quantization would quickly increase
the memory demand for storing the CMAC table. For the
simple systems and control objectives studied in this paper,
however, no hash coding is needed. This allows us to focus

Publisher Item Identifier S 1063-6536(96)00208-4. more on fundamental features of the CMAC control systems.

1063-6536/96$05.00 0 1996 IEEE

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 1, JANUARY 1996

0.45

0.4

0.35

8 0.3
E

E 0.2-
3 0.25

0.15

0.1

0.05

87

-

-

-

-

-

-

-
-

controller
L
r&

Fig. 1. The CMAC control system.

Another important event in the CMAC system is the table
update mechanism. The updating, or learning, rule is expressed
as

where

g: the size of generalization,
Wz: the content of the ith memory location, there being q

locations to be updated,
p: the learning rate, typically (much) less than one,
U : the correct data, which being the actual control

applied to the system, and
U,: the current data, which being the sum of

Wl(k), '", Wq(k).
This is a gradient-type learning rule.
Many design details about CMAC can be found in [l], [2],

and [6]. Lane et al. [6] provide: more advanced CMAC design
techniques, but for simplicity, we stick to the original setup of
[l], [2] . Other applications of the CMAC to control problems
can be found in [7] and [8].

111. A TYPICAL SIMULATION STUDY

In this section, we will use the results of a typical simulation
to clearly describe how the CMAC improves the system
performance, and how the CMAC control system can become
unstable at a later time. The simulation is carried out using the
system shown in Fig. 1. Only proportional control [gain = 1.4,
with feedback error defined as e(I C) = Y d (k) - Y (k)] is used
because the plant (1) is very simple. Other system parameters
are selected as: learning rate p = 0.1, generalization = 50,
quantization = 5/500 (meaning five units divided into 500
divisions), and reference command = sin (2~1;/400) with each
sinusoidal cycle consisting of 400 time steps. The simulation
data are shown in Figs. 2 and 3. In Fig. 2, the horizontal scale
is the number of cycles, each cycle containing 400 time steps,
and the vertical scale is the largest tracking error in each cycle.
In the first five cycles, the system is solely controlled by the
proportional controller, so the maximum error of each cycle

0.5

OL I
0 20 40 60 80 100 120 140 160

Number of cycles

Fig. 2. The tracking error reduces significantly, but then diverges; the
horizontal scale is the number of cycles, each cycle containing 400 time steps,
and the vertical scale is the largest tracking error in each cycle.

remains constant. The CMAC is added at the sixth cycle, and
then the error reduces quickly and significantly. The error
remains small for some time, and then it diverges around the
143th cycle. Fig. 3 shows the interactions between the CMAC
control U, and the proportional control U, after the CMAC is
added: the CMAC quickly learns the inverse mapping of the
plant and becomes the dominating controller.

A. Discussion
1) The CMAC can significantly reduce the tracking error.

In Fig. 2, the error is 0.252 when solely controlled by
the proportional controller (with P = 1.4), which can be
reduced to a minimum of 0.018 by the CMAC in a very
short time.

2) Despite the promising aspect above, the CMAC can
destabilize a control system which is otherwise stable.
The unstable phenomenon certainly comes from the
interactions between the proportional controller and the
CMAC network; more details about this are provided
in Section IV. Nonetheless, the proportional controller

88

0.6

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 1, JANUARY 1996

‘solid line: PJD ’
dashed line: CMAC

-

C error 0.0193
T, 86
TU ?

I
1500 2000 2500 3000 3500

-0.8‘

0.0209 0.020 0.0199 0.0182 0.0244 0.0198
67 35 15 6 6 6
? 977 288 143 70 28

Number of time steps

Fig. 3.
is added into the system.

The interactions between CMAC and P controllers when the CMAC

1

...
-2 1
5700 5750 5800 5850 5900 5950 6ooo

Number of time steps

Fig. 4. The system output quickly runs away after the P controller is
removed.

can not be removed even when the magnitude of the
proportional control is very small compared with that of
the CMAC (i.e., when the system output error has been
significantly reduced). Otherwise, the good tracking can
not be maintained. Fig. 4 shows what happens when
the proportional controller is removed at k = 6000:
the system output quickly runs away from the desired
trajectory and falls into an equilibrium point of the plant.

Iv. A SYSTEMATIC STUDY OF THE UNSTABLE PHENOMENON

As is shown in the previous section, the CMAC can signif-
icantly improve the performance of existing nonlinear control
systems, but the improved performance may only maintain for
some period before the CMAC control system goes unstable.
In this section, we will again use the CMAC control system in
Fig. 1 to quantitatively study how the unstable phenomena is
related to such parameters as proportional gain, learning rate,
generalization, and quantization. The simulation in this section
is the same as that performed in the previous section, except
that the system parameters are adjusted in systematic ways to
test how they are related to instability. The results are listed in

TABLE I
THE EFFECT OF P GAIN

1ga inofP) 0.6 I 0.8 1 1.0 I 1.2 1 1.4 1 1.6 1 1.8 1
I P error I 0.5940 I 0.4439 1 0.3540 1 0.2942 I 0.2516 I 0.2198 1 0.1951 1

Tables I-IV. Unless specified otherwise, the parameters used
in the simulations are:

learning rate = 0.1
quantization = 51500
generalization = 50
proportional gain = 1.2
reference command = sin (2nk/400)
simulation time = 7500 cycles.

The notations appearing in the tables are:
P error: maximum output error when controlled by the
proportional controller only (no CMAC added).
C error: the minimum of maximum output error (in a
cycle) that can be achieved after the CMAC is added to
the control system.
T,: the time (in terms of cycle number, each cycle
containing 400 time steps) required for the minimax error
to become less than 0.03.
TzL: the time when the output error becomes larger than
“P error.” After that, the output would soon diverge to
infinity.
?: means the system has not diverged when simulation
stops at 7500 cycles.

In the following, we discuss the effect of parameters on
system stability.

A. Gain of Proportional Controller

In this part, the proportional gain is the only parameter that
is adjusted, and the results are summarize in Table I. Some

from Table I are:
The larger the proportional gain is, the smaller the “P
error” is.
The most interesting fact is that the “C error” is around
0.02 no matter what the proportional gain is. T, is
smaller, however, when the proportional gain is larger.
The system can eventually go unstable. The trend is
clearly that the system diverges sooner when the propor-
tional gain increases. When gain = 0.8 and 0.6, however,
the system does not diverge when the simulation ends.
Once the simulation was modified to run for ten times
longer for these two gains. The system did not diverge,
and the tracking error maintains at the level of 0.034.
Since it is important to figure out how a system can be
destabilized by the CMAC, our discussions in the rest of
this section will have the proportional gain fixed at 1.2.
When the gain is further reduced (e.g., 0.4 or less), the
CMAC cannot effectively improve tracking accuracy.

B. Leaming Rate

According to Table 11, the system diverges no matter what
the learning rate is. Table 11, however, reveals a very important

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 1

learning rate p

C error
T,
T,.

lANUARY 1996 89

0.5 0.1 0.05 I 0.01 1 0.005 1 0.001
0.0154 0.0199 0.0173 0.0167 0.0161 0.0164

6 15
66 288 532 2770 5222 24482

I I ,
if T= I 33.5 I 28.8 I 26.6 1 27.7 I 26.1 I 24.5

40th cycle
0.4 I I

-0.4L I
0 50 100 150 200 250 300 350 400

Time steps

Fig. 5.

feature: the product of p and Tu is about a constant, that is,
when the learning rate decreases, the time at which the system
diverges would increase in proportion.

We explain this feature more clearly in the following: For
the several p values tested in Table 11, typically the CMAC
would quickly learn the inverse dynamics and the tracking
error would decrease rapidly, and then the system gets into
a prolonged “stable” period lbefore diverging (see Figs. 2
and 3 for examples). Just very shortly before divergence,
the synchronous and quickly increasing oscillations of U,
and U, are always observed I[e.g., Fig. 6(d)]. Actually, the
wild synchronous oscillations in the last stage do not come
all of a sudden. During the prolonged “stable” period, the
synchronous oscillations of U, ,and U, can always be detected,
and their magnitudes on the average are very slowly but
steadily increasing. To demonstrate this, again we look at the
case studied in Section 111 as an example. That system diverges
at the 143th cycle. Fig. 5 show!; U, and U, for the entire 40th
cycle, in which it is notable that there are obvious oscillations
around the 50th and 250th time step of that cycle. To show
that these oscillations exist and grow in the prolonged “stable”
period, we plot U, and U, from the 50th to the 70th time steps
for each of the eighth, 40th, 90th and 155th cycles, and these
plots are shown in Fig. 6, in which the constant 0.3 is added
to U, to make the comparison of U, and U, easier. The reason
that pTu is about a constant is obviously that faster learning
in the CMAC would proportionally speed up the appearance
of large in-phase oscillations in U, and U,, which contributes
to the instability of the system.

C, Generalization
Table 111 shows the cases with the generalization g ranging

from 40 to 200. When g is less than 40, the CMAC cannot

The CMAC and P controls for a complete cycle.

8th cycle
Bolid line: PID ’
dashed line, CMAC 0.05 i

0

-0051 , , , , , , , , , {
50 52 54 56 58 60 62 64 66 68 70

(a)

40th cycle

0 05

0

-0 05

0

1 -0 05 1
50 52 54 56 58 60 62 64 66 68 70

(b)

0.05

0

-0.05

50 52 54 56 58 60 62 64 66 68 70

(C)

155th cycle r I
0 05

0

-0 05

50 52 54 56 58 60 62 64 66 68 70

(4
Fig. 6. The growth of oscillations in CMAC and P controls.

effectively learn the inverse dynamics. These important ob-
servation from Table I11 is that, when g increases, Tu also
increases, and the ratios Tu/g are constants of the same order.
Generalization is something indispensable in the application
of CMAC to control problems. It enables the CMAC to
generate controls based on previous learnings. Generalization,
however, can slow down the learning process, in particular
when the CMAC is fine-tuning itself for higher precision.
Therefore, increasing generalization is almost equivalent to
reducing the learning rate p. This explains why Tu increases
almost proportionally with g.

D. Quantization
To minimize the effect of generalization on the discussions

of quantization, the g in Table IV is varied according to quan-
tization, such that about the same overlap can be maintained
for different quantizations. It is clear from Table IV that Tu
decreases when quantization gets coarser. This is because more

90

gain of P
deadzone do

C error

IEEE TRANSAC

1 0 1 2 1.4 1.6 1.8
0.033 0.04 0.049 0.053 0.063
0.036 0.0312 0.0384 0 0410 0 056

TABLE III
THE EFFECT OF GENERALIZATION

generalization g 40 50 60
C error 0.023 0.020 0.017

T S 1 5 1 5 6
TU 183 288 407

Tu/g 4.575 5.76 6.78

100 200 300
0.016 0.0055 0.0047

6 7 9
778 1556 2103
7.78 7.78 7.01

quantization
generalization

C error
T U

noise is introduced into the system when the precision of
CMAC degrades.

5/20 5/50 5/200 5/500 5 / S O O
2 5 20 50 80

0.163 0.0687 0.0275 0.0199 0.0168
19 41 190 288 306

E. Discussion
The most important clue about the system instability appears

in the discussions concerning learning rate. One may therefore
conclude that the continued learning of CMAC after the
tracking error has reduced is the major cause of the instability.

v. METHOD FOR IMPROVING SYSTEM STABElTY

Based on the conclusion of the previous section that the
continued learning of CMAC after the tracking error has
reduced is the major cause of the instability, one may be ready
to suggest stopping the CMAC learning after the tracking
error is attenuated by the CMAC. Our simulations show
that this method can prevent the system from diverging.
Stopping the CMAC learning, however, has two drawbacks.
First, it can be difficult to determine when to stop the CMAC
learning. Second, if the CMAC stops learning, then the CMAC
control system cannot respond to any change in the reference
command. This is a serious consequence.

To effectively stop the CMAC learning when the tracking
error is small, but at the same time allow the system to respond
to any change in the reference command, we propose to add
a deadzone to the CMAC updating rule. The learning rule
described in Section I1 is modified as

where

0 if 1x1 5 do i z + d o if z < -do
D[x] = 2 - d o if z > cl0 (4)

with do being the deadzone size. The essence of this modified
learning rule is not to update the CMAC table if the error is
small enough. This modified learning rule is used to rerun
the unstable cases of Table I, with the results reported in
Table V. In Table V, “deadzone do” means the smallest do
required for the system to run for 75 000 cycles without going
unstable. Table V shows that, with the addition of a small
deadzone, the stability can very significantly be improved
without much degrading in tracking precision. For example,

TIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 1, JANUARY 1996

TABLE V
THE EFFECT OF DEADZONE ON STABILITY

when the proportional gain equals 1.4, the system diverges
at the 143rd cycle (see Table I). But the system can run for
75 000 cycles with a deadzone of size 0.049 (the program stops
at the 75QWth cycle). This deadzone would cause a degrade
in “C error” from 0.0182 to 0.0384, which is not serious at
all compared with the error of 0.25 when the CMAC is not
used. We conclude this section by saying that deadzone is a
very effective method for improving system stability.

VI. EXPERIMENT
The purpose of this section is to control a real world system

to show the validity of the simulation results in previous
sections.

The system under study is an inverted pendulum driven
by a 35 w motor with a gear box, produced by Hi-T Drive.
The steel rod is 0.25 m long, with a metal mass of weight
3 kg attached to its end. The motor is driven by UT-SO, a
current drive. The sampling interval is 5 ms (i.e., 0.005 s),
but the control is calculated and sent to UT-SO only 1 ms
after the data are measured. Based on the general discrete-time
model of inverted pendulums, the variables B(k) , B(k - 1) and
Qd(k + 1) are selected as the inputs to the CMAC, where e(k)
is the actual pendulum angle at time 5 and Bd(k) is the desired
pendulum angle at time k . Other CMAC parameters are:
learning rate p, = 0.01, generalization = 100, and quantization
= 3.927/1024. The reference command is a sinusoidal curve,
with four seconds in period and *n/5 radian in magnitude.
The control software is implemented on a 486 PC. Since the
entire CMAC table takes less than 400 kbytes, it is completely
implemented and no hash coding is used.

The control results are described in this paragraph. We
first tried to control the inverted pendulum by proportional
controllers. The proportional controller can not achieve good
tracking unless the gain is very large, which is not desirable
in practice. The more serious thing is that, the tracking error
can only be improved for two to three times at best after
the GMAC is added to the system, and the problem is: the
proportional controller cannot provide suitable control at the
corner where the pendulum is supposed to turn around; as
a result, it cannot provide a good example for the CMAC
to learn, in the sense that the CMAC learning locations are
too far away from the recall locations. This situation is much
improved after the proportional controller is replaced by a
PD (proportional-differential) controller, with the result shown
in Fig. 7(a). The proportional and differential gains used are
P = 2037 and D = 611. These gains are very rkasonable
from a practical point of view, and they are comparable to the
PD gains used in [9] for two-link robotics control problems.
Two important messages are provided in Fig. 7(a). First, the
tracking error is reduced for about SO times after the CMAC
is introduced at the 50th cycle. Second, after 280 cycles,

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 4, NO. 1, JANUARY 1996

~

91

0.05, I i:.:n , _ _ _ , , ~ 1
2 0.02
B 5 0.01

0
50 100 150 200 250 300 350

Number of cycles(without deazone)

(a)

0 . 0 5 1 I I

g 0.01

I
200 400 600 800 lo00 1200

0--

Number of cycles(with deadzone)

(‘b)

Fig. 7. The experimental results without and with deadzone.

the motor becomes very noisy and the system shows large
vibrations. Finally we have to shut down the machine. These
phenomena match with our observations in simulations.

Next we demonstrate how s8ystem stability is improved by
applying deadzone to the CMAC learning rule. The control
U (k) generated from the computer software is between f120 ,
which is subsequently transformed and scaled by the driving
system into actual control torque. The deadzone size used is
20, i.e., there is no updating in the CMAC table when the
difference between U and U, ILS less than 20. The stability of
the system is improved as is shown in Fig. 8(b). In practice,
the deadzone can be assigned a large value in the initial
testing such that the system stability would not be affected
immediately. Then, the deadzone can be slowly decreased
to appreciate the improvement in tracking provided by the
CMAC, until some undesired (effect starts to show up.

A final note about the experiment is that, the PD control
results (without CMAC) can be improved if the P and D gains
are increased, but the magnitude of PD control would increase
as well, and the control would contain large oscillations. In
contrast, adding CMAC to the system would not increase
the magnitude of the total control, would not cause large
oscillations, and can achieve better accuracy than just increase
PD gains, as long as suitable measures are taken to prevent
the system from diverging, for example, using a deadzone.

VII. CONCLUSION

The main points of this paper are summarized as follows:
1) The CMAC can be a powerful and low-cost tool to im-

prove existing nonlinear control systems. It is powerful

because it can very quickly learn the inverse mapping
of the plant and generate precise controls. It is low-cost
because it can be easily implemented and added onto
the original control system without much modification
to the original control designs.
The CMAC control system can potentially go unstable.
The problem is more with the control scheme than
with the CMAC itself. The CMAC controller and the
traditional controller (e.g., the PID) are independent of
each other, and the actual control to the plant is the
sum of these two controllers. During the initial stage, a
transition in control from PID to CMAC is observed and
precise tracking is quickly achieved. After lengthy and
complex interactions between the PID and the CMAC,
however, the in-phase wild oscillations of these two
controllers destabilize the system. We propose to use
deadzone as an effective tool to stop the formation
of large oscillations, to maintain the good tracking
contributed by the CMAC.

Since the role of the neural network in this control system
is to learn the inverse mapping of the plant, any other neural
networks capable of doing this can be used in the place of
the CMAC, for example, the backpropagation networks or the
Gaussian networks.

Although we propose to use deadzone to improve system
stability, this may not be the only way stability can be
improved. An interesting thing to see in the future would be
to apply the CMAC to complex systems, and do quantitative
study on issues about efficiency and stability.

REFERENCES

J. S . Albus, “Data storage in the cerebellar model articulation controller,”
J. Dynamic Syst., Measurement, Contr., pp. 228-233, Sep. 1975.
-, “A new approach to manipulator control: The cerebellar model
articulation controller (CMAC),” J. Dvnamic Svst., Measurement, Contr..
pp. 220-227, Sep. 1975.
W. T. Miller, F. H. Glanz, and L. G. Kraft, “Application of a general
learning algorithm to the control of robotics manipulators,” Int. J.Robot.
Res., vol. 6, pp. 84-98, Summer 1987.
W. T. Miller, R. H. Hewes, F. H. Glanz, and L. G. Kraft, “Real-time
dynamic control of an industrial manipulator using a neural-network-
based learning controller,” ZEEE Trans. Robot. Automat., vol. 6, no. 1,
pp. 1-9, Feb. 1990.
Y. Wong and A. Sideris, “Learning convergence in the cerebellar model
articulation controller,” ZEEE Trans. Neural Networks, vol. 3 , no. 1, pp.
115-122, Jan. 1992.
S. H. Lane, D. A. Handelman, and J. J. Gelfand, “Theory and develop-
ment of higher-order CMAC neural networks,” ZEEE Contr. Syst. Mug.,
pp. 23-30, Apr. 1992.
C.-S. Lin and H. Kim, “CMAC-based adaptive critic self-learning
control,” ZEEE Trans. Neural Networks, vol. 2, no. 5 , pp. 530-533,
Sep. 1991.
W. T. Miller, 111, “Real-time neural network control of a biped walking
robot,” ZEEE Contr. Syst. Mag., vol. 14, no. 1, pp. 4 1 4 8 , Feb. 1994.
J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Englewood
Cliffs, NJ: Prentice-Hall, 1991.

