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Practical Stability Issues in CMAC Neural Network Control Systems 
Fu-Chuang Chen and Chih-Homg Chang 

Abstruct- The cerebellar model articulation controller 
(CMAC) neural network is a practical tool for improving 
existing nonlinear control systems. A typical simulation study 
is used to clearly demonstrate that the CMAC can effectively 
reduce tracking error, but can also destabilize a control system 
which is otherwise stable. Then quantitative studies are presented 
to search for the cause of instability in the CMAC control system. 
Based on these studies, methods are discussed to improve system 
stability. Experimental results on controlling a real world system 
are provided to support the findings in simulations. 

I. INTRODUCTION 

EREBELLAR model articulation controller (CMAC) 
was proposed by Albus [l], [2] in 1975. It is basically 

a look-up-table method, very easy to implement, and at the 
same time it is a powerful and practical tool for nonlinear 
control. There has been convergence result on the CMAC 
learning [5].  Recently, Miller et al. [3], [4] proposed to 
combine CMAC and traditional controller, and have reported 
very good results in robotics control. According to their 
scheme, the control is mainly contributed by the constant gain 
controller (e.g., PID or proportional integral derivative) in 
the early stage of the control process; as CMAC gradually 
learns the inverse dynamics of the plant, the control is shifted 
from the constant gain controller to CMAC, and then accurate 
control is achieved. The control scheme of Miller et al. [ 3 ] ,  
141 is a unique contribution to learning control research, and 
is a promising tool for practical applications as well. Our 
simulations, however, reveal that the CMAC control scheme 
based on [3], [4] may eventually go unstable, despite the fact 
that initially the CMAC significantly improves the tracking 
error. Therefore, it is necessary to carry out some fundamental 
study about Miller’s scheme, to bring out important hidden 
features and clearly show the advantages and disadvantages 
of this scheme. 

The main purposes of this paper are: to introduce the 
CMAC control system from an industrial point of view; to 
describe the unstable phenomenon; to quantitatively study how 
the system parameters such as controller gain, quantization, 
generalization, learning rate, etc., are related to the instability 
of the system; to suggest ways to improve system stability; 
and to provide some experimental evidence. This paper will 
not provide unified theories, but will discuss the issues posted 
above via simulation and experiment around simple examples. 
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II. THE CMAC CONTROL SYSTEM 

For meaningfully presenting things in a concise way, the 
discussions and illustrations in Sections 11-V will be made 
around the following nonlinear discrete-time plant 

Y ( k  + 1) = 0.5Y(k)  + sin [ Y ( k ) ]  + U ( k )  (1) 

where Y ( k )  is the system output and U ( k )  is the control input. 
The overall control scheme is depicted in Fig. 1, in which the 
control signal U is the sum of the CMAC output U, and the 
proportional controller output U,. This control scheme was 
originally proposed by Miller et al. [3], [4] (in continuous-time 
format) and has raised much interests in applying it to various 
control problems. This scheme does not evolve from traditional 
control theory, but rather it is based on the following intuition: 
use a workable traditional controller to stabilize the plant and 
to help the CMAC learn to provide precise control; much 
like adults help small children to learn walking. This idea, 
if workable, can have important implications for industrial 
applications. The majority of existing industrial and defense 
feedback control systems are controlled by PID controllers; 
the PID gains are adjusted based on experiences, and very 
often, what the PID provide are tolerable solutions, not desired 
solutions. The CMAC may very cost-effectively improve these 
existing systems. As depicted in Fig. 1, the CMAC loop is 
added-onto the traditional control loop, without affecting the 
original control design. 

The functioning of CMAC is described in the following. 
Initially the CMAC table is empty. In each time step 5, the 
CMAC involves a recall and a learning process. The recall 
process uses Yd(k + 1) and Y ( k )  as the address to generate 
the control signal from the CMAC table, where Y d ( k  + 1) is 
the desired system output for the next time step. That is, the 
CMAC has two inputs and one output. In the learning process, 
U ( k )  is treated as the desired output to modify the CMAC 
content stored at location Y ( k ) ,  Y(k  + l), where Y(k  + 1) 
is the actual system output at time step k + 1. To speed up 
the initial learning and to achieve better generalization, the 
generalization technique is employed, i.e., each input vector 
to CMAC for recall and learning will map to a number of 
memory locations instead of only one memory location. How 
precisely the CMAC can approximate a function is mainly 
determined by the quantization in each dimension of the 
input vector. Reducing quantization would quickly increase 
the memory demand for storing the CMAC table. For the 
simple systems and control objectives studied in this paper, 
however, no hash coding is needed. This allows us to focus 
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Fig. 1. The CMAC control system. 

Another important event in the CMAC system is the table 
update mechanism. The updating, or learning, rule is expressed 
as 

where 

g: the size of generalization, 
Wz: the content of the ith memory location, there being q 

locations to be updated, 
p: the learning rate, typically (much) less than one, 
U :  the correct data, which being the actual control 

applied to the system, and 
U,: the current data, which being the sum of 

Wl(k), '", Wq(k). 
This is a gradient-type learning rule. 
Many design details about CMAC can be found in [l], [2], 

and [6]. Lane et al. [6] provide: more advanced CMAC design 
techniques, but for simplicity, we stick to the original setup of 
[l], [ 2 ] .  Other applications of the CMAC to control problems 
can be found in [7] and [8]. 

111. A TYPICAL SIMULATION STUDY 

In this section, we will use the results of a typical simulation 
to clearly describe how the CMAC improves the system 
performance, and how the CMAC control system can become 
unstable at a later time. The simulation is carried out using the 
system shown in Fig. 1. Only proportional control [gain = 1.4, 
with feedback error defined as e( I C )  = Y d  ( k )  - Y ( k ) ]  is used 
because the plant (1) is very simple. Other system parameters 
are selected as: learning rate p = 0.1, generalization = 50, 
quantization = 5/500 (meaning five units divided into 500 
divisions), and reference command = sin (2~1;/400) with each 
sinusoidal cycle consisting of 400 time steps. The simulation 
data are shown in Figs. 2 and 3. In Fig. 2, the horizontal scale 
is the number of cycles, each cycle containing 400 time steps, 
and the vertical scale is the largest tracking error in each cycle. 
In the first five cycles, the system is solely controlled by the 
proportional controller, so the maximum error of each cycle 
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Fig. 2. The tracking error reduces significantly, but then diverges; the 
horizontal scale is the number of cycles, each cycle containing 400 time steps, 
and the vertical scale is the largest tracking error in each cycle. 

remains constant. The CMAC is added at the sixth cycle, and 
then the error reduces quickly and significantly. The error 
remains small for some time, and then it diverges around the 
143th cycle. Fig. 3 shows the interactions between the CMAC 
control U, and the proportional control U, after the CMAC is 
added: the CMAC quickly learns the inverse mapping of the 
plant and becomes the dominating controller. 

A. Discussion 
1) The CMAC can significantly reduce the tracking error. 

In Fig. 2, the error is 0.252 when solely controlled by 
the proportional controller (with P = 1.4), which can be 
reduced to a minimum of 0.018 by the CMAC in a very 
short time. 

2) Despite the promising aspect above, the CMAC can 
destabilize a control system which is otherwise stable. 
The unstable phenomenon certainly comes from the 
interactions between the proportional controller and the 
CMAC network; more details about this are provided 
in Section IV. Nonetheless, the proportional controller 
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Fig. 4. The system output quickly runs away after the P controller is 
removed. 

can not be removed even when the magnitude of the 
proportional control is very small compared with that of 
the CMAC (i.e., when the system output error has been 
significantly reduced). Otherwise, the good tracking can 
not be maintained. Fig. 4 shows what happens when 
the proportional controller is removed at k = 6000: 
the system output quickly runs away from the desired 
trajectory and falls into an equilibrium point of the plant. 

Iv. A SYSTEMATIC STUDY OF THE UNSTABLE PHENOMENON 

As is shown in the previous section, the CMAC can signif- 
icantly improve the performance of existing nonlinear control 
systems, but the improved performance may only maintain for 
some period before the CMAC control system goes unstable. 
In this section, we will again use the CMAC control system in 
Fig. 1 to quantitatively study how the unstable phenomena is 
related to such parameters as proportional gain, learning rate, 
generalization, and quantization. The simulation in this section 
is the same as that performed in the previous section, except 
that the system parameters are adjusted in systematic ways to 
test how they are related to instability. The results are listed in 

TABLE I 
THE EFFECT OF P GAIN 

1ga inofP)  0.6 I 0.8 1 1.0 I 1.2 1 1.4 1 1.6 1 1.8 1 
I P error I 0.5940 I 0.4439 1 0.3540 1 0.2942 I 0.2516 I 0.2198 1 0.1951 1 

Tables I-IV. Unless specified otherwise, the parameters used 
in the simulations are: 

learning rate = 0.1 
quantization = 51500 
generalization = 50 
proportional gain = 1.2 
reference command = sin (2nk/400)  
simulation time = 7500 cycles. 

The notations appearing in the tables are: 
P error: maximum output error when controlled by the 
proportional controller only (no CMAC added). 
C error: the minimum of maximum output error (in a 
cycle) that can be achieved after the CMAC is added to 
the control system. 
T,: the time (in terms of cycle number, each cycle 
containing 400 time steps) required for the minimax error 
to become less than 0.03. 
TzL: the time when the output error becomes larger than 
“P error.” After that, the output would soon diverge to 
infinity. 
?: means the system has not diverged when simulation 
stops at 7500 cycles. 

In the following, we discuss the effect of parameters on 
system stability. 

A. Gain of Proportional Controller 

In this part, the proportional gain is the only parameter that 
is adjusted, and the results are summarize in Table I. Some 

from Table I are: 
The larger the proportional gain is, the smaller the “P 
error” is. 
The most interesting fact is that the “C error” is around 
0.02 no matter what the proportional gain is. T, is 
smaller, however, when the proportional gain is larger. 
The system can eventually go unstable. The trend is 
clearly that the system diverges sooner when the propor- 
tional gain increases. When gain = 0.8 and 0.6, however, 
the system does not diverge when the simulation ends. 
Once the simulation was modified to run for ten times 
longer for these two gains. The system did not diverge, 
and the tracking error maintains at the level of 0.034. 
Since it is important to figure out how a system can be 
destabilized by the CMAC, our discussions in the rest of 
this section will have the proportional gain fixed at 1.2. 
When the gain is further reduced (e.g., 0.4 or less), the 
CMAC cannot effectively improve tracking accuracy. 

B. Leaming Rate 

According to Table 11, the system diverges no matter what 
the learning rate is. Table 11, however, reveals a very important 
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feature: the product of p and Tu is about a constant, that is, 
when the learning rate decreases, the time at which the system 
diverges would increase in proportion. 

We explain this feature more clearly in the following: For 
the several p values tested in Table 11, typically the CMAC 
would quickly learn the inverse dynamics and the tracking 
error would decrease rapidly, and then the system gets into 
a prolonged “stable” period lbefore diverging (see Figs. 2 
and 3 for examples). Just very shortly before divergence, 
the synchronous and quickly increasing oscillations of U, 
and U, are always observed I[e.g., Fig. 6(d)]. Actually, the 
wild synchronous oscillations in the last stage do not come 
all of a sudden. During the prolonged “stable” period, the 
synchronous oscillations of U, ,and U, can always be detected, 
and their magnitudes on the average are very slowly but 
steadily increasing. To demonstrate this, again we look at the 
case studied in Section 111 as an example. That system diverges 
at the 143th cycle. Fig. 5 show!; U, and U, for the entire 40th 
cycle, in which it is notable that there are obvious oscillations 
around the 50th and 250th time step of that cycle. To show 
that these oscillations exist and grow in the prolonged “stable” 
period, we plot U, and U, from the 50th to the 70th time steps 
for each of the eighth, 40th, 90th and 155th cycles, and these 
plots are shown in Fig. 6, in which the constant 0.3 is added 
to U, to make the comparison of U, and U, easier. The reason 
that pTu is about a constant is obviously that faster learning 
in the CMAC would proportionally speed up the appearance 
of large in-phase oscillations in U, and U,, which contributes 
to the instability of the system. 

C, Generalization 
Table 111 shows the cases with the generalization g ranging 

from 40 to 200. When g is less than 40, the CMAC cannot 

The CMAC and P controls for a complete cycle. 
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Fig. 6. The growth of oscillations in CMAC and P controls. 

effectively learn the inverse dynamics. These important ob- 
servation from Table I11 is that, when g increases, Tu also 
increases, and the ratios Tu/g are constants of the same order. 
Generalization is something indispensable in the application 
of CMAC to control problems. It enables the CMAC to 
generate controls based on previous learnings. Generalization, 
however, can slow down the learning process, in particular 
when the CMAC is fine-tuning itself for higher precision. 
Therefore, increasing generalization is almost equivalent to 
reducing the learning rate p. This explains why Tu increases 
almost proportionally with g. 

D. Quantization 
To minimize the effect of generalization on the discussions 

of quantization, the g in Table IV is varied according to quan- 
tization, such that about the same overlap can be maintained 
for different quantizations. It is clear from Table IV that Tu 
decreases when quantization gets coarser. This is because more 
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generalization g 40 50 60 
C error 0.023 0.020 0.017 
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0.163 0.0687 0.0275 0.0199 0.0168 
19 41 190 288 306 

E. Discussion 
The most important clue about the system instability appears 

in the discussions concerning learning rate. One may therefore 
conclude that the continued learning of CMAC after the 
tracking error has reduced is the major cause of the instability. 

v. METHOD FOR IMPROVING SYSTEM STABElTY 

Based on the conclusion of the previous section that the 
continued learning of CMAC after the tracking error has 
reduced is the major cause of the instability, one may be ready 
to suggest stopping the CMAC learning after the tracking 
error is attenuated by the CMAC. Our simulations show 
that this method can prevent the system from diverging. 
Stopping the CMAC learning, however, has two drawbacks. 
First, it can be difficult to determine when to stop the CMAC 
learning. Second, if the CMAC stops learning, then the CMAC 
control system cannot respond to any change in the reference 
command. This is a serious consequence. 

To effectively stop the CMAC learning when the tracking 
error is small, but at the same time allow the system to respond 
to any change in the reference command, we propose to add 
a deadzone to the CMAC updating rule. The learning rule 
described in Section I1 is modified as 

where 

0 if 1x1 5 do i z + d o  if z < -do 
D[x]  = 2 - d o  if z > cl0 (4) 

with do being the deadzone size. The essence of this modified 
learning rule is not to update the CMAC table if the error is 
small enough. This modified learning rule is used to rerun 
the unstable cases of Table I, with the results reported in 
Table V. In Table V, “deadzone do” means the smallest do 
required for the system to run for 75 000 cycles without going 
unstable. Table V shows that, with the addition of a small 
deadzone, the stability can very significantly be improved 
without much degrading in tracking precision. For example, 
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TABLE V 
THE EFFECT OF DEADZONE ON STABILITY 

when the proportional gain equals 1.4, the system diverges 
at the 143rd cycle (see Table I). But the system can run for 
75 000 cycles with a deadzone of size 0.049 (the program stops 
at the 75QWth cycle). This deadzone would cause a degrade 
in “C error” from 0.0182 to 0.0384, which is not serious at 
all compared with the error of 0.25 when the CMAC is not 
used. We conclude this section by saying that deadzone is a 
very effective method for improving system stability. 

VI. EXPERIMENT 
The purpose of this section is to control a real world system 

to show the validity of the simulation results in previous 
sections. 

The system under study is an inverted pendulum driven 
by a 35 w motor with a gear box, produced by Hi-T Drive. 
The steel rod is 0.25 m long, with a metal mass of weight 
3 kg attached to its end. The motor is driven by UT-SO, a 
current drive. The sampling interval is 5 ms (i.e., 0.005 s), 
but the control is calculated and sent to UT-SO only 1 ms 
after the data are measured. Based on the general discrete-time 
model of inverted pendulums, the variables B(k ) ,  B(k - 1) and 
Qd(k + 1) are selected as the inputs to the CMAC, where e( k )  
is the actual pendulum angle at time 5 and Bd(k) is the desired 
pendulum angle at time k .  Other CMAC parameters are: 
learning rate p, = 0.01, generalization = 100, and quantization 
= 3.927/1024. The reference command is a sinusoidal curve, 
with four seconds in period and *n/5 radian in magnitude. 
The control software is implemented on a 486 PC. Since the 
entire CMAC table takes less than 400 kbytes, it is completely 
implemented and no hash coding is used. 

The control results are described in this paragraph. We 
first tried to control the inverted pendulum by proportional 
controllers. The proportional controller can not achieve good 
tracking unless the gain is very large, which is not desirable 
in practice. The more serious thing is that, the tracking error 
can only be improved for two to three times at best after 
the GMAC is added to the system, and the problem is: the 
proportional controller cannot provide suitable control at the 
corner where the pendulum is supposed to turn around; as 
a result, it cannot provide a good example for the CMAC 
to learn, in the sense that the CMAC learning locations are 
too far away from the recall locations. This situation is much 
improved after the proportional controller is replaced by a 
PD (proportional-differential) controller, with the result shown 
in Fig. 7(a). The proportional and differential gains used are 
P = 2037 and D = 611. These gains are very rkasonable 
from a practical point of view, and they are comparable to the 
PD gains used in [9] for two-link robotics control problems. 
Two important messages are provided in Fig. 7(a). First, the 
tracking error is reduced for about SO times after the CMAC 
is introduced at the 50th cycle. Second, after 280 cycles, 
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Fig. 7. The experimental results without and with deadzone. 

the motor becomes very noisy and the system shows large 
vibrations. Finally we have to shut down the machine. These 
phenomena match with our observations in simulations. 

Next we demonstrate how s8ystem stability is improved by 
applying deadzone to the CMAC learning rule. The control 
U ( k )  generated from the computer software is between f120 ,  
which is subsequently transformed and scaled by the driving 
system into actual control torque. The deadzone size used is 
20, i.e., there is no updating in the CMAC table when the 
difference between U and U, ILS less than 20. The stability of 
the system is improved as is shown in Fig. 8(b). In practice, 
the deadzone can be assigned a large value in the initial 
testing such that the system stability would not be affected 
immediately. Then, the deadzone can be slowly decreased 
to appreciate the improvement in tracking provided by the 
CMAC, until some undesired (effect starts to show up. 

A final note about the experiment is that, the PD control 
results (without CMAC) can be improved if the P and D gains 
are increased, but the magnitude of PD control would increase 
as well, and the control would contain large oscillations. In 
contrast, adding CMAC to the system would not increase 
the magnitude of the total control, would not cause large 
oscillations, and can achieve better accuracy than just increase 
PD gains, as long as suitable measures are taken to prevent 
the system from diverging, for example, using a deadzone. 

VII. CONCLUSION 

The main points of this paper are summarized as follows: 
1) The CMAC can be a powerful and low-cost tool to im- 

prove existing nonlinear control systems. It is powerful 

because it can very quickly learn the inverse mapping 
of the plant and generate precise controls. It is low-cost 
because it can be easily implemented and added onto 
the original control system without much modification 
to the original control designs. 
The CMAC control system can potentially go unstable. 
The problem is more with the control scheme than 
with the CMAC itself. The CMAC controller and the 
traditional controller (e.g., the PID) are independent of 
each other, and the actual control to the plant is the 
sum of these two controllers. During the initial stage, a 
transition in control from PID to CMAC is observed and 
precise tracking is quickly achieved. After lengthy and 
complex interactions between the PID and the CMAC, 
however, the in-phase wild oscillations of these two 
controllers destabilize the system. We propose to use 
deadzone as an effective tool to stop the formation 
of large oscillations, to maintain the good tracking 
contributed by the CMAC. 

Since the role of the neural network in this control system 
is to learn the inverse mapping of the plant, any other neural 
networks capable of doing this can be used in the place of 
the CMAC, for example, the backpropagation networks or the 
Gaussian networks. 

Although we propose to use deadzone to improve system 
stability, this may not be the only way stability can be 
improved. An interesting thing to see in the future would be 
to apply the CMAC to complex systems, and do quantitative 
study on issues about efficiency and stability. 
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