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Abstract—This letter indicates that the ultra-thin-body (UTB)
germanium-on-insulator (GeOI) MOSFETs preserve the leakage
reduction property of stacking devices, while the band-to-band-
tunneling leakage of bulk Ge-channel devices cannot be reduced
by stacking transistors. The seemingly contradictory behavior of
the stack-effect factors is explained by the difference in the flows
of band-to-band-tunneling hole fluxes for UTB GeOI and bulk
Ge-channel devices and validated by TCAD mixed-mode simula-
tions. At 300 K, the stack-effect factors of UTB GeOI MOSFETSs
range from 6.8 to 40 (N = 2) and from 12 to 142 (N = 3) at
Vdd = 0.5—1V. As the temperature increases or V' dd decreases,
the stack-effect factor for UTB GeOl devices decreases, while
the stack-effect factor for bulk Ge-channel MOSFETS increases,
because the subthreshold leakage current becomes more signifi-
cant at higher temperature or lower voltage with respect to the
band-to-band-tunneling leakage current.

Index Terms—Band-to-band-tunneling leakage, germanium,
germanium-on-insulator (GeOl), stacking effect, ultra-thin-body
(UTB).

1. INTRODUCTION

ERMANIUM has been proposed as an alternative chan-

nel material to enhance mobility and current drive [1],
[2]. With technology scaling, the OFF-state leakage current
increases drastically, and leakage power has become a ma-
jor contributor to the total power. Bulk Ge-channel devices
with high permittivity and low bandgap suffer from short-
channel effects (SCEs) and severe band-to-band-tunneling
leakage current. Moreover, for bulk Ge-channel devices, the
higher substrate doping density and the employment of the
“halo” profiles (used to reduce SCEs) result in significantly
larger band-to-band-tunneling current through the reverse-
biased drain—substrate and source—substrate junctions. Ultra-
thin-body (UTB) germanium-on-insulator (GeOI) MOSFET
has been proposed as a promising device architecture [3]-[6]
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due to its better control of SCEs compared with the bulk Ge-
channel MOSFET.

Transistor stacking has been widely known and used for
subthreshold leakage reduction in bulk CMOS circuits [7], [8].
In serially connected (stacked) OFF transistors, the interme-
diate node will be charged by the leakage through the top
transistor to a higher-than-ground potential; thus, the gate-to-
source voltage of the top transistor becomes negative [12]. In
addition, the threshold voltage of the top transistor increases
due to the reverse-biased body-to-source voltage since its body
is connected to ground and its source is at the intermediate node
potential [12]. As a result, the subthreshold leakage of a stack of
OFF transistors is significantly less than that of a single device.
However, the stacking effect of a Ge-channel device is different
since its leakage current is dominated by the band-to-band-
tunneling leakage at normal operating voltage (> 0.8 V) and
room temperature. In this letter, the effectiveness of stacking to
reduce the band-to-band-tunneling-dominated leakage currents
in UTB GeOI MOSFETs and bulk Ge-channel MOSFETs is
compared and analyzed.

II. DEVICE DESIGN AND TCAD
SIMULATION METHODOLOGY

In this work, the UTB GeOlI and bulk Ge-channel devices
are designed with 25-nm gate length (Lg). Fig. 1(a) shows the
1ds-V gs characteristics of UTB GeOlI and bulk Ge-channel
MOSFETs at Vids = 0.05 and 1.0 V. The device parameters are
listed in Fig. 1(b), and the schematics of a UTB GeOI MOSFET
with thin buried oxide (BOX) and raised source/drain structure
and its bulk Ge-channel counterpart are shown in Fig. 1(c).
Gate direct-tunneling leakage is ignored in this study due to the
use of high-k gate dielectric. As can be seen, with equal drive
current at 1.0 V, the bulk Ge-channel device has higher Iof f
than the UTB GeOI MOSFET. The UTB GeOI devices/circuits
are analyzed using TCAD mixed-mode simulations [9]. The
band-to-band-tunneling model proposed by Schenk [10] is used
and calibrated with the experimental data [6] to accurately
describe the band-to-band-tunneling leakage current.

III. STACKING EFFECT COMPARISON BETWEEN
GeOI AND BULK Ge-CHANNEL DEVICES

Fig. 2 shows the stack-effect factors for UTB GeOlI and bulk
Ge-channel devices. As two or more OFF devices are stacked,
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Fig. 1. (a) Ids—V gs characteristics at Vds = 0.05 and 1 V for bulk Ge-
channel and UTB GeOlI devices. The bulk Ge-channel and GeOlI devices are
designed with equal drive current at Vgs = Vds =1 V. (b) UTB GeOlI and
bulk Ge-channel device parameters. (c) Schematics of a UTB GeOI MOSFET
with thin BOX structure and raised source/drain and a bulk Ge-channel
MOSFET with raised source/drain investigated in this work.
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Fig. 2. Stack-effect factors for UTB GeOI and bulk Ge-channel MOSFETs
with N =2 and N = 3. N is the number of stacked devices. The UTB GeOI
devices show much larger stack-effect factor than the bulk Ge-channel devices
at 300 K.

the leakage is reduced from that of a single device by a factor
X (stack-effect factor) [11]. At 300 K, the leakage currents for
both UTB GeOlI and bulk Ge-channel MOSFETs are dominated
by band-to-band-tunneling leakage currents, and the UTB GeOlI
stacked devices show 6 to 37 times (two OFF stacked devices,
N = 2)and 12 to 133 times (/N = 3) larger stack-effect factors
than the bulk Ge-channel counterparts. At 300 K, the stack-
effect factor of bulk Ge-channel stacked devices is almost equal
to one, which means that the band-to-band-tunneling leakage
of bulk Ge-channel devices cannot be suppressed by stacking
transistors. As the temperature rises from 300 K to 400 K or
Vdd decreases, the stack-effect factor for UTB GeOl stacked
devices decreases, while the stack-effect factor for bulk Ge-
channel stacked devices increases. This is because, as the tem-
perature increases or V'dd decreases, the subthreshold leakage
current becomes more significant while the relative contribution
of the band-to-band-tunneling leakage current decreases due to
its stronger voltage dependence and weaker temperature depen-
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Fig. 3. (a) Drain current (Iqy4in) and source current (Isource) for the UTB
GeOI MOSFET at Vids = 1 V and 300 K. (b) Iqrain»> Isource, and substrate
current (Igybstrate) for the bulk Ge-channel MOSFET at Vids =1 V and
300 K. As band-to-band tunneling occurs at V. gs = 0V, I g ain equals Isource
for the UTB GeOI MOSFET, while Igybstrate €quals Igpain for the bulk
Ge-channel MOSFET.
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Fig. 4. Energy band diagrams for the (a) UTB GeOI MOSFET and (b) bulk
Ge-channel MOSFET with N = land N = 2 at 300 Kand Vdd = 1 V. M1:
Top transistor of the stacked devices.)

dence for both UTB GeOlI and bulk Ge-channel MOSFETs.
For bulk Ge-channel devices, the subthreshold leakage current
can be reduced by transistor stacking; therefore, the stack-
effect factor of bulk Ge-channel stacked devices increases as the
temperature increases and V' dd decreases. On the other hand,
UTB GeOlI stacked devices show smaller stack-effect factor
at high temperature and low Vdd because the subthreshold
leakage of GeOlI devices becomes more significant while the
band-to-band-tunneling leakage is reduced.

The seemingly contradictory behavior of the stack-effect
factors for UTB GeOI and bulk Ge-channel devices is ex-
plained as follows. As band-to-band tunneling occurs across the
drain-body junction in the UTB GeOI NMOS, a hole flux flows
into the body region and reaches the source side. The hole flux
reduces the drain—body potential difference, thus reducing the
band-to-band-tunneling current. For bulk Ge-channel NMOS,
the hole flux flows into the substrate contact, and the band-
to-band-tunneling current cannot be suppressed by stacking
bulk Ge-channel transistors. Fig. 3 shows that, as band-to-
band tunneling occurs across the drain—body junction at V gs =
0 V, the band-to-band-tunneling current of the UTB GeOlI
MOSFET flows into the body and reaches the source side, and
the drain current (Ig.ain) equals the source current (Isource)-
On the other hand, for the bulk Ge-channel MOSFET, the



HU et al.: LEAKAGE SUPPRESSION FOR ULTRA-THIN-BODY GeOI MOSFETs

UTB GeQI MOSFET_N=1

UTB GeQl MOSFET_N=2{M1)

o]

[

Electrostatic Potential

- 116
0.92
0.68

I o044
02
-0.04
| I -0.28 (b)
Fig. 5. Potential contours for the (a) UTB GeOI MOSFET and (b) bulk Ge-

channel MOSFET with N = 1 and N = 2. Each line in the body region is an
equipotential line at 300 K and Vdd = 1 V. (M1: Top transistor of the stacked
devices.)

band-to-band-tunneling current flows into the substrate contact,
and I;.in equals the substrate current (Isupstrate)- Fig. 4 shows
the energy band diagrams for UTB GeOlI and bulk Ge-channel
devices with N = 1 and N = 2 along the channel for the top
transistor (M1) of the stacked devices. As can be seen, for
the UTB GeOI MOSFET, the drain-to-body potential drop can
be effectively reduced by transistor stacking (/N = 2 device),
whereas for the bulk Ge-channel MOSFET, the drain-to-body
potential drops are comparable for the N = 1 and N = 2 cases.
Fig. 5 shows the equipotential contours for N = 1 and N =2
UTB GeOl [Fig. 5(a)] and bulk Ge-channel [Fig. 5(b)] devices,
respectively. The equipotential lines are always perpendicular
to the electric field, and the band-to-band tunneling strongly
depends on the electric field. As can be seen, for the UTB
GeOlI device, the drain-to-body potential drop (electric field)
is reduced by stacking transistors (N = 2) compared with the
N = 1 GeOl device, while for bulk Ge-channel MOSFETs, the
drain-to-body potential drops (electric field) are comparable for
the N = 1 and N = 2 devices.

The transistor-stacking technique has been proven quite ef-
fective in lowering the standby (subthreshold) leakage of a
circuit [13], [14]. Our results show that, for any device struc-
ture with an isolated body, the band-to-band-tunneling leakage
current can be reduced by transistor stacking due to the raised
body potential.

IV. CONCLUSION

The band-to-band-tunneling leakage currents of UTB GeOlI
MOSFETSs can be reduced by transistor stacking, while the
band-to-band-tunneling leakage currents of bulk Ge-channel
MOSFETSs cannot be suppressed by transistor stacking. The
UTB GeOl stacked devices show 6 to 37 times (N = 2) and
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12 to 133 times (N = 3) larger stack-effect factors than the
bulk Ge-channel counterparts at 300 K. As the temperature in-
creases or V dd decreases, the stack-effect factor for UTB GeOIl
stacked devices decreases, while the stack-effect factor for bulk
Ge-channel stacked devices increases, because the subthreshold
leakage current becomes more significant at higher temperature
or lower voltage with respect to the band-to-band-tunneling
leakage current.
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