IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 2, FEBRUARY 2012

215

High-Performance Poly-Si Thin-Film
Transistors With L-Fin Channels
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Abstract—For the first time, we construct poly-Si thin-film tran-
sistors (TFTs) with novel L-shaped poly-Si fin channels (poly-Si
TFTs with L-fin channels, called LFin-TFTs). The L-fin channels
of LFin-TFTs are similar to the multiple-gated fin channels of
FinFETs. The LFin-TFTs exhibit a low supply gate voltage (3 V), a
good subthreshold swing (SS) ~190 mV/dec, and a high on/off cur-
rent ratio (Ion/Iorr) > 10° (Vp = 1 V) without hydrogen-
related plasma treatments. After Ni salicidation, the devices
exhibit steep SS ~ 148 mV/dec and Ion /Iorr ~ 107. After NH;
plasma treatment, the characteristics of the devices are further
improved. The LFin-TFTs have steeper SS ~ 132 mV/dec, higher
Ion/Iorr > 107, and threshold voltage (Viry) ~ 0.036 V.

Index Terms—FinFETs, L-fin, multiple gate, NH; plasma, Ni
salicidation, poly-Si thin-film transistors (TFTs).

1. INTRODUCTION

ETTER gate electrostatic control of the channel potential

in nonplanar device structures has been a research goal

for more than a decade [1]-[4]. To this end, multiple-gated
metal-oxide—semiconductor field-effect transistor architectures
such as FinFETs are expected to be used beyond the 22-nm
technology node due to their excellent short-channel effect
(SCE) immunity [5]. From a transistor variation and mismatch
perspective, FInFETs are considered particularly suitable for
further static random access memory (SRAM) scaling, owing
to their improved SCE behavior and lower channel doping
concentration [6]. Compared to conventional planar transistors,
FinFETs with double gates are a promising architecture [7] for
further scaling. Recently, high-performance low-temperature
poly-Si thin-film transistors (TFTs) have been developed for
the employment of active-matrix liquid crystal displays on a
glass substrate and for driving integrated circuits (ICs) for the
applications of system-on-panel (SOP) and the 3-D IC elements
such as SRAM and dynamic random access memory [8]-[10].
Furthermore, high-speed display driving circuits require
TFTs to operate at low voltages and high driving currents, with
a low threshold voltage (Vry). In this letter, we demonstrate
poly-Si TFTs with novel L-fin channels (LFin-TFTs) without
the use of advanced lithographic tools. High-performance LFin-
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Fig. 1. (a)—(e) Key process flows of the LFin-TFTs and (f) 3-D schematic
structure of the LFin-TFTs.

TFTs with low Vg, good subthreshold swing (SS), and high
on/off current ratio (Ion/Ilorr) can be obtained. These hold
great promise for the realization of SOP and 3-D IC.

II. EXPERIMENT

The key process steps are shown in Fig. 1. The LFin-
TFTs were built on Si wafers capped with a 500-nm ther-
mal oxide layer. SisNy (150 nm)/tetraethoxysilane (TEOS)
(150 nm) dummy structures were then deposited by low-
pressure chemical vapor deposition (LPCVD) [Fig. 1(a)]. The
TEOS was patterned and overetched to the SizNy in the dry
etching step, and a 45-nm-thick amorphous Si (a-Si) layer was
deposited by LPCVD at 500 °C [Fig. 1(b)]. Next, the a-Si layer
was crystallized by solid-phase crystallization at 600 °C for
24 h in a Ny ambient. After TEOS spacer was formed, the S/D
region patterns were then defined by an I-line stepper. The S/D
and the poly-Si L-fin channels were fabricated by anisotropic
selective dry etching [Fig. 1(c)], and the TEOS dummy layer
and spacer were removed using dilute HF solution [Fig. 1(d)].
The TEOS dummy layer and spacer protected the sidewalls of
the L-fin channel during dry etching. A 10-nm-thick LPCVD
TEOS oxide layer and an in situ doped n™ poly-Si gate with
a thickness of 250 nm were then deposited [Fig. 1(e)]. After
gate patterning by dry etching step, the n* S/D regions were
implanted with arsenic (As+; 25 keV at 5 x 10%° cm~2) and
activated at 600 °C in a Ny ambient. Fig. 1(f) shows the
3-D schematic structure of the LFin-TFTs. For comparison,
the LFin-TFTs with Ni salicidation (called LFin-Ni) were
achieved by rapid thermal annealing at 450 °C for 30 s, and
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Fig. 2. SEM and cross-sectional TEM images of gate-stacked L-fin channels.

the same devices with further NH3 plasma treatments (called
LFin-Ni-NHj3) were also constructed.

III. RESULT AND DISCUSSION

The scanning electron microscope (SEM) and cross-sectional
transmission electron microscope (TEM) images of gate-
stacked L-fin channels are shown in Fig. 2. The L-fin channels
are surrounded by TEOS gate oxide and poly-Si gate resulting
in multiple-gated LFin-TFTs. The height and thickness of the
L-fin channels are about 200 and 45 nm, respectively. In this
work, we measured the electric characteristics of LFin-TFTs
with a channel length of 0.35 pum (Npj, = 2; effective channel
width ~ 0.3 x 2 = 0.6 um). We fabricated the TEOS spacer as
small as possible to approach the ideal fin. When the height of
L-fin is great enough, the spacer variation can be improved by
a smaller spacer size. The 3-D L-fin channels were fabricated
without use of advanced lithographic tools by simple and
low-cost processes. Fig. 3 shows the transfer characteristics
of LFin-TFTs and LFin-Ni. The LFin-TFTs without hydrogen-
related plasma treatments exhibit low Vg ~ 0.26 V and good
SS ~ 190 mV/dec due to the multiple-gated structure. On the
other hand, the ON-state currents and transconductance (Gm)
of LFin-Ni are higher than those of LFin-TFTs due to the
reduction in S/D parasitic resistance [11], while the SS of the
LFin-Ni is steeper. Furthermore, the small drain-induced barrier
lowering (DIBL) of LFin-Ni during device operation can be
attributed to the multiple-gated L-fin channel structure, which
offers good gate controllability.

Fig. 4 shows the transfer characteristics of LFin-Ni-NHj3
and LFin-Ni. The characteristics of LFin-Ni-NHj3 are further
improved by NH3 plasma treatment, including SS, Ion/Iorr
(Iorr < 1072 at Vp = 1 V), and DIBL. Those improvements
can be attributed to the hydrogen passivation of the defect

IEEE ELECTRON DEVICE LETTERS, VOL. 33, NO. 2, FEBRUARY 2012

10*

105+ —a— LFin-TFTs

e
=

2
: LFin-Ni  oge® o noooo =
1007 oo £
< ol veovav g S
= 10 1 _ 4 1.2 g
g 10° 8
S 10° 08 S
£ 10"} =
S10" 04 2
10-12 E

10" : 0.0

-1 0 1 2 3
Gate Voltage (V)

Fig. 3. Transfer characteristics of LFin-TFTs and LFin-Ni. The well-behaved
transfer characteristics of the LFin-Ni are due to the reduction in S/D parasitic
resistance.
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Fig. 4. Transfer characteristics of LFin-Ni-NH3 and LFin-Ni. The well-
behaved transfer characteristics for the LFin-Ni-NHg are illustrated.
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Fig. 5. Output characteristics of LFin-Ni-NH3 and LFin-TFTs. The
LFin-Ni-NH3 devices exhibit higher driving currents.

states, the nitrogen pileup at SiOo/poly-Si interface, and the
strong Si—-N bond formation that terminates the dangling bonds
in the grains and at the grain boundaries in the poly-Si chan-
nels [12]. The LFin-TFTs have a multiple-gated L-fin chan-
nel structure similar to single-crystal FinFETs, but additional
hydrogen-related plasma treatments are required to improve the
characteristics of the 45-nm-thick poly-Si L-fin channel.
Nevertheless, the hydrogen-related plasma treatments are un-
necessary in our previous work with sub-10-nm Si nanowire
(NW) channel [13]. The characteristics of nanoscaled NW
devices with different plasma treatment times are identical. We
argue that the thickness and size of the poly-Si channels are the
key points for future nanoscaled poly-Si TFTs.
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TABLE 1
COMPARISON OF IMPORTANT PARAMETERS OF THE L-FIN DEVICES IN
THIS RESEARCH WITH HIGH-PERFORMANCE TFTS INVESTIGATED
IN OTHER RESEARCH STUDIES

LFin LFin-Ni LFin-Ni-NH3
Vru (V) ~0.26 0.16 0.036
S.S. (mV/dec) 190 148 132
lonlorr (Vop=1V) >106 8.6x106 >107
DIBL (mV/V) 99 47 20
This Work [14] [15] [16] [171
Structure Fin-like Hiﬁz'k Nanowire Nanowire DSSB
Channel SPC SPC SLS SPC SPC
Gate Stack |Poly-Si / SiO;| TaN / HfSiOx | Poly-Si/ SiO, | Poly-Si / SiO, |Poly-Si / HfO,
W/L
0.6/0.35 150/0.3 0.13/1 0.035/0.03 | 0.02/0.09
(Hm/pm)
‘(JJ')' 0.036 0.75 0.6-0.76 0.97 1.162
5}% 10 2.8 25 25 Tyop =20
5.5, 132 193 209 224 13
(mV/dec)
DIBL
(mV/V) 20 80 20 895 254
low/lorr >107 >108 ~108 >107 >107
(Vop) (1v) (v) (3.5v) av) (1v)

The output characteristics of LFin-Ni-NH3 and LFin-TFTs
are compared in Fig. 5. After Ni salicidation and NHs plasma
treatment, the improvement of saturation currents (~ 37.7 uA)
over the LFin-TFTs (~ 23 pA) is about 63% at Vi — Vi =
2.5V and Vp = 3 V. The LFin-Ni-NHj3 devices exhibit higher
driving currents than the LFin-TFTs due to their extra Ni-
salicidation and NH3 plasma treatment processes. In addi-
tion, we show the extracted parameters of the LFin-TFTs,
LFin-Ni, and LFin-Ni-NH3 at the top part of Table I. We
also present a comparison of several important parameters of
the LFin-Ni-NHj3 with high-performance TFTs investigated in
other research studies [14]-[17] at the bottom part of Table I.
Compared to planar TFTs with high-x gate dielectric, as shown
in Table I [14], [17], the LFin-Ni-NHj3 devices show a lower
Vru, a lower SS, and improved DIBL with thicker equiva-
lent oxide thickness. The highly improved performances of
the LFin-Ni-NH3 can be attributed to the employment of a
double-gate structure which provides higher gate controllabil-
ity. Compared to the TFTs with a NW structure [15], [16],
the LFin-Ni-NHsdevices have good SS and comparable DIBL,
using a simpler process.

IV. CONCLUSION

High-performance poly-Si TFTs with novel L-fin channel
structure have been constructed and investigated in this re-
search. Compared with FinFETs, the LFin-TFT processes are
simpler and have lower cost. The S/D parasitic resistance can
be reduced by the Ni salicidation. Additional NH3 plasma
treatment was adopted to effectively passivate the defects
and interface states in LFin-TFTs. The well-behaved electric
characteristics (low off-leakage currents, good SS, improved
DIBL, and high Ion/Iorr) simultaneously achieved in the

LFin-TFTs are the result of the multiple-gated L-fin channel
structure. These high-performance LFin-TFTs appear to be
promising for future applications in SOP and 3-D IC.
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