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Abstract—An explicit, systematic code construction for the
symmetric MIMO (multi-input multi-output) multiple access
(MAC) channel with any number of users and any numbers
of transmit and receive antennas is presented in this paper. The
users are assumed to transmit at the same level of multiplexing
gain. This newly constructed code is proved to achieve the optimal
MIMO-MAC diversity-multiplexing tradeoff.

I. INTRODUCTION

During the past five years extensive research has been
carried out on point-to-point space-time (ST) lattice codes
based on cyclic division algebras (CDAs) [1]–[4]. At its best,
this research has resulted in codes having performance very
close to outage bound for practical numbers of antennas
and at moderate SNR regime. At high SNR regime, the
CDA-based codes are shown to be optimal in terms of the
diversity-multiplexing tradeoff (DMT) proposed by Zheng and
Tse [5]. In the point-to-point scenario, let nt and nr be
respectively the numbers of transmit and receive antennas at
the transmitter and receiver ends. At high SNR regime, let
r, 0 ≤ r ≤ min{nt, nr}, denote the multiplexing gain which
means the actual transmission rate equals R = r log2 SNR bits
per channel use. It was shown [2] that at multiplexing gain r,
the CDA-based codes are capable of achieving the following
optimal error probability

Pcwe(SNR) .= SNR−d
∗
nt,nr

(r) (1)

where .= denotes the exponential equality defined in [5]. The
exponent d∗nt,nr

(r) is a piecewise linear function connecting
the points (r, (nt−r)(nr−r)) for r = 0, 1, · · · ,min{nt, nr}.
In fact, d∗nt,nr

(r) is the best possible diversity gain that can
be achieved by any point-to-point space-time codes under
Rayleigh block fading channel whenever the channel coher-
ence time is≥ nt channel uses [2]. The function d∗nt,nr

(r) is
therefore commonly known as the DMT.

Motivated by the promising outcome in the point-to-point
scenario, the aim of this paper is to investigate the code
construction for the multiple-access (MAC) scenario, or equiv-
alently, the uplink transmission of multiuser (MU) MIMO

communication. We will concentrate on the uplink transmis-
sion from multiple users to a single base station (or access
point). Both mobile users and base station may be equipped
with multiple antennas.

Consider a MIMO MAC channel with K mobile users, each
user equipped with nt transmit antennas, and nr antennas
available at base station. Assuming each user communicating
independently to the base station, the DMT of such MIMO-
MAC channel was first studied by Tse et al. in [6]. To
distinguish from the DMT of point-to-point scenario, we will
call it MAC-DMT henceforth. The problem of constructing
MAC-DMT optimal codes is to construct a coding scheme
to “independently” encode and transmit each mobile user’s
information across the MIMO channel such that at the receiver
end, i.e. base station, the joint decoding of all users’ signals
reaches the best possible error performance, which is charac-
terized by the MAC-DMT. To simplify the problem, here we
consider only the case when all users transmit at the same
level of multiplexing gain r. This was termed the symmetric
MIMO-MAC channel in [6]. Furthermore, Tse et al. [6] proved
that when each user’s information is independently coded, the
maximal possible diversity gain is given by

d∗nt,nr,K(r) =


d∗nt,nr

(r), if r ∈
[
0,min

{
nt,

nr

K+1

}]
d∗Knt,nr

(Kr),

if r ∈
[
min

{
nt,

nr

K+1

}
,min

{
nt,

nr

K

}]
.

(2)
Notice that r is bounded between

0 ≤ r ≤ min
{
nt,

nr
K

}
. (3)

Compared with the point-to-point scenario, the decrease
by a factor of K on the right-hand-side of (3) is be-
cause of K users in the MAC channel. (2) also reveals
that when the level of multiplexing gain is low, i.e. r ∈[
0,min

{
nt,

nr

K+1

}]
, the decoding of each user’s signal is

able to achieve single-user performance, that is, it is as if
there were no other users present in MAC channel. On the
other hand, when the level of multiplexing gain is high,



meaning r ∈
[
min

{
nt,

nr

K+1

}
,min

{
nt,

nr

K

}]
, the whole

MIMO-MAC system will be in the antenna pooling region
[6], and the single-user performance can never be maintained.
As a consequence, a much lower diversity gain d∗Knt,nr

(Kr)
will dominate the error performance in this regime. Thus, in
this paper we will focus on constructing MIMO-MAC codes
whose diversity gain performance achieves (2) at high SNR
regime.

Some works have been done in this area when there are
K = 2 users present in the MIMO MAC channel. Based on
pairwise error probability analysis, [7] extended the design
criteria of point-to-point ST codes to the multiuser case, and
introduced an explicit (2 × 2) two-user MIMO construction
using independent Alamouti blocks. Yet, the codes in [7] do
not achieve the optimal MAC-DMT. Nam et al. [8] proposed
the first MAC-DMT achieving transmission scheme based
on a class of structured multiple access random lattice ST
codes. Some explicit, algebraic code constructions for nt > 1
and K = 2 were introduced in [9] and [10]. In [9] the
authors proposed a design criteria based on a truncated union
bound approximation, and with the aid of these criteria they
managed to outperform in error performance the other known
two-user codes for the (2 × 2) MAC [7], [11]. The authors
of [10] proposed another code construction for the (2 × 2)
two-user MAC code by introducing a rotation matrix Γ to
the original point-to-point CDA-based ST code such that the
overall code matrix is nonsingular. However, this Γ matrix
causes the resulting code to be ill-conditioned, i.e. having
vanishing determinant, at high SNR regime.

In this paper, we will present a new code construction
for the symmetric MIMO-MAC channel for any numbers of
transmit and receive antennas and for any number of users. In
particular, we will prove that this newly proposed construction
is MAC-DMT optimal, i.e. it achieves the optimal diversity
gain given in (2) whenever all users transmit at the same level
of multiplexing gain r. This paper is organized as follows. The
proposed construction will be given in Section II, and several
nice properties possessed by the code will be presented. Due
to limited space, a brief outline of the proof of the MAC-DMT
optimality will be given in Section III.

II. MAC-DMT OPTIMAL CODE CONSTRUCTION FOR
MIMO-MAC SYSTEMS

Consider a MIMO-MAC channel consisting of K users.
Each user is equipped with nt transmit antennas, and commu-
nicates independently to the base station that has nr receive
antennas. We further assume that all users transmit at the
same level of multiplexing gain r. Given the setting above,
the proposed construction is the following. Firstly, given the
number of users K, let Ko be the smallest odd integer such
that Ko ≥ K, i.e.

Ko =
{
K + 1, if K even,
K, if K odd. (4)

The code construction then calls for the following number
fields. Let Ko = F(ηo) be the number field that is a cyclic Ga-

Eo = F(θ, ηo)
Ko

ooooooooooo

ntKo

nt
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L = F(θ)

nt OOOOOOOOOOO
Ko = F(ηo)

Konnnnnnnnnnnn

F = Q( ı )

Fig. 1. Field extensions required by the proposed code constructions.

lois extension of F = Q( ı ) with degree Ko, and that satisfies
Ko ∩ L = F, where L = F(θ) is a cyclic Galois extension of
F with degree nt. Let σ and τo be generators of Gal(L/F)
and Gal(Ko/F) with degrees nt and Ko, respectively. Let
Eo = KoL = F(ηo, θ). See Fig. 1 for the relation between
the required number fields. Let Do =

(
Eo/Ko, σ, ζ = γ

γ∗

)
be

a cyclic division algebra,

Do = Eo ⊕ zEo ⊕ · · · ⊕ znt−1Eo, (5)

with
xz = zσ(x) (6)

for x ∈ Eo, where z is an indeterminate satisfying znt =
ζ ∈ F, and 0 6= γ ∈ OF is some suitable nonnorm element.
By γ∗ we mean the complex conjugate of γ and OF is the
ring of algebraic integers in field F. Notice that ‖ζ‖ = 1
and that ζ is unimodular. It has been shown [3] that with
such unimodular ζ, Do is always a cyclic division algebra.
Let ψo : Do → Mnt

(Eo) be the left-regular map that maps
elements in Do into (nt × nt) matrices with entries in Eo.

Given multiplexing gain r, let A(SNR) be the base alphabet
defined as below

A(SNR) =
{
a+ b ı : −SNR

r
2nt ≤ a, b ≤ SNR

r
2nt ,

a, b odd

}
;

(7)
then the corresponding information set is given by

Ao(SNR) =

{
nt−1∑
i=0

zi
Kont−1∑
k=0

xi,kek : xi,k ∈ A(SNR)

}
,

(8)
where {e0, · · · , eKont−1} is an integral basis of Eo/F.

Having set the above, the information encoding of each
user’s data stream will proceed as follows. Given the multi-
plexing gain r, the ith user first divides its binary data steams
into blocks of rKont log2 SNR bits. Then by using the integral
basis {e0, · · · , eKont−1} and the sets A(SNR) and Ao(SNR)
defined above, each block of binary bits can be mapped to
some symbol xi ∈ Ao(SNR) in an one-one fashion. Notice
that each user encodes his/her information independently.

Given the information symbol xi ∈ Ao(SNR) of the ith
user, the corresponding (nt ×Kont) signal matrix Si that is
actually sent out through the user i’s transmit antenna array is
given by

Si = κ
[
Xi τo (Xi) · · · τKo−1

o (Xi)
]
, (9)



where Xi = ψo(xi) and where

κ2 .= SNR1− r
nt

is the normalizing constant such that the average signal-
to-noise power ratio is SNR. The transmission takes ntKo

channel uses to complete.
The overall space-time code for K users is given by

S =


S = κ

 X0 · · · τKo−1
o (X0)

...
. . .

...
XK−1 · · · τKo−1

o (XK−1)

 :

Xi = ψ(xi), xi ∈ Ao(SNR)


,

(10)
For the purpose of code performance analysis that comes later
we set C = 1

κS, i.e.

C =


C =

 X0 · · · τKo−1
o (X0)

...
. . .

...
XK−1 · · · τKo−1

o (XK−1)

 :

Xi = ψ(xi), xi ∈ Ao(SNR)


.

(11)
Let Hi be the (nr × nt) channel matrix of the ith user,

and here we assume Hi is fixed for a block of ntKo channel
uses. Entries of Hi are modeled as i.i.d. complex Gaussian
random variables CN (0, 1) to represent the Rayleigh block
fading phenomenon. Thus given S ∈ S, the received signal
matrix at the receiver end is[

Y0 · · · YKo−1

]
=
[
H0 · · · HK−1

]
S +W,

(12)
where W is the noise matrix whose entries are i.i.d. CN (0, 1)
random variables, and Yj is the jth block received signal
matrix given by

Yj =
K−1∑
k=0

Hkκτ
j
o (Xk) +W, j = 0, 1, · · · ,Ko − 1. (13)

A. Properties of the Proposed Construction

To simplify the analysis of the code performance, below we
define the extended version of codes S and C.

C̄o =


C̄o =

 X0 · · · τKo−1
o (X0)

...
. . .

...
XKo−1 · · · τKo−1

o (XKo−1)

 :

Xi = ψ(xi), xi ∈ Ao(SNR)


,

(14)
S̄o =

{
S̄o = κC̄o : C̄o ∈ C̄o

}
(15)

It is clear that both S̄o and C̄o are sets of square matrices
having size (Kont × Kont). In particular, we have S̄o = S
and C̄o = C if K odd. Furthermore, given the overall signal
matrix S ∈ S , let S̄o ∈ S̄o be any signal matrix whose first

Knt rows equals S. Then we can rewrite the received signal
matrix of (12) as[

Y0 · · · YKo−1

]
=
[
H0 · · · HKo−1

]
S̄o +W,

(16)
where

HKo−1 =
{
HK−1, if K odd,

0, if K even. (17)

As (12) and (16) are equivalent, below we will work only with
the extended codes S̄o and C̄o, rather than S and C.

Property 1: For any C̄o ∈ C̄o[
(γ∗)Ko(nt−1) det(C̄o)

]
∈ Z[ ı ]. (18)

Proof (Sketch): It can be shown that det(C̄o) is fixed
under the automorphisms, hence det(C̄o) ∈ F = Q( ı ).
Next, for each component matrix τ jo (Xi) of C̄o, it can be
seen that the product matrix diag(1, γ∗, · · · , γ∗)τ jo (Xi) has
entries in OEo for every j = 0, 1, · · · ,Ko − 1, hence[
(γ∗)Ko(nt−1) det(C̄o)

]
∈ OEo . Finally, we have OEo ∩

Q( ı ) = Z[ ı ] and this completes the proof.

Property 2: Let

C =

 xt0
...

xtKo−1

 =

 x0 · · · τKo−1
o (x0)

...
. . .

...
xKo−1 · · · τKo−1

o (xKo−1)


(19)

and

C̄o =

 X0 · · · τKo−1
o (X0)

...
. . .

...
XKo−1 · · · τKo−1

o (XKo−1)


with Xi = ψo(xi), xi ∈ Ao(SNR). Let m be the max-
imal number such that the set {xti1 , · · · , x

t
im
} is linearly

independent as a left Do module, where {i1, · · · , im} ⊆
{0, 1, · · · ,Ko − 1}; then

rank(C̄o) = mnt (20)

where the rank is measured in the complex number field C.
Proof (Sketch): Notice that although Do is noncommutative,
it is still possible to apply Gauss-Jordan elimination on C. Sec-
ondly, applying elementary row reduction on C is equivalent
to applying elementary block reduction over (nt× nt) blocks
of C̄o.

The above property shows that the overall code matrix
C̄o ∈ C̄o does not always have full rank Kont, and the
rank of C̄o is always a multiple of nt. This is not too much
of a surprise as it is straightforward to see that in (14) if
some of the matrices Xi are identical, then the overall code
matrix C̄o cannot be nonsingular. However, compared with the
constructions proposed in [9], [10], the code matrix C̄o defined
in (14) can be singular even when the component matrices Xi

are all distinct as shown in the proof of Property 2. Never-
theless, we will prove in Section III that in order to achieve
the optimal MAC-DMT performance at high SNR regime, it



is unnecessary for the code construction such that the code
matrix C̄o is nonsingular whenever all component matrices Xi

are distinct. Before rigorously proving this claim, a heuristic
way to see this is the following. Since each user communicates
independently to the base station, for any overall MIMO-MAC
code C it is impossible for all the code matrices C ∈ C to be
nonsingular. Also, from the pairwise error probability of view,
for any C 6= C ′ ∈ C, C − C ′ can be singular at least when
some of the users’ data are the same, and the corresponding
rank is at best a multiple of nt. Therefore, intuitively speaking,
perhaps it does not hurt to make things a bit worse in the sense
that the difference matrix C−C ′ can be singular in other cases.
The reason for this is that in the MAC-DMT (2) the dominant
error events are the ones with probabilities SNR−d

∗
nt,nr

(r) and
SNR−d

∗
Kont,nr

(Kor), not the ones in between, i.e. not those of
error probability SNR−d

∗
mnt,nr

(mr) for m = 2, 3, · · · ,Ko− 1.
This means we should focus on the error events that are
dominant, and we only have to make sure that the non-
dominant events are not too much worse in error performance.
In other words, we do not need the code to behave at the same
error performance as that of the Gaussian random code at every
level of m.

On the other hand, even though we do not need the
whole code C̄o to satisfy the nonvanishing determinant (NVD)
property as in the point-to-point scenario, an alternative NVD-
like property is preferred and is given as below.

Property 3: Let C be defined as in (19) and assume that
{xti1 , · · · , x

t
im
} is the maximal subset of rows of C that are

linearly independent as a left Do module. Define

Cs =

 xti1
...

xtim

 and C̄s = Ψo (Cs) (21)

i.e. C̄s is the submatrix of C̄o consisting of mnt rows, where
Ψo is the natural extension of ψo. Then

1 <
[
‖γ‖2mnt · det

(
C̄sC̄

†
s

)]
∈ Z. (22)

Proof (Sketch): The key is to show that det
(
C̄sC̄

†
s

)
is fixed

under the automorphisms τo and σ. Due to limited space, we
only give the sketch of proving the part σ here. Firstly, with
some omitted steps, it can be shown that

σ(C̄s) =

 Z−1

. . .
Z−1

 C̄s
 Z

. . .
Z

 ,
where Z = ψo(z). It then can be shown that ZZ† = Int due
to ζζ∗ = 1 by construction, and Z−1

(
Z−1

)† = Int . Thus, we
see

σ(C̄s)
[
σ(C̄s)

]†
= diag(Z−1, · · · , Z−1) C̄s C̄†s diag((Z−1)†, · · · , (Z−1)†)

and hence σ
[
det(C̄sC̄†s)

]
= det(C̄sC̄†s).

With the three key properties satisfied by the proposed code
construction C̄o of (14), we are able to show that the same

code S̄o of (15) achieves the optimal MAC-DMT performance
d∗nt,nr,K

(r) for both K even and odd.

III. PROOF OUTLINE OF MAC-DMT OPTIMALITY

In this section we will give a sketch of the proof of the
MAC-DMT optimality achieved by C̄o. For brevity, we will
focus only on the case of odd K.

In a nut-shell, given the overall channel matrix H =
[H0H1 · · · HKo−1] the idea of the proof is to examine the
minimum Euclidean distance of the noise-free received code
HS̄o := {HS̄o : S̄o ∈ S̄o}, that is, to determine

dE,min(H) := min
S̄o 6=S̄′o∈S̄o

∥∥HS̄o −HS̄′o∥∥F , (23)

where by ‖A‖F we mean the Frobenius norm of matrix A.
Having obtained dE,min(H), the codeword error probability
achieved by S̄o is upper bounded by

Pcwe (r|H) ≤ Pr

{
‖W‖2F ≥

d2
E,min(H)

4

}

= e−
d2

E,min(H)

4

Konrnt−1∑
j=0

(d2
E,min(H))j

j!
,

where W is the (nr × Kont) noise matrix defined in (12).
It should be noted that dE,min(H) is a random variable that
depends upon the overall channel matrix H . Setting

d2
E,min(H) := SNRδE,min(H) (24)

we see

Pr

{
‖W‖2F ≥

d2
E,min(H)

4

}
.= 0, if δE,min(H) > 0.

As Pcwe (r|H) ≤ 1 we can upper bound the codeword error
probability by

Pcwe (r) ≤ Pr {δE,min(H) ≤ 0} .

Thus the goal here is to show the following

Pr {δE,min(H) ≤ 0} ≤̇ SNR−d
∗
nt,nr,K(r) (25)

where the MAC-DMT d∗nt,nr,K
(r) is defined in (2).

To this end, below we will proceed to determine the value
of dE,min(H) over all possible distinct pairs (S̄o, S̄′o). We
distinguish two cases.

1) x` 6= x′` for ` ∈ {i1, · · · , im} and x` = x′` otherwise
in (19). Further we assume rank(C̄o − C̄ ′o) = mnt:
In other words, here we consider the case when out
of Ko x`’s, m of them are distinct and the m rows[
(x` − x′`) · · · τKo−1

o (x` − x′`)
]

formed by such x`’s are
all linearly independent over Do as left Do-modules.
In this case, let C̄s and C̄ ′s be defined as in (21) and let

Hs = [Hi1 · · ·Him ]

be the equivalent (nr ×mnt) channel matrix; then we
have ∥∥HS̄o −HS̄′o∥∥2

F
=
∥∥κHs

(
C̄s − C̄ ′s

)∥∥2

F
.



By repeatedly using arithmetic-mean geometric-mean
inequality, and using the facts that

det
[(
C̄s − C̄ ′s

) (
C̄s − C̄ ′s

)†] ≥ 1
‖γ‖2mnt

.= 1 (26)

from Property 3 and
∥∥C̄s − C̄ ′s∥∥2

F
≤̇ SNR

r
nt by con-

struction, it can be shown that∥∥HS̄o −HS̄′o∥∥2

F
≥̇ SNRmax1≤k≤Qm δ

(m)
1,k (α

(m)
1 ) (27)

where Qm := min{mnt, nr}, k = 1, · · · , Qm,

δ
(m)
1,k (α(m)

1 ) :=
1
k

 Qm∑
i=Qm−k+1

(
1− α(m)

1,i

)− rm

k
,

(28)
and where SNR−α

(m)
1,1 ≤ · · · ≤ SNR−α

(m)
1,Qm are the

ordered nonzero eigenvalues of HsH
†
s .

2) The second case is when rank(C̄o− C̄ ′o) = nnt, n < m,
and without loss of generality we can assume{[

(x` − x′`) · · · τKo−1
o (x` − x′`)

]
: ` = i1, · · · , in

}
are the maximal subset of left-Do linearly independent
rows while x` 6= x′` for ` ∈ {i1, · · · , im} and x` = x′`
otherwise.
Set ∆X` = ψo(x` − x′`); Property 2 then implies that

C̄s − C̄ ′s =



Int

. . .
Int

Pin+1,1 · · · Pin+1,n

...
...

...
Pim,1 · · · Pim,n


∆X (29)

where

∆X :=

 ∆Xi1 · · · τKo−1
o (∆Xi1)

...
. . .

...
∆Xin · · · τKo−1

o (∆Xin)

 . (30)

Given the channel matrix Hs = [Hi1 · · ·Him ], we define
the equivalent channel matrix Heq =

[
H̃1 · · · H̃n

]
with

H̃` := Hi` +
m∑

k=n+1

HikPik,` (31)

for ` = 1, · · · , n. Then it follows that∥∥HS̄o −HS̄′o∥∥2

F
= ‖κHeq∆X‖2F . (32)

Arguing similarly as the first case shows that

‖κHeq∆X‖2F ≥̇ SNRmax1≤k≤Qn δ
(m,n)
2,k (α

(m,n)
2 ) (33)

where

δ
(m,n)
2,k (α(m,n)

2 ) :=
1
k

 Qn∑
i=Qn−k+1

(
1− α(m,n)

2,i

)− rn

k
,

(34)

Qn = min{nnt, nr}, k = 1, · · · , Qn, and SNR−α
(m,n)
2,i ,

i = 1, · · · , Qn are the ordered nonzero eigenvalues
of HeqH†eq . It should be noted that δ(m,n)

2,k (α(m,n)
2 ) is

exactly the same as δ(m)
1,k (α(m)

1 ) except that α(m)
1 and

α
(m,n)
2 are of different statistical distribution.

It is clear from the definition of dE,min(H) that

δE,min(H) ≤ min
1≤n<m≤Ko

{
max

1≤k≤Qm

δ
(m)
1,k (α(m)

1 ),

max
1≤k≤Qn

δ
(m,n)
2,k (α(m,n)

2 )
}
. (35)

Therefore, following from union bound we have

Pr {δmin(H) ≤ 0}

≤
Ko∑
m=1

(
Ko

m

)
Pr
{

max
k

δ
(m)
1,k (α(m)

1 ) ≤ 0
}

+

Ko∑
m=1

(
Ko

m

)m−1∑
n=1

(
m

n

)
Pr
{

max
k

δ
(m,n)
2,k (α(m,n)

2 ) ≤ 0
}

Finally the proof is complete after we manage to show

Pr
{

max
k

δ
(m)
1,k (α(m)

1 ) ≤ 0
}
.= SNR−d

∗
mnt,nr

(mr),

Pr
{

max
k

δ
(m,n)
2,k (α(m,n)

2 ) ≤ 0
}
.= SNR−d

∗
nnt,nr

(nr).
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