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Abstract Injecting CO2 into a subsurface formation causes a buildup of pressure in the
vicinity of the injection well. While a large injection rate can reduce the cost associated
with injection, an indefinitely large injection rate can result in excessive formation damage.
To obtain an optimal injection rate without exceeding the safe pressure limits, one will like
to have some knowledge of the transient pressure buildup characteristics resulting from a
particular injection rate. While elaborate numerical simulations can provide reliable pressure
buildup predictions, they require extensive knowledge about the formation, which is normally
not available at the start of an injection process. To alleviate this problem, using some simpli-
fying assumptions, we have developed a solution to predict the transient buildup of pressure
resulting from injection of supercritical carbon dioxide from a partially penetrating well into a
gas reservoir. The solution in space and time is first obtained in the Fourier–Laplace transform
space, and then inverted back into real space (in cylindrical coordinates) and time. We use
the solution to study pressure transient characteristics for different formation permeabilities
and anisotropy ratios. Results obtained using the solution compared well with those from
numerical simulations.

Keywords Carbon dioxide · Storage · Sequestration · Pressure buildup · Supercritical ·
Analytical solution · Gas reservoir

S. Mukhopadhyay (B)
Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
e-mail: SMukhopadhyay@lbl.gov

S.-Y. Yang
Department of Civil Engineering, Vanung University, Chungli, Taiwan

H.-D. Yeh
Institute of Environmental Engineering, National Chiao Tung University, Hsinchu, Taiwan

123



890 S. Mukhopadhyay et al.

List of symbols
B =B’RT (see below), m3/mol
B ′, C ′, D′. . . Virial coefficients (see Eq. 1)
b1 Height of the bottom of the perforated zone, m
b2 Height of the top of the perforated zone, m
kr Permeability in the radial direction, m2

kz Permeability in the vertical direction, m2

L Thickness of the storage formation
P Pressure, atm
Pc Critical pressure, atm
Pi Initial pressure and pressure at an infinitely large radial distance, atm
Pr Reduced pressure
qr Volume flux of CO2 in the radial direction, m s−1

qz Volume flux of CO2 in the vertical direction, m s−1

R Universal gas constant, J mol−1 K−1

r Radial coordinate or radial distance from the centre of the injection
borehole, m

Δr Infinitesimal radial distance, m
T Temperature, K
Tc Critical temperature, K
Tr Reduced temperature
t Time, s
Vr Reduced volume
Z Compressibility factor
z Vertical coordinate or vertical distance from the bottom of the storage

formation, m
Δz Infinitesimal vertical distance, m

Greek
α Anisotropy ratio
φ Porosity of the storage formation
μ Viscosity of CO2, kg m−1 s−1

μ Average viscosity of CO2, kg m−1 s−1

ρ Density of CO2 as predicted by Altunin’s correlations, kg m−3

ρP Density of CO2 as predicted by generalized Pitzer’s correlations, kg m−3

ωa Acentric factor

1 Introduction

Capturing carbon dioxide from flue gases and injecting them into deep subsurface forma-
tions, a process commonly known as geologic storage, has been receiving increasing attention
as a viable option for mitigating atmospheric emissions and reversing the global trends of
rising surface temperatures (IPCC 2005). Geologic storage aims to prevent CO2 from enter-
ing the atmosphere by storing it permanently in three main subsurface formations—deep
saline aquifers, unminable coal beds, and depleted natural gas reservoirs (Gunter et al. 1996;
Bachu 2000; Gale 2004; IPCC 2005; Hepple and Benson 2005; Holloway 2005; Oldenburg
2006; Bachu 2008; Birkholzer and Zhou 2009; Vilarrasa et al. 2010a). Of these three main
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Pressure Buildup During Supercritical CO2 Injection 891

subsurface formations, natural gas reservoirs currently appear to be quite appealing (see
Ferronato et al. 2010 and references therein).

Injection of CO2 into deep geological formations is achieved by pumping it down into an
injection well. While the actual geological storage zone can be quite thick (ranging from a
few meters to tens of meters), only a small part of the injection well (typically, a few meters to
10–20 m) within the storage zone is perforated to allow the injected CO2 to enter the storage
zone. The thickness of the perforated zone depends on the permeability and thickness of the
formation. Injection raises the pressure in the immediate vicinity of the well, enabling CO2

to enter the pore spaces initially occupied by the formation fluids. The spatial and tempo-
ral distribution of pressure buildup in the formation will obviously depend on the rate of
injection, the permeability, porosity, and thickness of the storage formation, the perforation
thickness, and other geological features (such as presence of faults or permeability barriers)
of the storage formation.

In this article, we offer a solution to predict the pressure buildup resulting from injection
of CO2 into a natural gas reservoir where the injection well is partially perforated. Over the
years, a large number of analytical and semi-analytical solutions have been developed for
flow of gases through porous and permeable formations, a comprehensive review of which
is beyond the scope of this article. To the best of our knowledge, the governing equations
for pressure-driven isothermal flow of gases in porous media, assuming ideal gas behavior,
were first developed by Leibenzon (1929), and later by Muskat (1946). Later, Al-Hussainy
et al. (1966) investigated the flow of real gases (i.e., gases that do not follow the ideal gas
law) through porous media using the concept of a pseudo gas pressure. The pseudo pressure
concept (Al-Hussainy et al. 1966) has since become a useful tool in studies of gas reservoir
engineering. The mass balance equation in (Al-Hussainy et al., 1966, Eq. 18) is non-linear and
rigorously valid for arbitrary pressure gradients. It also recognizes the pressure-dependence
of viscosity (μ) and compressibility

(
cg
)

of real gases, even though they linearize the govern-
ing equations by imposing the assumption thatμcg is constant. For constant rate of production
from a gas reservoir, Al-Hussainy et al. (1966) postulated that evaluating the product μcg at
initial reservoir pressure provided reasonable engineering results. For gas injection problems,
it has been noted that evaluating μcg about half way between the extremes might be quite
good (Al-Hussainy et al. 1966; Tartakovsky 2000).

More recently and with immediate relevance to subsurface injection of CO2, Saripalli
and McGrail (2002) developed semi-analytical solutions for modeling deep well injection
of CO2 into brine formations. As observed latter by Mathias et al. (2009a,b), a limitation of
these semi-analytical solutions is that they are developed assuming that both the geological
formations and the fluids are incompressible. Subsequently, Mathias et al. (2009a) developed
an approximate similarity solution, which describes the spatial and temporal distribution of
pressure resulting from CO2 injection in brine aquifers, and these pressure buildup results
were latter used (Mathias et al. 2009b) for assisting in selection of CO2 sequestration sites.
Zhou and Birkholzer (2011) analyzed the magnitude of pressure perturbation and brine migra-
tion induced by geologic carbon sequestration assuming a full-scale deployment scenario in
which enough CO2 was captured and stored to make relevant contributions to global cli-
mate change mitigation. Analytical solutions have also been obtained for estimating risks of
pressure buildup resulting from CO2 injection (see Oruganti et al. 2011) and for pressure
buildup in overlying formations (Zeidouni et al. 2011). Further, Mathias et al. (2011) pre-
sented an explicit approximate solution for estimating pressure buildup due to injection of
CO2 into closed brine aquifers of finite radial extent.

Note that the analytical or semi-analytical solutions described above pertain to pressure
buildup resulting from CO2 injection in a brine aquifer. The focus of this article, on the other
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hand, is on pressure buildup in a gas reservoir. In addition, some of these previous works
(Zhou et al. 2009; Mathias et al. 2009a,b) have assumed that the gas compressibility is con-
stant and independent of pressure. As has been noted earlier (e.g., Al-Hussainy et al. 1966),
compressibility of gases, whether behaving ideally or otherwise, is a function of pressure. In
some of those works (Mathias et al. 2009a,b), it has been further assumed that the gas com-
pressibility is comparable to the compressibility of water. As has been noted by Vilarrasa et
al. (2010b), CO2 compressibility is one to two orders magnitude larger than that of the rock or
water. They (Vilarrasa et al. 2010b) therefore investigate the impact of CO2 compressibility
on CO2 storage. They propose a method to account for compressibility effects and viscosity
variations, and apply it to the analytical solutions of Nordbotten et al. (2005) and Dentz and
Tartakovsky (2009). They, however, do so without actually specifying a relationship (such as
an equation of state) between density (or, compressibility) and pressure. Instead, they itera-
tively solve a non-linear integral equation to obtain the mean density within a plume volume.

In this article, we show that a solution can be obtained through specification of a suitable
equation of state. Moreover, our conceptual model accounts for the partial penetration of the
injection well. The effect of partial penetration of the injection well has been studied in the
groundwater literature (e.g., Dougherty and Babu 1984; Hyder et al. 1994; Yang et al. 2006;
Yeh et al. 2008). However, to the best of our knowledge, it has not been included in a solu-
tion in the context of CO2 injection and subsurface sequestration. Finally, the solution (for
head distribution in a groundwater aquifer containing a partially penetrating well) provided
by Dougherty and Babu (1984), is in Laplace-domain. Dougherty and Babu (1984) used a
numerical inversion scheme to obtain the solution in real time. By adopting the approach
developed by Yeh et al. (2003) and Yang et al. (2006) in this article, we avoid the errors that
might be introduced by the numerical inversion scheme.

One major difficulty in developing an analytical or semi-analytical solution involving
injection of CO2 is that under most formation conditions it behaves as a supercritical fluid,
which has a density similar to that of a liquid, while its viscosity is similar to that of a
gas. It has been generally concluded (García 2003; Pruess 2005) that Altunin’s correlations
(Altunin 1975) provide reasonably accurate estimates of CO2 physical properties. However,
these correlations have complex functional forms making them difficult to use for our pur-
poses. We thus propose to use the Pitzer’s correlations, after introducing some correction
terms to make them consistent with Altunin’s correlations.

The rest of the article is organized as follows. In Sect. 2, we describe the conceptual model
for migration of CO2 after being injected into the formation. In Sect. 3, we discuss the Pitzer’s
correlations for computing the physical properties of carbon dioxide, compare the Pitzer’s
correlations with Altunin’s correlations, and introduce corrections terms to the Pitzer’s cor-
relations so that their predictions are more consistent with Altunin’s correlations. In Sect. 4,
we develop the governing equations along with the initial and boundary conditions speci-
fying the CO2 injection problem. The solution procedure in Fourier and Laplace transform
space is outlined in Sect. 5. Section 5 also discusses the inversion of the Fourier and Laplace
transform space solution to real time. In Sect. 6, we present the details of the numerical
simulations, which were used to verify the solutions. Section 7 discusses the results for some
typical injection scenarios and parametric studies involving different formation parameters,
which are followed by a summary of this article in Sect. 8.

2 Conceptual Model

When CO2 is injected into the storage formation, different transport mechanisms control its
migration thereafter. Depending upon the nature of the fluids already residing in the formation,
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Pressure Buildup During Supercritical CO2 Injection 893

these transport mechanisms may include fluid flow under pressure gradient created by the
injection process, buoyancy caused by density difference between the injected and formation
fluids, diffusion, dispersion and fingering (arising from formation heterogeneities and mobil-
ity contrast between the fluids), capillarity (resulting from different wetting characteristics
of the fluids concerned), dissolution into the formation fluid, mineralization, and adsorption
of CO2 (IPCC 2005).

For developing an explicit solution, some simplifying assumptions are needed such that
the processes that have minor affects or are not important can be excluded from the con-
ceptual model. For example, we exclude processes such as mineralization and adsorption
because these processes occur over a long temporal scale, whereas our primary objective is
to obtain pressure buildup during or immediately after injection. We also exclude dispersion
processes by considering a homogeneous (even though anisotropic) formation. This is again
justified because dispersion seems to play an important role only over large times.

The buoyancy forces that drive vertical flow depend on the type of the fluid in the for-
mation. When CO2 is injected into a natural gas reservoir, the magnitude of the density
difference between the injected gas and the in-situ gas phase depends on formation pressure
and temperature, which may lead to significant buoyancy effects between dense CO2 and the
lighter native natural gas (e.g., CH4) (Oldenburg and Doughty 2010). However, note that our
objective is to estimate pressure buildup near an injection well, which is dominated by vis-
cous forces and not buoyancy forces (which are important farther away). Consequently, we
exclude buoyancy from our conceptual model. This exclusion is likely to produce a conser-
vative estimate of the maximum extent of pressure buildup. This is because buoyancy drives
fluids away vertically from the point of injection into the formation. Thus, the predicted
pressure without buoyancy at the point of injection is larger than the actual pressure (when
buoyancy is included). Additionally, when buoyancy is ignored, the model results will over-
estimate injection-induced horizontal migration of CO2 (i.e., the actual near-field horizontal
spreading would be slightly less when buoyancy is included). Even though the viscosity of
pure CO2 can be significantly larger than that of pure CH4 (Oldenburg and Doughty 2010),
for simplicity, we assume that the viscosity of the resident gas phase is equal to that of the
injected gas.

Figure 1 schematically (not to scale) shows the essential elements of the conceptual model.
The storage formation is conceptualized as an infinite circular cylinder (R∞ → ∞) which
has a thickness of L . The origin of the coordinate system is located at the centre in the
bottom plane of the circular cylinder, as shown in Fig. 1. CO2 is injected through an injection
borehole with radius rw, which extends all the way to the ground surface. Note that the flow
and transport processes inside the injection borehole are not explicitly modeled. As shown in
Fig. 1, the injection borehole is perforated between b1 (the height of the bottom of perforated
zone from the origin) and b2 (the height of the top of the perforated zone from the origin).
The thickness of the perforated zone thus is (b2 − b1), which is considerably smaller than the
thickness of the storage formation, L . It is assumed that CO2 enters the formation through
the perforated zone at a mass flow rate of ṁ (in units of kg s−1) for a specified period of time,
tinj.

It is assumed that the storage formation is overlain and underlain by thick impervious
rocks. In other words, no flow boundary conditions are applied at the top and bottom bound-
aries of the storage formation. At the radial boundaries (which are assumed to be located at
a large distance from the injection borehole), constant pressure (P = Pi) is assumed. It is
also assumed that the entire injection process happens under isothermal conditions. Because
the average geothermal gradient in most cases is about 25◦C per kilometer (IPCC 2005),
for a storage formation, which is about 100 m thick, the temperature difference between
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Fig. 1 Schematic diagram showing the conceptual model used for developing the analytical solution for
migration of CO2 after being injected into a natural gas storage formation. Note that the transport processes
within the injection borehole has not been included in the conceptual model

the top and bottom of the formation is of the order of 2.5◦C. Thus, assuming an isothermal
operation is justified. Because we assume isothermal conditions, all thermal effects including
Joule–Thompson effects (Oldenburg 2007) are ignored. It is also assumed that the storage
formation was initially (i.e., before injection commenced) maintained at a uniform pressure
of Pi. Recognizing that most subsurface formations exhibit anisotropy in their permeabilites,
it is assumed that the storage formation has a horizontal permeability of kr and a vertical
permeability of kz, with an anisotropy ratio of α = kz/kr . Finally, because we are focusing
on injecting CO2 into a natural gas reservoir, capillarity is not included in the model.

3 Physical Properties of Carbon Dioxide

We begin with the generalized Pitzer correlations (Smith and Van Ness 1981) for computing
the physical properties of CO2. The generalized Pitzer correlations are based on the virial
equation of state (EOS), i.e.,

Z ≡ PV

RT
= 1 + B ′ P + C ′ P2 + D′ P3 · · · . (1)

In Eq. 1, V is volume, T is temperature, R is the universal gas constant, and B ′, C ′, D′,
etc., are the virial coefficients. The simplest correlation proposed by Pitzer is for the second
virial coefficient (B ′). It is based on Eq. 1 (when truncated after the second term) and can be
expressed as

Z = 1 + B P

RT
(2)

where we have used the notation B ′ = B
RT . The range of P and T over which the above

generalized correlations can be used can be obtained from the condition

Vr ≡ V

Vc
≥ 2. (3)
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Fig. 2 Reduced volume (Vr) of CO2 as a function of pressure at different temperatures. The horizontal dotted
line represents Vr = 2. The reduced volumes have been calculated using Altunin’s correlations (1975), and
have been obtained from the CO2TAB file distributed with the TOUGH2/ECO2N software (Pruess 2005)

where Vc is the critical volume of carbon dioxide.
The relative simplicity of the generalized Pitzer’s correlations does much to use them.

However, we need to first test whether these correlations are useful for determining prop-
erties of supercritical CO2, and if so, how they compare against other EOSs such as the
Altunin’s correlations. To check the range over which Pitzer’s correlations can be used for
CO2, we show Vr as a function of P at three different temperatures (31.04◦C, which is the
critical temperature of CO2, 55.04, and 75.04◦C) in Fig. 2. Note that the values of the reduced
volume were obtained from the CO2TAB file distributed with the TOUGH2/ECO2N soft-
ware (Pruess 2005). Note also that the reduced volumes in TOUGH2/ECO2N are calculated
using Altunin’s correlations. The horizontal dashed line in Fig. 2 represents Vr = 2. From
Fig. 2, we observe that when T = 31.04◦C, Pitzer’s correlations can be used all the way up to
the critical pressure (72.8 atm), beyond which Vr becomes smaller than 2.0. However, as the
temperature is increased, Pitzer’s correlations can be used even beyond the critical pressure.
For example, when temperature is 75.04◦C, Pitzer’s correlations can be used up to a pressure
of 100 atm without any correction terms.

Next, we compare the densities calculated by Altunin’s correlations with those from the
generalized Pitzer’s correlations. Fig. 3a shows the difference between the density calculated
using Altunin’s correlations (ρ) and that obtained from generalized Pitzer’s correlations (ρP)

as a function of pressure at different temperatures (T = 45, 55, 65, 75, and 85◦C). Because we
are interested only in supercritical CO2, the plots are shown only for temperatures larger than
the critical temperature (31.04◦C). We can make a number of observations from Fig. 3a. First,
densities predicted by generalized Pitzer’s correlations are always smaller compared to those
predicted by Altunin’s correlations (i.e., Pitzer’s correlations underpredict CO2 densities).
Second, at pressures smaller than the critical pressure (72.8 atm), the difference between the
two is small irrespective of temperature. Third, the difference between Altunin’s predictions
and Pitzer’s correlations (with respect to density) decreases with increasing temperature.
Finally, note that the difference in densities predicted by the Altunin’s and Pitzer’s correla-
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Fig. 3 a The actual difference in densities computed using Altunin’s correlations and generalized Pitzer’s
correlations as a function of pressure at different temperatures. b The actual and fitted difference in densi-
ties computed using Altunin’s correlations and generalized Pitzer’s correlations at different temperatures as a
function of pressure up to the turnover pressure

tions initially increases with increase in pressure, passes through a peak, and then decreases
thereafter. We may call the pressure at which the density difference reaches a peak as the
turnover pressure, Pto, which is different at different temperatures.

It is our hypothesis that, if suitable correction terms are used, the Pitzer’s correlations can
be extended to obtain density values at pressures as large as Pto. In other words, we propose
a relationship of the form

ρ − ρP =
3∑

n=0

an Pn, P ≤ Pto (4)
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Table 1 The coefficients an as discussed in Eq. 4

No. Temperature a0 a1 a2 a3 Range of pressure
(T, ◦C) (kg m−3) (kg m−3 atm−1) (kg m−3 atm−2) (kg m−3 atm−3) (atm)

1. 45 −0.0574 0.0660 −0.0083 2.7 × 10−4 1-106

2. 55 −0.0243 0.0280 −0.0035 1.1 × 10−4 1-126

3. 65 −0.0209 0.0234 −0.0023 6.09 × 10−5 1-138

These parameters provide the correction factors needed to account for difference in density values predicted
by the generalized Pitzer’s correlations and those predicted by Altunin’s correlations. The rightmost column
provides the range of pressure over which these relationships are valid. The upper limit of the pressure range
is the Pto

where ρ is the density of supercritical CO2 predicted by Altunin’s correlations, ρP is the
same predicted by Pitzer’s correlations, P is pressure, and the coefficients (an) are func-
tions of temperature. The values of the coefficients an at different temperatures are given in
Table 1, which also provides the range of pressure over which Eq. 4 can be used. For sake of
completeness, we show the actual and fitted density differences at different temperatures in
Fig. 3b.

4 Governing Equations and Boundary Conditions

The balance equation for flow of carbon dioxide under isothermal conditions can be described
as

�t
[
2πr�zqrρ |r − 2πr�zqrρ |r+�r + 2πr�rqzρ |z − 2πr�rqzρ |z+�z

]

= 2πr�r�zφρ |t+�t − 2πr�r�zφρ |t . (5)

At the limit �r,�z,�t → 0, Eq. 5 can be written as

− 1

r

∂

∂r
(rqrρ)− ∂

∂z
(qzρ) = φ

∂ρ

∂t
. (6)

Assuming Darcy flow regime, we can write qr = − kr
μ
∂P
∂r , and qz = − kz

μ
∂P
∂z . Introducing qr

and qz in Eq. 6, we obtain

1

r

∂

∂r

(
rρ
∂P

∂r

)
+ α

∂

∂z

(
ρ
∂P

∂z

)
= φμ

kr

∂ρ

∂t
(7)

where α = kz
kr

is the ratio of the vertical and horizontal permeabilities (hereafter referred to
as anisotropy ratio). In writing Eq. 7, we have assumed that the viscosity of carbon dioxide
is constant over the pressure range typically encountered during injection in a gas reservoir.

In Eqs. 5 through 7, ρ (P, T ) is the true density of CO2 (as obtained from, say, Altunin’s
correlations), which is different from ρP(P, T )—the Pitzer density (see Eq. 4). By definition

ρP = P M

Z RT
(8)

where M is the molecular weight of carbon dioxide (0.044 kg/mol). Eliminating Z between
Eqs. 2 and 8, we obtain an expression relating P to ρP

P = ρPT

M − BρP
. (9)
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Combining Eqs. 4 and 9, we obtain the relationship

ρ = ρP +
3∑

n=0

an

(
ρP RT

M − BρP

)n

. (10)

Introducing Eq. 10 into Eq. 7, we get

1
r
∂
∂r

(
r

{
ρP +

3∑

n=0
an

(
ρP RT

M−BρP

)n
}
∂P
∂r

)
+ α ∂

∂z

({
ρP +

3∑

n=0
an

(
ρP RT

M−BρP

)n
}
∂P
∂z

)

= φμ
kr

∂
∂t

(
ρP +

3∑

n=0
an

(
ρP RT

M−BρP

)n
)
.

(11)

After changing the differentials ∂P
∂r and ∂P

∂z to ∂ρP
∂r and ∂ρP

∂z , respectively, we can write Eq. 11
as

1
r
∂
∂r

(
r

(M−BρP)
2

{
ρP +

3∑

n=0
an

(
ρP RT

M−BρP

)n
}
∂ρP
∂r

)

+α ∂
∂z

(
1

(M−BρP)
2

{
ρP +

3∑

n=0
an

(
ρP RT

M−BρP

)n
}
∂ρP
∂z

)

= φμ
M RT kr

∂
∂t

(
ρP +

3∑

n=0
an

(
ρP RT

M−BρP

)n
)
.

(12)

To simplify Eq. 12, we introduce a new variable, ψ = M − BρP, which transforms Eq. 12
into

1
r
∂
∂r

(
r

{
M−ψ
ψ2 + a0 B

ψ2 +
3∑

n=1

an Rn T n

Bn−1ψ2

(
M−ψ
ψ

)n
}
∂ψ
∂r

)

+α ∂
∂z

({
M−ψ
ψ2 + a0 B

ψ2 +
3∑

n=1

an Rn T n

Bn−1ψ2

(
M−ψ
ψ

)n
}
∂ψ
∂z

)

= − φμB
M RT kr

∂
∂t

[
(M − ψ)+ a0 B +

3∑

n=1

an Rn T n

Bn−1

(
M−ψ
ψ

)n
]
.

(13)

Equation 13 can be further simplified if we define

θ = −
[

M

ψ
+ lnψ +

4∑

n=1

dn

ψn

]

(14a)

where we have defined

d1 = a0 B − a1 RT + a2 R2T 2

B
− a3 R3T 3

B2 (14b)

d2 = M

(
a1 RT

2
− a2 R2T 2

B
+ 3

2

a3 R3T 3

B2

)
(14c)

d3 = M2
(

1

3

a2 R2T 2

B
− a3 R3T 3

B2

)
(14d)

d4 = M3

4

a3 R3T 3

B2 (14e)
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Using this definition of θ , Eq. 13 is finally written as

1

r

∂

∂r

(
r
∂θ

∂r

)
+ α

∂

∂z

(
∂θ

∂z

)
= 1

β

∂θ

∂t
(15)

where β (which has units of diffusivity, m2/s) is defined as

β = kr M RT

φμB

⎡

⎢
⎢
⎣

M−ψ
ψ

2 + a0 B

ψ
2 + a1 RT

ψ
3

(
M − ψ

) + a2 R2T 2

B

(
M−ψ)2

ψ
4 + a3 R3T 3

B2

(
M−ψ)3

ψ
5

1 + Ma1 RT

ψ
2 + 2Ma2 R2T 2

B

(
M−ψ)

ψ
3 + 3Ma3 R3T 3

B2

(
M−ψ)2

ψ
4

⎤

⎥
⎥
⎦ .

(16)

Note that Eq. 15 is obtained by linearization of Eq. 13. Al-Hussainy et al. (1966) used a
similar linearization procedure while developing their gas flow equations in terms of the
pseudo-reduced pressure (see Sect. 1 for more discussion on this). In addition, one can write
the compressibility factor of CO2

1

cg
= M RT

B

⎡

⎢⎢
⎣

M−ψ
ψ

2 + a0 B

ψ
2 + a1 RT

ψ
3

(
M − ψ

) + a2 R2T 2

B

(
M−ψ)2

ψ
4 + a3 R3T 3

B2

(
M−ψ)3

ψ
5

1 + Ma1 RT

ψ
2 + 2Ma2 R2T 2

B

(
M−ψ)

ψ
3 + 3Ma3 R3T 3

B2

(
M−ψ)2

ψ
4

⎤

⎥⎥
⎦

(17a)

An alternative expression for compressibility factor can also be obtained (in terms of
pressure and temperature), which is

cg =
M RT

(B P+RT )2
+

3∑

n=1
nan Pn−1

P M
B P+RT +

3∑

n=0
an Pn

. (17b)

We now need to develop an expression for θ as a function of either pressure or density.
Observe that

ψ = M − BρP = M − B × M

B Z
(Z − 1) = M

Z
. (18)

Combining the definition of θ with Eq. 18, we have

θ = −
[

Z + ln
M

Z
+

4∑

n=1

dn

(
Z

M

)n
]

. (19)

It is now easy to see that

Ze−(
C1 Z+C2 Z2+C3 Z3+C4 Z4

)
= Meθ (20)

where C1 = 1 + d1
M , C2 = d2

M2 , C3 = d3
M3 , and C4 = d4

M4 . Thus, once θ is known from
Eq. 15, Z can be obtained by solving Eq. 20. P (r, z, t) can then be obtained from

P (r, z, t) = RT

B
[Z (r, z, t)− 1] (21)
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The initial and boundary conditions for pressure are

P(r, z, 0) = Pi, (22a)
∂P

∂z
|z=0 = 0, (22b)

∂P

∂z
|z=L = 0, (22c)

P(∞, z, t) = Pi, (22d)

and

2πrw(b2 − b1)
kr

μ
ρ
∂P

∂r

∣
∣r=rw = ṁ [U (z − b1)− U (z − b2)] . (22e)

where U (z − χ) is defined as the unit step function such that

U (z − χ) = 0, z < χ
(22f)= 1, z ≥ χ

In other words, this translates to non-zero carbon dioxide injection into the storage forma-
tion through the perforated zone, and zero injection of the same through other parts of the
injection well.

For the transformed compressible factor, θ (r, z, t), the initial and boundary conditions
become

θ(r, z, 0) = θi, (23a)
∂θ

∂z
|z=0 = 0, (23b)

∂θ

∂z
|z=L = 0, (23c)

θ(∞, z, t) = θi, (23d)

and

− ∂θ

∂r

∣∣r=rw = ṁμB2

2πrw (b2 − b1) kr M RT
[U (z − b1)− U (z − b2)] . (23e)

5 Solution Scheme

Equation 15 is cast into dimensionless form by defining the dimensionless variables θD =
θi−θ
θi
, ξ = r

rw
, ζ = z

rw
, and τ = βt

r2
w

, which results in

1

ξ

∂

∂ξ

(
ξ
∂θD

∂ξ

)
+ α

∂

∂ζ

(
∂θD

∂ζ

)
= ∂θD

∂τ
. (24)

The initial and boundary conditions in the dimensionless space are

θD(ξ, ζ, 0) = 0, (25a)
∂θD

∂ζ
|ζ = 0 = 0, (25b)

∂θD

∂ζ

∣∣ζ = L D = 0, (25c)

θD(∞, ζ, τ ) = 0, (25d)
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and

−∂θD

∂ξ

∣
∣
∣
∣ ξ = 1 = ṁ D [U (ζ − B1)− U (ζ − B2)] . (25e)

In Eq. 25c, L D = L
rw

is the dimensionless reservoir thickness, and in Eq. 25e, ṁ D =
ṁ

2π(b2−b1)
kr
μ
θi

M RT
B2
, B1 = b1

rw
, and B2 = b2

rw
. (B2 − B1) is the dimensionless perforation

thickness.
To solve Eq. 24, we first define the finite Fourier cosine transform of θD (ξ, ζ, τ ) as

θ̃D (ξ, ωn, τ ) =
L D∫

0

θD (ξ, ζ, τ ) cos (ωnζ ) dζ 0 ≤ ζ ≤ L D (26)

where ωn = nπ
L D

. In the Fourier cosine transform space, Eq. 24 can be rewritten as

1

ξ

∂

∂ξ

(

ξ
∂θ̃D

∂ξ

)

− αω2
n θ̃D = ∂θ̃D

∂τ
. (27)

Note that in developing Eq. 27, we have used the property

F

[
∂2θD

∂ζ 2

]
= (−1)n

∂θD

∂ζ

∣∣∣∣ ζ=L D −∂θD

∂ζ

∣∣∣∣ ζ=0 − ω2
n θ̃D (28)

in conjunction with the conditions specified in Eqs. 25b and 25c. We next define the Laplace
transform such that

ˆ̃
θD (ξ, ωn, p) =

∞∫

0

θ̃D (ξ, ωn, τ ) e−pτdτ. (29)

In the Laplace transform space, Eq. 28 becomes

1

ξ

d

dξ

(

ξ
d ˆ̃
θD

dξ

)

= q2
1

ˆ̃
θD (30)

where q1 = √
p + αω2

n . Note that in writing Eq. 30, we have used the initial condition given
by Eq. 25a. Note also that in the Fourier–Laplace transform space the boundary condition
given in Eq. 25e becomes

d ˆ̃
θD

dξ

∣∣∣∣∣ ξ=1 = − ṁ D

ωn p
[sin (ωn B2)− sin (ωn B1)] . (31)

The detailed procedure for obtaining the solution for Eq. 31 can be found in Yeh et al. (2003)
and Yang et al. (2006). Here we provide the solution without providing the intermediate
steps. The solution of Eq. 31 can be written as

ˆ̃
θD (ξ, ωn, p) = ṁ D [sin (ωn B2)− sin (ωn B1)]

ωn pq1

K0 (q1ξ)

K1 (q1)
. (32)
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Performing an inverse Fourier transform (Yeh et al. 2003; Yang et al. 2006), we obtain the
following in the Laplace transform space

θ̂D (ξ, ζ, p) = ṁ D

p
√

p

(B2 − B1)

L D

K0
(
ξ
√

p
)

K1
(√

p
)

+2ṁ D

L D

∞∑

n=1

K0 (q1ξ)

pq1 K1 (q1)

[sin (ωn B2)− sin (ωn B1)]

ωn
cos (ωnζ ) . (33)

A solution in real-time space can now be obtained using the procedures elaborated in (see
Appendix A). This solution is

θD (ξ, ζ, τ ) = 2ṁ D

πL D[

(B2 − B1) f1D (ξ, τ )+ 2
∞∑

n=1

f2D (ξ, τ )
sin (ωn B2)− sin (ωn B1)

ωn
cos (ωnζ )

]

(34)

where

f1D (ξ, τ ) =
∞∫

0

(
1 − e−u2τ

)Y0 (ξu) J1 (u)− J0 (ξu) Y1 (u)

Y 2
1 (u)+ J 2

1 (u)

du

u2 , (35)

and

f2D (ξ, τ ) =
∞∫

0

[
1 − e−(

u2+αω2
n
)
τ
] Y0 (ξu) J1 (u)− J0 (ξu) Y1 (u)

Y 2
1 (u)+ J 2

1 (u)

du

u2 + αω2
n
. (36)

6 Numerical Simulations

We performed numerical simulations to obtain an estimate of pressure buildup for a spec-
ified injection rate and formation properties. Results from these numerical simulations can
be useful in validating and verifying the results from our solution scheme. The numerical
simulations are carried out using the ECO2N module (Pruess 2005) of the TOUGH2 numer-
ical simulator (Pruess et al. 1999). ECO2N is a fluid property module for mixtures of water,
NaCl, and CO2, and is specifically developed for use with TOUGH2, which is a general
purpose simulator for nonisothermal flows of multicomponent, multiphase fluids in porous
and fractured formations. For our purpose, we developed a two-dimensional, radial mesh
representing the storage formation. The formation is 100 m thick (in the vertical direction).
The wellbore radius is assumed to be 0.1 m and the perforation thickness is assumed to be
10 m. These perforations are located between 45 m and 55 m from the bottom of the forma-
tion. Note that the wellbore is not modeled explicitly. The mesh is refined near the wellbore,
however, it coarsens farther away from the injection point.

To realize a constant pressure outer boundary, we inserted an element with large volume
at a large distance (∼10,000 km) from the injection well. The top and bottom boundaries are
assumed to be closed boundaries. Because most gas reservoirs are low-pressure formations,
often below 1 MPa, we assume that the storage formation is initially at 0.5 MPa. We also
assume that the formation porosity is 0.1 and permeability is 1 × 10−14 m2. The imposed
injection rate is 250,000 tons/year and it is assumed that injection continues for 30 years.
Formation temperature is assumed to be 55◦C. Assuming a geothermal gradient of 0.03◦C,
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Table 2 Geometrical and
physical properties of the storage
formation, initial and boundary
conditions, and injection rate
used in the computations

Parameter Value

Injection rate 250,000 tons/year

Injection period 30 years

Formation thickness 100 m

Top of formation 55 m

Bottom of formation 45 m

Perforation thickness 10 m

Injection well radius 0.1 m

Initial formation pressure 5 × 105 Pa

Formation temperature 55◦C

Formation porosity 0.1

Formation permeability 1 × 10−14 m2

and a surface temperature of 20◦C, a formation temperature of 55◦C corresponds to a for-
mation depth of 1167 m or ∼3800 ft. The parameters used in the numerical simulations and
for obtaining the solutions are summarized in Table 2.

7 Results and Discussion

For the first set of results obtained with the proposed solution scheme, the injection rate, ini-
tial and boundary conditions, and the formation properties (thickness, perforation thickness,
permeability and porosity) are summarized in Table 2, i.e., they are identical to those used for
the numerical simulations. Pressure versus time behavior at three different radial locations
(r = 0.1, 1.0, and 10.0 m) are shown in Fig. 4. These locations are selected because they are
close to the injection well, and are expected to experience the largest increase in pressure and
also the largest pressure gradient. For locations very close to the borehole (r = 0.1 or 1.0 m),
pressure increases rapidly over the first few thousands to ten thousand seconds of carbon
dioxide injection, Thereafter, pressure changes less rapidly before a steady state is attained.
Farther from the borehole (e.g., r = 10.0 m), increase in pressure happens at a slower rate
and the maximum rise in pressure is also smaller.

In Fig. 4, we also compare the analytical solutions (solid lines) with the numerical simu-
lation results (symbols). The analytical solutions generally compare well with the numerical
simulation results, particularly after about 4–6 h. By the end of the 30 years injection period,
both the analytical solutions and the simulation results predict that the maximum pressure is
expected to be about 11.5 MPa (starting at 0.5 MPa), which is within the range of applica-
bility of the corrected Pitzer’s correlations at 55◦C. The good match between the analytical
solutions and the simulation results provide confidence in the modeling approach presented
in this article.

The impact of permeability anisotropy on pressure buildup resulting from carbon dioxide
injection is illustrated in Figs. 5 and 6. Figure 5 shows pressure as a function of radial distance
at one year after injection started for different anisotropy ratios (α = 10−2, 10−1, 1, 101,
and 102). Note that Fig. 4 was developed for α = 1, i.e., when the formation permeability
was isotropic. When α = 0.1, i.e., when the vertical permeability is one-tenth that of the
radial (or horizontal) permeability, it becomes relatively more difficult to move vertically than
horizontally. Thus, at any specified time, more of the injected mass of carbon dioxide reaches
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Fig. 4 Comparison of predicted pressure buildup by the analytical approach and numerical simulations.
Pressure is shown as a function of time when formation temperature is 55◦C, formation permeability is
1 × 10−14 m2, and anisotropy ratio is unity

Fig. 5 Predicted pressure buildup as a function of radial distance with different anisotropy ratios, when
formation temperature is 55◦C and formation permeability is 1 × 10−14 m2

a fixed radial location when α = 0.1 (compared to the situation when α = 1). Consequently,
the increase in pressure at a fixed radial location at a specified time is more when α = 0.1
(compared to the situation when α = 1). This trend is expected to be even more pronounced
when α is reduced further (see plot for α = 0.01 in Fig. 5). The converse is true when vertical
permeability is more than radial permeability, as illustrated by the plots for α = 10 and 100
in Fig. 5. When α � 1, because more carbon dioxide flows in the vertical direction relative
to the radial direction, pressure buildup along the radial direction is relatively less severe
(compared to the isotropic case).
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Fig. 6 Predicted pressure buildup as a function of time with different anisotropy ratios, when formation
temperature is 55◦C and formation permeability is 1 × 10−14 m2

Pressure as a function of time corresponding to different anisotropy ratios is shown in
Fig. 6. Note that the pressure buildup curves in Fig. 6 correspond to a radial location
of r = 10.0 m. As α is gradually reduced from 100 to 0.01 (i.e., as vertical permeabil-
ity is reduced by four orders of magnitude keeping the radial permeability constant), it is
observed that pressure rises more and more at any specified time and at a fixed radial location.
These results can be easily explained following the same arguments provided for explaining
Fig. 5.

One of the key factors influencing the extent of pressure buildup is the formation permeabil-
ity. This is illustrated in Fig. 7, which shows pressure as a function of radial distance at 1 year
(Fig. 7a) and 30 years (Fig. 7b) for different radial permeabilities (kr = 1×10−13, 1×10−14,
and 1 × 10−15m2). The solid lines in Fig. 7a and b correspond to analytical solutions, while
the symbols represent results from numerical simulation. For Fig. 7, we assume that the for-
mation is isotropic (α = 1). When the formation is highly permeable (kr = 1×10−13m2), the
increase in pressure after injection is limited, and the analytical solutions match well with the
simulation results. As permeability is reduced by an order of magnitude (kr = 1×10−14 m2),
significant buildup in pressure happens, particularly close to the injection borehole. The match
between the analytical and simulation results is still quite good. However, when permeabil-
ity is reduced by another order of magnitude (kr = 1 × 10−15 m2), the analytical solution
deviates from the simulation results, particularly close to the injection well. This is because
the expected pressure buildup close to the injection well for this case exceeds the range of
applicability of the corrected Pitzer’s correlations.

Figure 8 shows essentially the same results as Fig. 7, except it shows pressure as a function
of time at a radial location of r = 10.0 m (Fig. 8a) and 0.1 m (Fig. 8b) for three different radial
permeabilities (kr = 1 × 10−13, 1 × 10−14, and 1 × 10−15 m2). Again, the match between
the analytical solutions and simulation results is good, particularly at larger permeabilities.
However, at very small permeabilities, a maximum difference of 18% in predicted pressure
buildup exists between our approach and the numerical simulations at r = 0.1 m (where the
pressure perturbations are expected to be the maximum). Farther away (as shown in Fig. 8a),
the difference between the two approaches is smaller.
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Fig. 7 a Predicted pressure buildup as a function of radial distance at 1 year with different formation horizontal
(radial) permeabilities, when formation temperature is 55◦C and anisotropy ratio is unity. b Predicted pressure
buildup as a function of radial distance at 30 years with different formation horizontal (radial) permeabilities,
when formation temperature is 55◦C and anisotropy ratio is unity

8 Summary

In this article, we offer an explicit solution to predict the extent of pressure buildup resulting
from CO2 injection into a gas reservoir. This solution is not formation-specific, and is gen-
eral in nature. It is also more appropriate than empirical relationships based on oil and gas
operations. These analytical solutions are thus useful in providing guidelines, particularly
before start of the injection process.

The storage formation is conceptualized as an infinite cylinder, which has a finite thick-
ness. CO2 is injected through a borehole, which extends all the way to the ground surface. It
is assumed that the thickness of the perforated zone is considerably smaller than the thickness
of the formation. It is also assumed that CO2 enters the formation through the perforated zone
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Fig. 8 a Predicted pressure buildup as a function of time at r = 10 m with different formation horizontal
(radial) permeabilities, when formation temperature is 55◦C and anisotropy ratio is unity. b Predicted pressure
buildup as a function of time at r = 0.1 m with different formation horizontal (radial) permeabilities, when
formation temperature is 55◦C and anisotropy ratio is unity

at a constant flow rate for a specified period of time. No flow boundary conditions are applied
at the top and bottom boundaries of the storage formation, and constant pressure condition is
assumed at the radial boundaries. It is assumed that the entire injection process happens under
isothermal conditions. It is also assumed that the storage formation was initially maintained
at a uniform pressure. Formation permeabilities are assumed to be anisotropic, consistent
with most subsurface storage formations. Finally, because we are focusing on injecting CO2

into gas reservoirs, capillarity is not included in the model. To obtain maximum limits on
pressure buildup near the injection well or on the extent of horizontal spreading, we excluded
the effects of buoyancy from the conceptual models.

An appropriate equation of state is needed to estimate the physical properties of supercrit-
ical carbon dioxide. In this article, we use Pitzer’s correlations, after introducing correction

123



908 S. Mukhopadhyay et al.

terms to make them consistent with Altunin’s correlations, which have been found to provide
accurate estimates of CO2 properties. We investigate the difference between density values
predicted by the Pitzer’s correlations and Altunin’s correlations, and showed that the differ-
ence is a linear function of pressure (over a large range of pressure). We fitted the difference in
density as a polynomial function of pressure, and obtained the fitting coefficients at different
temperatures.

The differential equation controlling the spread of CO2 was obtained from mass balance
conditions. The solution to the differential equation was first obtained in the Fourier–Laplace
space, and then inverted back to real time and space. Typical pressure buildup plots (both as a
function of radial distance and time) are obtained for various formation permeabilities, anisot-
ropy rartios, and temperatures. These results were compared against results from numerical
simulations using the TOUGH2-ECO2N software, and a good match was observed, providing
confidence in the solution procedure developed in this article.

Acknowledgments The authors wish to thank the anonymous journal reviewers for their constructive sug-
gestions for improving the quality of this article. This work was supported by the U.S. Department of Energy.
The support is provided to Berkeley Lab through the U.S. Department of Energy Contract No. DE-AC02-
05CH11231. The United States Government retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to do so, for United
States Government purposes. The views expressed in this article are those of the authors and do not necessarily
reflect the views or policies of the United States Department of Energy or the Berkeley Lab.

Appendix A

The convolution theorem (Hildebrand 1976, p. 63) states that

L−1 { f (p)g(p)} =
τ∫

0

F (τ − η)G (η) dη (A.1)

Let the Laplace-domain solution of Eq. 33 be expressed as

θ̂D (ξ, ζ, p) = ṁ D

p
√

p

(B2 − B1)

L D
S A + 2ṁ D

L D

∞∑

n=1

SB
[sin (ωn B2)− sin (ωn B1)]

ωn
cos (ωnζ )

(A.2)

where S A = K0
(
ξ
√

p
)
/K1

(√
p
)

and SB = K0 (q1ξ) / [pq1 K1 (q1)].
The Laplace inversion of S A can be expressed as

SA = L−1 {S A
} = L−1 { f1 (p) · g1 (p)} (A.3)

where f1(p) equals 1/p and g1(p) represents the term in S A except 1/p. Applying the
Bromwich integral with L−1{ f1(p)} = F(τ ) = 1 yields (Hildebrand 1976, p. 624)

L−1 {g1 (p)} = 1

2π i

γ−i∞∫

γ−i∞
epτ g1 (p) d p = 0 (A.4)

where p is a complex variable, i is an imaginary unit, and γ is a large, real, and positive
constant so that all the poles lie to the left of line (γ − i∞, γ + i∞).
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Fig. 9 The closed-contour integration of θ̂D for the Bromwich integral

A single branch point with no singularity (pole) at p = 0 exists in the integrand of S A.
The contour of integrand is shown in Fig. 9 with a cut of p plane along a negative real axis,
where ε is taken sufficiently small to exclude all poles from the circle about the origin. Along
the small circle EF, the integration around the origin when ε approaches zero is carried out
by using the Cauchy integral and the value of integration is equal to zero. The integrals
taken along BCD and GHA tend to zero when R approaches infinity. Therefore, S A can be
superseded by the sum of integrals along DE and FG. In other words, (A4) can be written as

G1 (τ ) = lim
ε → 0
R → ∞

−1

2π i

⎡

⎣
∫

DE

epτ g1 (p) d p +
∫

FG

epτ g1 (p) d p

⎤

⎦ (A.5)

The result of contour integral can then be obtained by following the method of Yeh et al.
(2003) and Yang et al. (2006) as

G1(τ ) = 2

π

∞∫

0

e−u2τ Y0(ξu)J1(u)− J0(ξu)Y1(u)

Y 2
1 (u)+ J 2

1 (u)
du (A.6)

Therefore, the complete solution obtained by the convolution is

SA (ξ, τ ) =
τ∫

0

1 · G1 (η) dη (A.7)
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The result of (A7) after the integration is

SA = 2

π

∞∫

0

(1 − e−u2τ )
Y0(ξu)J1(u)− J0(ξu)Y1(u)

Y 2
1 (u)+ J 2

1 (u)

du

u2 (A.8)

The first shifting theorem of the Laplace transforms states

L−1 {p − a} = eaτ L−1 {p} (A.9)

Based on SB(p) = f1(p)g1(p + αω2
n), the Laplace inversion of SB(p)is

SB (ξ, τ ) =
τ∫

0

1 · e−αω2
nηG1 (η) dη (A.10)

Thus, the result of (A.10) after the integration is

SB = 2

π

∞∫

0

(1 − e−(u2+αω2
n)τ )

1

(u2 + αω2
n)

Y0(ξu)J1(u)− J0(ξu)Y1(u)

Y 2
1 (u)+ J1

2(u)
du (A.11)

Combining (A.8) and (A.11), one can then obtain the time-domain solution of Eq. 34 in
the text.
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