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INTEGRA: Fast Multibit Flip-Flop Clustering for
Clock Power Saving
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Abstract—Clock power is the major contributor to dynamic
power for modern integrated circuit design. A conventional
single-bit flip-flop cell uses an inverter chain with a high drive
strength to drive the clock signal. Clustering several such cells
and forming a multibit flip-flop can share the drive strength,
dynamic power, and area of the inverter chain, and can even
save the clock network power and facilitate the skew control.
Hence, in this paper, we focus on postplacement multibit flip-
flop clustering to gain these benefits. Utilizing the properties of
Manhattan distance and coordinate transformation, we model the
problem instance by two interval graphs and use a pair of linear-
sized sequences as our representation. Without enumerating all
possible combinations, we identify only partial sequences that
are necessary to cluster flip-flops, thus leading to an efficient
clustering scheme. Moreover, our fast coordinate transformation
also makes the execution of our algorithm very efficient. The
experiments are conducted on industrial circuits. Our results
show that concise representation delivers superior efficiency
and effectiveness. Even under timing and placement density
constraints, clock power saving via multibit flip-flop clustering
can still be substantial at postplacement.

Index Terms—Clock power, coordinate transformation,
interval graph, multibit flip-flops, postplacement optimization.

I. Introduction

POWER HAS BECOME one of the main circuit im-
plementation bottlenecks for modern integrated circuit

design. In particular, high power consumption may prevent
a high-speed design from running at its full speed, while
low power dissipation is a must for consumer and portable
electronic products. Moreover, since the clock signal toggles
in each cycle, the total power dissipation in the clock network
could be significant. Due to the high switching activity, clock
power is the major dynamic power source [1]

Pclk = CclkV
2
ddfclk (1)
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where Pclk is clock power, fclk is the clock frequency, Vdd is
the supply voltage, and Cclk is the switching capacitance in-
cluding the gate capacitance of flip-flops (sequential elements)
controlled by the clock signal, the interconnect capacitance of
the clock network, and the capacitance associated with the
buffers/inverters used in the clock network.

To minimize the switching capacitance, one well-known
technique is clock gating, stopping the clock for some flip-
flops when it is not required [2], [3]. However, the power
saving of clock gating heavily depends on logic functions. In
this paper, we consider a new type flip-flop cell—multibit flip-
flop (MBFF) [4], [5]. Fig. 1(a) illustrates the circuit structure
of a single-bit flip-flop, composed of two chained inverters
and two cascaded latches. Due to the DFM rules for advanced
technology, the inverter chain is oversized and has a high drive
strength to shorten the delay from the clock edge to data
output. Consequently, it can drive more than two cascaded
latches. As shown in Fig. 1(b), clustering several single-bit
flip-flops together can share the drive strength of the inverter
chain.

The benefits of MBFFs are twofold: 1) clustered flip-flops
consume less dynamic power and area; and 2) the clock
network can have a simpler topology, easier skew control
[5], and lower power due to fewer clock sinks, a shallower
depth, and fewer clock buffers (see Fig. 2). In addition, MBFF
clustering performs well even if the clock cannot be turned off,
and it can easily be combined with clock gating.

Based on these benefits, recent research endeavors have
been devoted to MBFF clustering to reduce the switching
capacitance Cclk [4], [6]–[9]. The single-bit flip-flops can be
merged if their timing constraints can be satisfied after being
merged.

Chen et al. [4] and Hou et al. [6] leverage on register
banking at logic synthesis and at early physical synthesis,
respectively. However, the subsequent timing and routing cost
of the clustered result may somewhat deviate from what is
expected at such early stages.

On the other hand, Yan and Chen [7], Chang et al. [8],
and Wang et al. [9] postponed this task to postplacement
to further consider the timing and even routing issues. Yan
and Chen [7] analyzed the timing-safe region for each flip-
flop and then constructed an intersection graph to record the
pairwise overlapping of these regions. They reduced MBFF
clustering to minimum clique partitioning and solved it by
iteratively merging flip-flops with fewest compatible flip-flops.
However, they assumed the available bit numbers of the given
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Fig. 1. (a) (Single-bit) flip-flop. (b) Dual-bit flip-flop with two sets of data
input and output pins.

Fig. 2. Clock network. (a) Complicated topology without MBFFs. (b) Sim-
ple topology with MBFFs.

MBFF library are contiguous and unlimited. Considering a
discrete and finite MBFF library, Chang et al. [8] proposed
a window-based clustering method. The window iteratively
slides, and its size progressively increases. They enumerated
maximal cliques and reduced MBFF clustering to maximum
independent set; they greedily cluster flip-flops inside the
processing window and place MBFFs considering the routing
cost and the placement density. However, the clustered flip-
flops cannot cross the window boundary, and window slid-
ing repeatedly visits layout bins. Moreover, minimum clique
partitioning and maximum independent set are both NP-hard,
so recent works [7] and [8] resort them to greedy heuristics.
Even so, they may still incur a large storage requirement and
a long runtime to solve a large-scale design due to their data
structures. Very recently, instead of flip-flop power, Wang et
al. [9] minimized the number of clock sinks (i.e., the number
of MBFFs generated), as well as the influenced wire power of
data pins. They enumerated all maximal cliques, generated a
small set of MBFF candidates by random sampling, and then
greedily clustered MBFFs to minimize their objectives.

In this paper, we tackle the postplacement MBFF clustering
problem. Given a (contiguous or discrete) MBFF library and
the timing slack of each flip-flop in a design, cluster flip-flops
to minimize clock power (as well as the routing cost) subject
to timing and placement density constraints.

By moving flip-flops and clustering them into MBFFs, we
can have significant clock power reduction over the whole
clock network. Meanwhile, the change of wire power on data
pins is small compared with large clock power reduction.
The postplacement MBFF clustering problem is NP-hard, so

our goal is to solve it effectively and efficiently instead of
optimally. Utilizing the properties of Manhattan distance and
coordinate transformation, we successfully encode the feasible
locations of flip-flops into two interval graphs [10], [11].
Particularly, to remedy the time and space complexities, we do
not convert the interval graphs into the entire 2-D information
and do not enumerate all possible combinations of compatible
flip-flops. Instead, our representation is a pair of linear-sized
sequences. We identify “decision points” in the sequences, at
which there exist some essential flip-flops to be clustered. We
cluster flip-flops only at decision points, and the number of
decision points is significantly smaller than the number of flip-
flops, thus doing so leads to an efficient clustering scheme.
We then place MBFFs as close to the optimum location to
reduce the routing cost as possible. Our strength results from
the concise representation, and our key features are as follows.

1) From the time and space complexities’ viewpoint,
the representation—a pair of linear-sized sequences—
implies an efficient data structure, and our fast coordi-
nate transformation makes the execution of our algo-
rithm very efficient.

2) The number of decision points is significantly smaller
than the number of flip-flops. We cluster flip-flops at
only decision points thus leading to an efficient cluster-
ing scheme.

3) Without enumerating all compatible combinations, we
sweep and interleave two sequences to extract the com-
patibility on the fly and maintain the global view.

4) Our data structure and algorithm are both independent
of the number of layout grids and/or bins.

5) We can refine an MBFF-clustered design. The preclus-
tered MBFFs can be collapsed or preserved.

6) We can integrate our algorithm with clock gating. Con-
sidering the compatibility of clock enable signals during
MBFF clustering can gain dual benefits.

7) We propose a wirelength-oriented clustering extension
to handle a design with loose timing constraints.

Three experiments are conducted on industrial circuits. Our
results show that the concise representation delivers superior
efficiency and effectiveness. Compared with the very recent
work [7] and [8], we can deliver the best power saving (only
0.17% away from the power lower bound) and the shortest
runtimes (359X and 17X speedups). Our results also show
that the number of decision points is significantly smaller than
the number of flip-flops indeed (only 12% of flip-flop count).
For the designs with loose timing constraints, our wirelength-
oriented clustering method can achieve the best power saving
and wirelength reduction and further gains 227X and 533X
speedups. Compared with MBFF clustering at logic synthesis
[4], power of the whole clock network can considerably be
improved by postplacement MBFF clustering, even under
timing and placement density constraints.

The remainder of this paper is organized as follows. Sec-
tion II gives the problem formulation and analyzes design
information. Section III derives the properties of Manhattan
distance and coordinate transformation, gives our representa-
tion, and introduces the concept of decision points. Section IV
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TABLE I

MBFF Library: Power Versus Area

Bit Number Power Area
Normalized Power Normalized Area

per Bit per Bit
1 100 100 1.00 1.00
2 172 192 0.86 0.96
4 312 285 0.78 0.71

presents our clustering and placement algorithm—INTEGRA.
Section V extends our method to simultaneously consider
power saving and wirelength minimization. Section VI shows
our experimental results. Finally, Section VII concludes this
paper.

II. Problem Formulation and Preliminaries

In this section, we describe the problem formulation, detail
the design information and constraints, and give the lower
bounds of the objective functions.

A. Problem Formulation

The postplacement MBFF clustering problem is formulated
as follows.

1) Multibit Flip-Flop Clustering Problem: Given a (con-
tiguous or discrete) MBFF library and the timing slacks of
flip-flops in a design, cluster flip-flops to minimize flip-flop
power as well as the routing cost subject to timing slack and
placement density constraints.

Flip-flop power is the primary objective, while the routing
cost is secondary. In the sequel, a flip-flop means a single-
bit flip-flop, while an MBFF means a multibit one. The input
design may contain preclustered MBFFs.

B. MBFF Library

An MBFF library cell is associated with its bit number,
consumed power, and occupied area. The normalized power
and area per bit are decreasing as the bit number is increasing
(see Table I). An MBFF library cell is redundant if it has
greater power and larger area than another cell of the same bit
number; the redundant cells can then be pruned.

C. Placement Density

Assume the chip area contains W × H grids. As shown in
Fig. 3, the chip area is divided into Wc ×Hc bins, and a bin is
further divided into Wb × Hb grids. (W = WcWb, H = HcHb.)
Each gate should be placed on some grid point, and each grid
can be occupied by at most one gate. Considering routing
congestion, the placement density constraint restricts the area
utilization of bin b

Afb ≤ Tb(WbHbAg − Apb) − Acb (2)

where Afb is the area available for flip-flop placement, Tb is
the target density, Ag is the grid area, Apb is the area belonging
to macros, and Acb is the area occupied by combinational
elements within bin b.

Fig. 3. Layout bins and grids.

D. Routing Cost and Timing Slack

The routing cost L(i) of a flip-flop i is the sum of flip-
flop input and output wirelength. For simplicity, the input
(respectively, output) wirelength is the Manhattan distance
between the flip-flop and its fanin (fanout) gate

L(i) = Lfi(i) + Lfo(i) ∀i (3)

where Lfi(i) (respectively, Lfo(i)) is the Manhattan distance to
its fanin fi(i) (fanout fo(i)) gate. The routing cost also reflects
the change on the wire power of data input and output pins.
The amount of change is quite small compared with the clock
power saving.

The timing slack of a flip-flop contains the input and output
slacks. The input (respectively, output) slack of a flip-flop is
the maximum allowable wire delay between the flip-flop and
its fanin (fanout) gate without timing violations. After timing
analysis, we budget a half of each path slack for the input
(respectively, output) slack of the capture-edge (launch-edge)
flip-flop. For a routing congested design, we may preserve
a timing margin for routing detour. The margin can be set
according to the congestion value of the bin where a flip-flop
is located.

According to Synopsys’ Liberty Library, the delay of a gate,
lumped with its output wire delay, is a function of its output
loading and input transition; the calibrated values are stored in
2-D tables. Prior work [13] observed the loading dominance
effect, which indicates that the change in the gate delay is
dominated by the output loading. The output loading consists
of wire loading, the input capacitance of fanout gates, and
its output pin capacitance. The wire loading is proportional
to the sum of the wirelength between this gate and each
of its fanout gates. Since the placement of combinational
elements is unchanged during postplacement MBFF clustering,
according to timing slacks, we can obtain the maximum
allowable wire loading (i.e., wirelength) between a flip-flop
and its fanin/fanout gate by table-lookup. Hence, slacks can
be converted to equivalent wirelength bounds as follows:

0 < Lfi(i) ≤ Sfi(i)
0 < Lfo(i) ≤ Sfo(i) ∀i

(4)

where Sfi(i) (respectively Sfo(i)) is the equivalent wirelength
of the input (respectively output) slack. If flip-flop i has
multiple fanouts, each fanout fo(i) contributes a routing cost
and gives an output slack.



JIANG et al.: INTEGRA: FAST MULTIBIT FLIP-FLOP CLUSTERING FOR CLOCK POWER SAVING 195

TABLE II

Dynamic Programming Power Table for the MBFF Library

Given in Table I

Minimum Power Pmin(n)
n

0 1 2 3 4

MBFF library
∅ 0 0 0 0 0

cell options
{1} 0 100 200 300 400

(#bits)
{1, 2} 0 100 172 272 344

{1, 2, 4} 0 100 172 272 312

E. Power Analysis for MBFF Library

Given an MBFF library and the number n of flip-flops,
we can analyze the best configuration for minimum power
without considering the timing slack constraint, i.e., all flip-
flops can freely be merged. This analysis can be reduced to the
0–1 Knapsack problem—solvable by dynamic programming
[10]. The dynamic programming table lists the lower bound
of power for each possible n under different MBFF library
cell options. Given m irredundant MBFF cells whose least
common multiple of bit numbers is blcm, the size of the
dynamic programming table is only (m + 1) × (blcm + 1) (see
Table II, where m = 3, blcm = 4). An arbitrary number n
can be decomposed into n = n0blcm + n1, where n0 and n1

are nonnegative integers; we then have the minimum power
Pmin(n) for n

Pmin(n) = n0Pmin(blcm) + Pmin(n1) (5)

e.g., as listed in Table II, the minimum power for 10 (= 2×4
+ 2) bits is 796 (= 2×312 + 172).

F. Lower Bound of the Routing Cost

Based on (3), the routing cost L(i) of flip-flop i is the sum
of its input and output wirelengths, which is estimated by
total Manhattan distances (see Section II-D). If flip-flop i is
located within the bounding box of its fanin and fanout gates,
its routing cost can achieve the minimum; we have the lower
bound Lmin(i) of L(i)

Lmin(i) = min{Lfi(i) + Lfo(i)}
= |xfi(i) − xfo(i)| + |yfi(i) − yfo(i)| (6)

where (xfi(i), yfi(i)) and (xfo(i), yfo(i)) are flip-flop i’s fanin
and fanout gates’ coordinates. Hence, the lower bound of the
overall routing cost is

∑n
i=1 Lmin(i).

For a specified b-bit MBFF j including flip-flops
j1, j2, . . . , jb, its routing cost is as follows:

b∑

i=1

L(ji) =
b∑

i=1

{Lfi(ji) + Lfo(ji)}. (7)

The minimum routing cost of MBFF j occurs when j is
located within the bounding box defined by low/high median
x and y coordinates of its all fanin and fanout gates

ml(xfi(j1), xfo(j1), . . . , xfi(jb), xfi(jb)),

mh(xfi(j1), xfo(j1), . . . , xfi(jb), xfi(jb)),

ml(yfi(j1), yfo(j1), . . . , yfi(jb), yfi(jb)),

mh(yfi(j1), yfo(j1), . . . , yfi(jb), yfi(jb))

Fig. 4. (a) Input slack of flip-flop i defines a diamond. (b) Feasible region
of i is the overlap of two diamonds.

where ml(Z) and mh(Z) denote low and high medians of
set Z.

III. Properties and Representation

In this section, we derive the properties and introduce the
representation used in our algorithm.

A. Feasible Region

According to (4), each flip-flop i’s input (respectively,
output) slack constraint defines a diamond whose center is
located at i’s fanin (fanout) gate and whose half diagonal
length is the slack value [see Fig. 4(a)]. Flip-flop i’s feasible
region Fr(i) is the overlap of these diamonds defined by its
input and output slacks [see Fig. 4(b)]. In addition, if flip-flop
i has multiple fanouts, Fr(i) is the overlap of the diamonds
defined by its input and all output slacks. Flip-flop i is timing-
safe if and only if it is placed within its feasible region Fr(i).

B. Coordinate Transformation

Overlapping diamonds and checking if a grid point is
located within the feasible region is computationally intensive.
Hence, we accelerate the operations by coordinate transfor-
mation. Fig. 4 shows, for each flip-flop i, the diamonds of
the input and output slacks are determined by line segments
with slopes = ±1. After being rotated by 45° clockwise, the
diamonds become squares. The feasible region can then be
retrieved by overlapping squares, much more computationally
efficient than overlapping diamonds.

Let all gates and flip-flops be placed at grids (integer
coordinates) in a Cartesian coordinate system C. Consider
a new coordinate system C′ with origin at (0, 0) in C. The
coordinate transformation between the grid point (x, y) in C

and its counterpart (x′, y′) in C′ is defined as follows:

x′ = y + x y′ = y − x (8)

x =
x′ − y′

2
y =

x′ + y′

2
. (9)

The unit length in C equals
√

2 unit length in C′. Because of
the scaling factor, the transformation from C to C′ based on (8)
can be done by simple and fast integer addition/subtraction. In
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Fig. 5. Coordinate transformation. (a) Chip area. (b) Diamond centered at
(x0, y0) of diagonal length 2S is transformed to a square of side length 2S.
(c) Each feasible region is represented by two intervals on x′ and y′ axes.
(d) Feasible region of a tri-bit flip-flop is the overlap of all rectangles.

addition, each grid point in C is also defined in C′. Fig. 5(a)
shows the transformed chip area, where the shaded area is
outside the chip, 0 ≤ x ≤ W, 0 ≤ y ≤ H, 0 ≤ x′ ≤ H +
W, −W ≤ y′ ≤ H. By (9), because a grid point has integer
x and y coordinates, the sum and difference of its x′ and y′

coordinates must be even, i.e., both x′ and y′ coordinates of
a grid point must be even or odd

x′ mod 2 = y′ mod 2. (10)

Moreover, for each grid, its left-bottom corner coordinate is
defined as the grid point, while its center is a nongrid point.
Based on Fig. 4(a), Fig. 5(b) shows an input or output diamond
centered at (x0, y0) of diagonal length 2S is transformed to a
square of side length 2S. Hence, the input and output slack
constraints can be described by four x′ and four y′ coordinates.
Based on Fig. 4(b), Fig. 5(c) shows the feasible region of a
flip-flop is defined as a rectangle that is the overlap of its input
and output squares. Let sx′ (i), ex′ (i), sy′ (i), and ey′ (i) denote the
left, right, bottom, and top boundaries of flip-flop i’s feasible
region. For flip-flop i, we have

sx′ (i) = max(yfi(i) + xfi(i) − Sfi(i), yfo(i) + xfo(i) − Sfo(i))
ex′ (i) = min(yfi(i) + xfi(i) − Sfi(i), yfo(i) + xfo(i) − Sfo(i))
sy′ (i) = max(yfi(i) − xfi(i) − Sfi(i), yfo(i) − xfo(i) − Sfo(i))
ey′ (i) = min(yfi(i) − xfi(i) + Sfi(i), yfo(i) + xfo(i) − Sfo(i)).

(11)

As shown in Fig. 5(d), for a b-bit MBFF j including flip-
flops j1, j2, . . . , jb, j’s feasible region is the overlap of j1’s,
j2’s,. . ., and jb’s feasible regions, that is

sx′ (j) = max(sx′ (j1), . . . , sx′ (jb))
ex′ (j) = min(ex′ (j1), . . . , ex′ (jb))
sy′ (j) = max(sy′ (j1), . . . , sy′ (jb))
ey′ (j) = min(ey′ (j1), . . . , ey′ (jb)).

(12)

C. Representation

After coordinate transformation, the feasible region of flip-
flop i is a rectangle in the new coordinate system C′. By
projecting this rectangle on x′ and y′ axes, we have two
intervals for each flip-flop. Flip-flop i’s x′ interval Ix′ (i) and y′

interval Iy′ (i) are specified by their starting and ending points,
i.e., boundary coordinates defined by (11)

Ix′ (i) = [sx′ (i), ex′ (i)] and
Iy′ (i) = [sy′ (i), ey′ (i)] for each flip-flop i.

(13)

Hence, all feasible regions are encoded by two interval
graphs, Gx′ = (Vx′ , Ex′ ) for x′ intervals and Gy′ = (Vy′ , Ey′ )
for y′ intervals

Vx′ = {Ix′ (1), . . . , Ix′ (n)}, and
(Ix′ (i), Ix′ (j)) ∈ Ex′ ⇔ Ix′ (i)

⋂
Ix′ (j) 	= 0, 1 ≤ i, j ≤ n

Vy′ = {Iy′ (1), . . . , Iy′ (n)}, and
(Iy′ (i), Iy′ (j)) ∈ Ey′ ⇔ Iy′ (i)

⋂
Iy′ (j) 	= ∅, 1 ≤ i, j ≤ n.

(14)
A b-bit MBFF j including flip-flops j1, j2, . . . , jb implies

j1, j2, . . . , jb form a clique1 not only on x′ interval graph but
also on y′ interval graph. To avoid high-space complexity, we
do not construct two interval graphs.

Instead of two graphs, our representation is a pair of linear-
sized sequences: (X′, Y ′). The two sequences store the starting
and ending points of x′ and y′ intervals in ascending order;
if several points have the same coordinate, starting points are
ordered before ending points. We have sequence X′ for x′

intervals and sequence Y ′ for y′ intervals, |X′| = |Y ′| = 2n,
where n is the number of flip-flops. Sequences X′ and Y ′ are
as follows:

X′ =< x′
1, . . . , x

′
2n > where x′

1 ≤ x′
2 ≤ · · · ≤ x′

2n

x′
j ∈ {sx′ (i), ex′ (i) : i = 1, . . . , n}, j = 1, . . . , 2n

Y ′ =< y′
1, . . . , y

′
2n > where y′

1 ≤ y′
2 ≤ · · · ≤ y′

2n

y′
j ∈ {sy′ (i), ey′ (i) : i = 1, . . . , n}, j = 1, . . . , 2n.

(15)

Please note that in our algorithm, X′ is constructed at the
beginning, while Y ′ is dynamically and partially generated by
request (see Section IV).

Fig. 6(a) gives a subdesign with eight flip-flops, say
0, 1, . . . , 7, where the tilted boxes are feasible regions.
Fig. 6(b) shows the transformed feasible regions, each of
which is a rectangle aligned with x′ and y′ axes. Fig. 6(c) and
(d) illustrates the corresponding x′ and y′ intervals. Fig. 6(e)
lists the corresponding sequence X′.

1A clique in an undirected graph is a subset of its vertices such that every
two vertices in the subset are connected by an edge. A maximal clique is a
clique that is not contained in any other clique. Among all maximal cliques,
the largest one is the maximum clique.
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Fig. 6. Subdesign with eight flip-flops. (a) Feasible regions. (b) Transformed
feasible regions. (c) x′ intervals. (d) y′ intervals. (e) X′ is of size 16.
(f) Initially, there are three decision points at flip-flops 1’s, 0’s, and 7’s
ending points. The maximal clique retrieved at the first decision point in X′ is
{0, 1, 2, 3, 5, 7}. The essential flip-flop is flip-flop 1, and the related flip-flops
include flip-flops 0, 2, 3, 5, 7.

D. Maximal Cliques and Decision Points

We introduce “decision points” and “essential flip-flops” as
follows.

Definition 1: If there exist two consecutive points x′
k and

x′
k+1 in X′, where x′

k = sx′ (i), x′
k+1 = ex′ (j), 1 ≤ i, j ≤ n, a

decision point is the coordinate of x′
k+1, i.e., ex′ (j).

Definition 2: An essential flip-flop with respect to a deci-
sion point is a flip-flop whose ending point x′

j lies between
the current decision point x′

i and the next decision point x′
k

(x′
i ≤ x′

j < x′
k) or between the current decision point x′

i and
the end of X′ if x′

i is the last decision point.

Theorem 1: Consider X′, a decision point, and the cor-
responding set of essential flip-flops. The maximal clique
containing the set of essential flip-flops in the x′ interval graph
can be found at this decision point.

Proof: Given an arbitrary point x′
0 in the x′-axis, K(x′

0) is
defined as the maximum sized clique that can be retrieved at
x′

0. K(x′
0) contains all flip-flops whose intervals cross x′

0, i.e.,
whose starting points are less than or equal to x′

0, and ending
points are greater than or equal to x′

0.
According to the construction of X′, the axis x′ can be

divided into 2n−1 segments by the starting and ending points
of all intervals. There are two situations for the ith segment
starting at x′

i and ending at x′
i+1.

1) x′
i < x′

i+1. Consider an arbitrary point x′
0 within this

segment, x′
i < x′

0 < x′
x+1.

Case “ss:” x′
i and x′

i+1 are both starting points. K(x′
i) =

K(x′
0) ⊂ K(x′

i+1).
Case “se:” x′

i is a starting point, while x′
i+1 is an ending

point. K(x′
i) = K(x′

0) = K(x′
i+1).

Case “es:” x′
i is an ending point, while x′

i+1 is a starting
point. K(x′

0) ⊂ K(x′
i), K(x′

0) ⊂ K(x′
i+1).

Case “ee:” x′
i and x′

i+1 are both ending points. K(x
′
i+1) =

K(x
′
0) ⊂ K(x

′
i).

2) x′
i = x′

i+1. There are only three cases: “ss,” “se,” “ee.”
(“es” does not happen according to the construction of
X′.) K(x′

i) = K(x′
i+1).

First, each maximal clique must be a maximum sized clique
that can be retrieved at some point in the x′-axis.

We define the type of an entry in X′ as s for a starting point
and as e for an ending point. By definition, X′ is interleaved
with s strings and e strings as follows:

s s s s . . . s e e e . . . e s s s . . . s e e e . . . e.

If we scan X′ from left to right segment by segment, we may
record the maximum sized cliques found at the boundaries of
segments. According to the above analysis, the maximum sized
clique retrieved at the first “e” after some s string is maximal.
By definition, such e is a decision point. In addition, all of its
essential flip-flops cross over this decision point because their
starting points must be listed before the corresponding “e” of
this decision point. The theorem thus follows.

Based on the proof of the above theorem, to find all2

maximal cliques, we need to check only decision points
rather than all ending points. In the sequel, for a decision
point, the related flip-flops mean the remaining flip-flops in
the maximum sized clique retrieved at this decision point
excluding the essential flip-flops.

Corollary 1: A decision point corresponds to at least one
essential flip-flop. Hence, the number of decision points is less
than or equal to the number of flip-flops.

Considering the instance in Fig. 6(a), Fig. 6(f) shows there
exist three decision points at flip-flops 1’s, 0’s, 7’s ending

2In [11], Ramalingam and Rangan ordered the intervals in ascending order
of their ending points. For a sorted sequence, they proposed a linear-time
algorithm to compute one maximal clique for each interval. By sorting starting
and ending points together, our method can find all maximal cliques for each
interval. In addition, Lee proposed a O(n log n) algorithm to find only one
maximum clique in a rectangle intersection graph [12].



198 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 31, NO. 2, FEBRUARY 2012

points. Flip-flop 1 is the first decision point’s essential flip-
flop, flip-flops 0, 4, and 2 are the second decision point’s,
and flip-flops 7, 3, 5, and 6 are the third decision point’s.
In addition, this instance has eight flip-flops but only three
decision points.

A decision point in X′ means at which there exist some flip-
flops that we should decide how to cluster; otherwise, they
cannot be clustered any more. These flip-flops are essential
flip-flops with respect to this decision point. For example,
Fig. 6(f) shows that at flip-flop 1’s ending point (the first
decision point), flip-flop 1 has to be clustered, i.e., it is
essential. Flip-flops 0, 2, 3, 5, 7 are its related flip-flops,
meaning {0, 1, 2, 3, 5, 7} forms a maximal clique on x′ interval
graph. Moreover, considering the interval from the second
decision point (flip-flop 0’s ending point) to the third decision
point (flip-flop 7’s ending point), [4, 8), the maximal clique
containing flip-flops 0, 4, 2 can be found at flip-flop 0’s ending
point, {0, 2, 3, 4, 5, 7}.

IV. MBFF Clustering

In this section, we detail our MBFF clustering algorithm,
INTEGRA, based on our representation and properties de-
veloped in Section III. We utilize the concept of decision
points and essential flip-flops to reduce the number of times
that flip-flop clustering is applied. INTEGRA contains three
phases: initialization, flip-flop clustering, and flip-flop place-
ment. Fig. 7 lists the procedure of INTEGRA, and the follow-
ing is a brief summary.

1) INTEGRA preprocesses the design intent [see Fig. 6(e)].
2) INTEGRA iteratively finds a decision point in X′ and

extracts the essential flip-flops and their related flip-flops
[see Fig. 8(a), (b)].

3) INTEGRA finds the maximal clique in the partial Y ′ for
each essential flip-flop [see Fig. 8(c)].

4) INTEGRA clusters each essential flip-flop [see
Fig. 8(c)].

5) INTEGRA places the clustered flip-flop at a legal lo-
cation with routing cost and density consideration [see
Fig. 8(e)].

6) INTEGRA repeats steps 2–5 until all flip-flops are
investigated.

The number of decision points is smaller than or equal to
the number of flip-flops, thus leading to an efficient clustering
scheme. In addition to efficiency, INTEGRA can refine a
preclustered design.

A. Phase 1: Initialization

At the initialization phase, INTEGRA preprocesses the
design intent as follows.

In line 1 in Fig. 7(a), the MBFF library cells are sorted to
facilitate the selection of an appropriate MBFF cell for a max-
imal clique. Considering power and area together, the MBFF
library cells are thus lexicographically sorted in ascending bit
number, descending power, and descending area order, e.g.,
the corresponding ordered list of Table I is as follows:

< (1, 100, 100), (2, 172, 192), (4, 312, 285) > .

Fig. 7. Our MBFF clustering algorithm: INTEGRA. (a) Overall procedure.
(b) Maximum clique subroutine.

In line 2, each preclustered b-bit MBFF is collapsed into
b flip-flops; the collapsed flip-flops are temporarily placed at
the MBFF’s location. Because the initial MBFFs in the input
design may be clustered by some heuristics or other tools, we
recluster them for further power reduction. If they are preclus-
tered based on designers’ intentions, they are preserved. In line
3, the feasible region of each flip-flop is computed according
to its timing slack. X′ is also created (see Section III-C).

B. Phase 2: Flip-Flop Clustering

We cluster flip-flops based on the representation and proper-
ties described in Section III. As mentioned earlier, an MBFF
can be formed if the corresponding flip-flops form a clique
not only on x′ interval graph but also on y′ interval graph. In
Section III-D, we introduced the concept of decision points to
retrieve maximal cliques in X′. To form an MBFF, the maximal
clique found in X′ should be further verified by the y′ intervals
of its members. For the flip-flops in the maximal clique in X′,
the starting and ending points of their y′ intervals are sorted in
ascending order and form the working sequence Y ′. Similarly,
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Fig. 8. Flip-flop clustering. (a) Based on the example given in Fig. 6,
initially, there are three decision points at flip-flops 1’s, 0’s, and 7’s ending
points. (b) At the first decision point in X′, the essential flip-flop is flip-flop
1, and the related flip-flops include flip-flops 0, 2, 3, 5, 7. (c) Corresponding
Y ′. Flip-flop 1’s maximal clique is {0, 1, 5, 7}. The appropriate MBFF cell is
4-bit flip-flop, so K1 = {0, 1, 5, 7}. (d) After removing K1 from X′, we find
the next decision point, at flip-flop 4’s end point. We then cluster flip-flops
2 and 4. Finally, we have MBFFs: K1 = {0, 1, 5, 7}, K2 = {2, 4}, K3 =
{3, 6}. (e) Feasible regions of MBFFs, where circles indicate grid points,
while dots indicate nongrid points. The shaded points indicate the final
placement of each MBFF. (f) Runtime decision points are at flip-flops 1’s,
4’s, and 3’s end points.

the maximal clique in Y ′ of each essential flip-flop can be
found by checking the decision points in Y ′ within the y′

interval of the essential flip-flop [see Fig. 7(b)]. Fig. 8(c) shows
that the decision points in Y ′ within flip-flop 1’s y′ interval
are flip-flops 3’s and 5’s ending points. Flip-flop 3 belongs
to a maximal clique {0, 1, 3}, while flip-flop 5 belongs to
{0, 1, 5, 7}. We choose {0, 1, 5, 7} and check the sorted MBFF
library to find an appropriate MBFF cell to cluster them. An
appropriate MBFF cell means its bit number is the largest
among all cells of bit number smaller than or equal to the
clique size. Assume the MBFF library is specified by Table I.
Flip-flops 0, 1, 5, 7, hence, form a 4-bit MBFF; flip-flops 0,
1, 5, 7 are then removed from X′.

If the clique size does not fit the bit number of the selected
MBFF cell (it usually happens for a discrete MBFF library),
we need more than one MBFF cell to cover this clique.

Although Table II lists the best configuration of MBFF cells to
cluster this found clique, at this time we just cluster the biggest
(most power-efficient) MBFF cell in this configuration. We
defer the decision making for the remaining flip-flops since
they may have other options to form a larger/better MBFF at
later iterations. We greedily cluster from a flip-flop with the
smallest x′ ending point because a larger ending point implies
the flip-flop may have more chances to be clustered.

The created MBFF is then placed at a legal grid point
with routing cost and placement density consideration (see
Section IV-C). Fig. 8(d) shows the updated X′ after flip-flops
0, 1, 5, 7 are clustered, where the next decision point is at
flip-flop 4’s ending point. The same process is repeated until
all flip-flops are investigated, i.e., X′ is empty.

Since flip-flops are iteratively clustered and removed from
X′, the size of X′ gradually shrinks, and the runtime decision
points might be deferred or even disappear. For example,
Fig. 8(f) indicates that runtime decision points are at flip-flops
1’s, 4’s, and 3’s ending points [see Fig. 8(a)].

INTEGRA iteratively finds a decision point in line 5,
records the essential and unclustered related flip-flops by
queue Q in line 6, and creates the corresponding Y ′ in line 7.
From line 8 to line 12, for each essential flip-flop, INTEGRA
iteratively extracts the maximal clique in Y ′ and selects an
appropriate MBFF cell to cluster it. After placing it (see
Section IV-C), INTEGRA removes the clustered flip-flops
from X′, Y ′, and Q in line 18.

C. Phase 3: Flip-Flop Placement

Each MBFF generated by flip-flop clustering (see Sec-
tion IV-B) is placed and legalized to a legal grid point as
close to the optimum location to reduce the routing cost as
possible. Fig. 8(e) depicts the clustered flip-flops, their feasible
regions, and their final positions. A legal grid point satisfies
the following conditions.

1) It is a grid point [checked by (10)].
2) It is not occupied by other fanin/fanout gates or flip-

flops.
3) It is density-safe.

As mentioned in Section II-F, the minimum routing cost of
MBFF j occurs when j is located within the bounding box
Bb defined by low/high median x and y coordinates of its
all fanin and fanout gates. To find the nearest point in the
feasible region to the bounding box, [8] iteratively enlarges
the bounding box until it reaches any point in the feasible
region. Unlike [8], we do it efficiently. First, INTEGRA finds
the x′ and y′ coordinates of the corner and center points of
the bounding box in line 13. INTEGRA then finds the points
in MBFF j’s feasible region, which are nearest to the four
corners and center of Bb and selects the best one in lines 14
and 15. The nearest points and their distances can efficiently
be computed by checking their x′ and y′ coordinates. Fig. 9(a)
and (b) shows two general cases that the bounding box may
or may not overlap with the feasible region.

We consider the center point here to avoid unneces-
sary movement for some trivial cases. Some corners of the
bounding box may be occupied by some fanin/fanout gates.
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Fig. 9. Flip-flop placement: the optimal location with minimum routing cost.
(a) MBFF j’s bounding box Bb and the feasible region Fr(j) do not overlap.
(b) Bb and Fr(j) overlap. If some corner and the center are located inside
Fr(j), the center point will be selected. (c) Tunneling through a preplaced
macro or occupied grid point to find a legal point.

If we place the MBFF at a corner that happens to be
some fanin/fanout gate, we need to legalize it. To prevent
fanin/fanout gates from being directly selected, as shown in
Fig. 9(b), if some corner and the center are both located inside
Fr(j), the center point will be selected.

In line 16, INTEGRA moves the selected point within
the feasible region until a legal point is found. Considering
preplaced macros and occupied grid points, we adopt the idea
of tunneling during movement [19]. If a neighboring grid in x′

and y′ is occupied, then we tunnel through it [see Fig. 9(c)].
Please note that the maximum number of grids that need to
be considered is limited to 13. (In case the selected point is
occupied and it is surrounded by macros or by occupied points
on all sides.) INTEGRA then places the MBFF at the found
point. If there exist no legal points in the feasible region, it
goes back to line 12 to try another clique or keeps k as a
single-bit FF.

Table I indicates that the larger bit number, the smaller
normalized area per bit. Once some flip-flops form an MBFF,
the total occupied area is smaller, and the placement density
constraint becomes easier to meet. Because of the extra
released space, if MBFFs overlap with preplaced cells (com-
binational elements) or macros, legalization can be applied to
adjust these preplaced cells; the displacement should be small,
and the impact on timing is negligible.

D. Time and Space Complexities

Given n flip-flops, INTEGRA takes O(n log n) time to create
X′, O(n) time to find decision points in X′, totally O(n log n)
time to create the working Y ′ and to find all maximal cliques
in Y ′. Hence, INTEGRA eventually uses O(n log n) time and
O(n) space.

We detail the analysis of time and space complexities of
INTEGRA as follows. Initialization takes O(n log n) time in

lines 1–3 in Fig. 7(a). Compared to the total flip-flop count,
the number of MBFF library cells is relatively small, which
can be considered as a constant; the lexicographical sorting
in line 1 can be done in O(1) time. In line 2, the number of
preclustered MBFFs must be smaller than the total number
of flip-flops, so the collapsing is done in O(n). Line 3 takes
O(n log n) time to create X′.

Flip-flop clustering and placement also takes O(n log n)
time in lines 4–19. In lines 4–5, the while loop scans X′ once
and finds decision points, thus taking O(n) time in total. In
line 6, each flip-flop is pushed into Q at most once. In line 7,
Y ′ is created by incrementally sorting Q. The overall sorting
during the entire while loop can be done in O(n log n) time
when Q is implemented by a balanced binary search tree. To
analyze lines 8–11, we assume there are m decision points
during the entire while loop, and for the ith decision point,
there are ni essential and related flip-flops found in line 6;
n1 + · · · + nm = O(n). Hence, for the ith decision point, line
9 takes O(ni) time to scan Y ′ to find the maximal clique,
while line 11 at most takes O(ni log n) time to sort the found
maximal clique. Hence, line 9 takes O(n) time in total, while
line 11 takes O(n log n) time in total. Lines 12–16 take O(1)
time for each formed MBFF and thus totally take O(n) time.
In line 18, every flip-flop is popped out Q at most once, thus
totally O(n) time.

V. Extension

In this section, we present two extensions.

A. Wirelength-Oriented Flip-Flop Clustering

When the timing slack constraint is not tight, the feasible
region of a flip-flop greatly overlaps others’ feasible regions
or even fully covers the bounding box of its fanin and fanout
gates. In this case, wirelength becomes the primary objective,
and thus we propose a wirelength-oriented flip-flop clustering
method.

We modify the criterion to select flip-flops from a given
clique. After lines 9–10, a maximal clique Kmax is extracted,
and an adequate MBFF cell of bit number B is selected. Lines
11–12 in Fig. 7(a) are modified as follows. Each flip-flop in
Kmax is represented by the center of its bounding box. We
iteratively cluster the closest pair of the representative points
until we reach the appropriate size B. The first closest pair can
be found by divide-and-conquer, while the subsequent pairs
can be solved by the dynamic closest-pair algorithm [14].

Finally, the representative point of each clustered flip-flop is
then moved as near to the center of the bounding box resulting
from the low/high median fanin/fanout coordinates as possible.

Moreover, for a congested design, flip-flops may not be
allowed to be moved far away. In this case, the MBFF
clustering with a small amount of flip-flop displacement is
desired. To achieve this goal, we may adopt a different setting
of representative points. The representative point of each flip-
flop is set as its initial location, while that of an intermediate
clustered result is set as the median coordinate of their initial
locations. The wirelength-oriented approach thus tends to
cluster flip-flops with small displacement.
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TABLE III

Statistics of the Benchmark Used in [8]

Circuit #FFs Chip Size (#Grids) Initial Lower Bound

Power WL Power Ratio WL Ratio

C1 120 600 × 600 11 384 89 425 82.2% 48.7%

C2 480 1200 × 1200 46 404 348 920 80.7% 49.9%

C3 1920 2400 × 2400 185 616 1 395 680 80.7% 49.9%

C4 5880 4200 × 4200 566 972 4 290 655 80.9% 49.7%

C5 12 000 6000 × 6000 1 160 100 8 723 000 80.7% 49.9%

C6 192 000 24 000 × 24 000 18 561 600 139 568 000 80.7% 49.9%

B. Integration with Clock Gating

INTEGRA can readily be extended to integrate with clock
gating. Line 6 of INTEGRA should be modified as follows.
The related flip-flops found in X′ should have compatible clock
enable signals [15]. After lines 7–12, the clock enable of the
created MBFF is obtained by performing logic OR operation
on the clock enable signals of its constituent flip-flops.

VI. Experimental Results

We implemented INTEGRA in the C programming lan-
guage and executed the program on a platform with an Intel
Xeon 3.8 GHz CPU and with 16 GB memory under Ubuntu
10.04 OS. Three experiments are conducted to show our su-
perior efficiency and effectiveness. The first two experiments
focus on the flip-flop power saving as well as the wirelength
impact on data pins before clock tree synthesis, while the third
one completes clock tree synthesis and then shows the entire
clock power saving.

A. Power-Oriented Flip-Flop Clustering

Table III lists six preclustered benchmark circuits provided
by [8]. The effective number of single-bit flip-flops (#FFs)
ranges from 120 to 192 000. The bin size is 100 × 100 grids.
The MBFF library is specified in Table I. “Initial” lists the
status of each input circuit. The lower bound (“Lower bound”)
of power is computed by the dynamic programming table and
(5) given in Section II-E. The lower bound of wirelength is
computed by (6).

Table IV(A) compares flip-flop power, wirelength (WL)
on data pins of flip-flops, and runtime (Time) among [7],
[8] and INTEGRA. “Power ratio” (respectively, “WL ratio”)
means the power (wirelength) after MBFF clustering over
that of the input design; “#Decision” represents the number
of runtime decision points; “Avg. ratio” means the average
runtime speedup and the ratio of #Decision and #FFs; “woc”
and “wc” mean without and with collapsing initial MBFFs
[line 2 in Fig. 7(a)], respectively. For fair comparison, we
modify [7] to handle discrete MBFF libraries. When a clique
in the intersection graph is found, we allocate an MBFF cell of
the appropriate bit number and cluster flip-flops starting with
the smallest degrees. Considering power saving, INTEGRA
generates solutions with only 0.17% away from the lower
bounds, while the modified versions of [7] and [8] are 0.38%
and 2.36% away, respectively. Keeping wirelength almost
unchanged, INTEGRA can outperform modified [7] and [8]

Fig. 10. Log–log graph of the runtime (y-axis) versus the number of flip-
flops (x-axis). Empirically, INTEGRA can be done in O(n0.7) time.

Fig. 11. Experimental flow. The baseline is a design with only single-bit
flip-flops. [4] clusters flip-flops using RTL clock gating by Design Compiler
[17].

with 359X and 17X speedups. In particular, [7] and [8] suffer
from long runtimes for C6, which is a large-scale design
with numerous bins/grids. Moreover, the number of runtime
decision points is significantly smaller than the number of
flip-flops, on average 12% of flip-flop count. On the other
hand, Table IV(B) compares the number of clock sinks.
Interestingly, our power-oriented approach can also generate
much fewer sinks even though our main objective is flip-
flop power reduction. In addition, the initial MBFFs in these
designs are generated by some heuristic considering only 1-bit
and 2-bit flip-flops. They are preserved in [8]. It can be seen
that collapsing these initial MBFFs and reclustering them [ours
(wc)] leads to better results than preserving them [ours (woc)].

After regression analysis, Fig. 10 depicts the log–log graph
of the runtime (y-axis) versus the number of flip-flops (x-axis).
Empirically, INTEGRA can be done in O(n0.7) time.

B. Wirelength-Oriented Flip-Flop Clustering

When timing constraints are not tight, the wirelength be-
comes the primary objective. Unlike Table III, the circuits
listed in Table V(A) reflect other possible difficulties for
MBFF clustering [16]. The number of flip-flops (#FFs) ranges
from 120 to 60 000, while the chip size ranges from 3.6×105

to 6 × 106 grids. Each grid is 5×5 (unit length)2. The MBFF
library of S1 and S2 is specified in Table I; the MBFF library
of T2 includes a 13-bit MBFF cell; the MBFF library of T3
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TABLE IV

Power-Oriented Flip-Flop Clustering Comparison with [7] and [8] Based on the Benchmark Used in [8]

(A) Power, Wirelength, and Runtime
Circuit #FFs Modified [7] (wc) [8] (woc) Ours (woc) Ours (wc)

Power ratio WL ratio Time (s) Power ratio WL ratio Time (s) Power ratio WL ratio Time (s) Power ratio WL ratio #Decision Time (s)
C1 120 82.8% 123.0% 0.03 85.2% 91.7% <0.01 83.3% 103.6% <0.01 82.8% 96.2% 28 <0.01
C2 480 81.2% 124.8% 0.11 83.1% 94.7% 0.02 81.2% 110.3% <0.01 80.9% 101.7% 90 <0.01
C3 1920 81.3% 125.2% 0.53 82.9% 94.8% 0.07 81.1% 113.4% 0.03 80.8% 103.3% 229 <0.01
C4 5880 81.2% 124.7% 2.55 83.2% 94.5% 0.23 81.3% 112.9% 0.10 81.0% 103.8% 458 0.02
C5 12 000 81.0% 124.2% 8.01 82.9% 94.9% 0.52 81.1% 113.8% 0.28 80.7% 104.5% 690 0.05
C6 192 000 81.0% 124.4% 1994.61 82.8% 94.9% 76.94 81.1% 113.7% 5.58 80.7% 105.0% 3007 1.11

Avg. ratio 1.00 – – 358.61 – – 16.87 – – 5.07 – – 0.12 1.00

1. #FFs: number of single-bit flip-flops, bin size: 100 × 100 grids, grid size 5 × 5 unit-length2, Max. density (FF area per bin): 19 000.
2. Wirelength (WL): the total wirelength between flip-flops and fanin/fanout gates.
3. woc: without collapsing initial MBFFs, wc: with collapsing initial MBFFs.

(B) Clock Sinks
Initial Modified [7] (wc) [8] (woc) Ours (woc) Ours (wc)

Total #MBFFs Total #MBFFs Total #MBFFs Total #MBFFs Total #MBFFs
#Sinks 1-/2-/4-bit #Sinks 1-/2-/4-bit #Sinks 1-/2-/4-bit #Sinks 1-/2-/4-bit #Sinks 1-/2-/4-bit

C1 98 76/22/0 32 2/1/29 41 8/10/23 34 2/5/27 32 0/4/28
C2 423 366/57/0 127 4/8/115 156 24/36/96 128 0/16/112 123 0/6/117
C3 1692 1464/228/0 500 10/25/465 616 84/146/386 505 4/44/457 487 0/14/473
C4 5128 4378/751/0 1533 38/69/1426 1886 242/402/1211 1557 12/156/1389 1482 2/21/1459
C5 10 575 9150/1425/0 3119 70/133/2916 3820 480/920/2420 3148 6/287/2855 3018 2/33/2983
C6 169 200 146 400/22 800/0 49 951 1126/2213/46 612 60 880 7320/14 780/38 780 50 401 58/4715/45 628 48 070 18/113/47 939

Avg. ratio 100.00% – 29.53% – 36.02% – 29.81% – 28.44% –

TABLE V

Wirelength-Oriented Flip-Flop Clustering Comparison

(A) Statistics of Loose Timing Circuits Provided by [16]

Circuit #FFs
Chip Size Bin Size Grid Size Max. Density FF Cell Library FF Library Cells Lower Bound
(#Grids) (#Grids) Unit-Length2 (FF Area per Bin) (Bit Numbers) (Bit-Number, Power, Area) Power Wirelength

S1 120 600 × 600 100 × 100 5 × 5 19 000 {1, 2, 4} (1, 100, 100), (2, 172, 192), (4, 312, 285) 9360 43 545

S2 120 600 × 600 100 × 100 5 × 5 25 000 {1, 2, 4} (1, 100, 100), (2, 172, 192), (4, 312, 285) 9360 43 260

T1 60 000 2000 × 3000 20 × 10 5 × 5 200 000 {1, 2, 4, 8} (1, 100, 100), (2, 172, 192), (4, 312, 385), (8, 560, 725) 4 200 000 24 775 695

T2 5524 2000 × 2000 20 × 10 5 × 5 70 000 {1, 2, 4, 6, 13} (1, 100, 100), (2, 172, 192), (4, 312, 385), (6, 450, 550), (13, 900, 1205) 382 427 1 489 635

T3 953 600×1600 20 × 10 5 × 5 70 000 {1, 2, 4, 4, 8} (1, 100, 1000), (2, 172, 1920), (4, 312, 3850), (4, 299, 3980), (8, 560, 7250) 66 710 258 140

(B) Comparison on Power, Wirelength, and Runtime with [7] and [8] Based on the Benchmark Listed in (A)

Circuit Initial Modified [7] [8] Ours: Power-Oriented Ours: WL-Oriented

Power WL Power Ratio WL Ratio Time (s) Power Ratio WL Ratio Time (s) Power Ratio WL Ratio Time (s) Power Ratio WL Ratio Time (s)

S1 12 000 83 285 78.8% 119.2% 0.03 80.0% 85.1% <0.01 78.5% 103.3% <0.01 78.8% 85.8% <0.01

S2 12 000 82 220 78.8% 117.4% 0.03 80.3% 97.1% <0.01 78.3% 102.2% <0.01 78.5% 84.1% <0.01

T1 6 000 000 53 624 875 70.0% 137.5% 2128.93 70.2% 66.8% 785.69 70.0% 113.0% 4.49 70.0% 52.9% 3.92

T2 552 400 3 562 985 74.4% 84.8% 2.59 74.5% 74.4% 121.00 74.1% 74.2% 0.03 74.2% 72.6% 0.04

T3 95 300 576 710 71.0% 135.1% 0.27 71.6% 92.3% 0.40 70.2% 108.5% 0.02 70.3% 92.8% 0.02

Ratio 532.96 226.78 1.14 1.00

Delta−P Delta−WL Delta−P Delta−WL Delta−P Delta−WL Delta−P Delta−WL Delta−P Delta−WL

S1 +2640 +39 740 +92 +55 730 +244 +27 370 +64 +42 520 +96 +27 930

S2 +2640 +38 960 +92 +53 300 +272 +36 610 +32 +40 790 +64 +25 880

T1 +1 800 000 +28 849 180 +1384 +48 979 780 +9184 +11 029 520 +0 +35 805 830 +0 +3 566 730

T2 +169 973 +2 073 350 +28 463 +1 532 810 +29 251 +1 162 820 +26 923 +1 154 380 +27 391 +1 096 410

T3 +28 590 +318 570 +955 +521 130 +1500 +274 040 +151 +367 760 +293 +277 170

Ratio 71.97 6.27 1.11 10.24 1.45 2.51 0.98 7.49 1.00 1.00

1. Delta−P (Delta−WL) means the amount of power (wirelength) exceeding the lower bound. Initial lists the result of the input circuit. Total power
equals power lower bound plus Delta−P, while total wirelength equals wirelength lower bound plus Delta−WL. #Decision means the number of
decision points.
2. Modified [7] is the revision of [7] to handle the discrete and finite MBFF library. Modified [7] and [8] are run on our platform.
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Fig. 12. RISC32: the clock tree is synthesized based on (a) pure single-bit flip-flops, (b) multibit flip-flops clustered by [4], and (c) multibit flip-flops
clustered by INTEGRA.

includes two irredundant 4-bit MBFF cells. Since the timing
slack is large, the intersection graph is very dense, especially
for T1. The placement density constraint of T3 is relatively
tight.

Table V(B) lists the comparison with [7] and [8] on flip-
flop power (P), wirelength (WL) on data pins, and runtime
(Time) by circuits listed in Table V(A). “Delta−P” (respec-
tively, “Delta−WL”) means the amount of power (wirelength)
exceeding the lower bound, “Initial” lists the result of the
input circuit, “Ratio” means the total extra power, extra
wirelength, or total runtimes compared with our wirelength-
oriented extension. It can be seen that our wirelength-oriented
extension delivers the best wirelength, maintains almost the
same flip-flop power as the power-oriented method does and
achieves 533X and 227X speedups over modified [7] and
[8], respectively. Hence, our wirelength-oriented extension is
suitable for designs with loose timing slacks. In addition to
larger power and/or wirelength, modified [7] and [8] also suffer
from long runtimes because of numerous bins/grids.

C. Clock Tree Synthesis

The third experiment is conducted on an industrial design—
a 32-bit RISC CPU (RISC32). To demonstrate the effective-
ness of our postplacement MBFF clustering method (INTE-
GRA), we apply the experimental flow shown in Fig. 11.
Logic synthesis is done by Synopsys Design Compiler [17].
Static timing analysis is reported by Synopsys Prime Time
[17] and placement (including legalization) and clock tree
synthesis are generated by Cadence SoC Encounter [18].
As listed in Table VI, the design without multibit flip-flop
clustering is viewed as the baseline. The MBFF library used
in [4] contains only single-bit and dual-bit flip-flop cells.
Chen et al. [4] used register banking at logic synthesis to
cluster flip-flops. We apply INTEGRA to the preclustered
design at postplacement. 55% of the single-bit flip-flops in
the initial design can be replaced by [4], while 95% can be
replaced by INTEGRA. The lower bound of flip-flop power
ratio is 94.75%, and INTEGRA reaches 95.02%. The MBFF
clustering results pass the static timing check, so our timing
model is reasonable, and the degradation by legalization is

TABLE VI

Comparison on Clock Tree Power

RISC32 CPU Baseline [4] Ours

#Single-bit FFs 7279 3269 379

#Dual-bit FFs 0 2005 3450

FF replacement rate 0.00% 55.09% 94.79%

FF power ratio 100.00% 97.11% 95.02%

#Clock sinks 7279 5274 3829

Clock tree synthesis and power report

Internal clock power (mw) A 0.3768 0.3469 0.3125

Leakage clock power (mw) B 0.013 0.011 0.008

Switching clock power (mw) C 1.893 1.584 1.275

Total clock power (mw) D = A + B + C 2.283 1.942 1.596

Total clock power reduction 0.00% 14.94% 30.09%

Total combinational power (mw) E 5.750 5.608 5.572

Whole chip power (mw) D + E 8.033 7.55 7.168

Whole chip power reduction 0.00% 6.01% 10.77%

#Clock subtrees 157 157 153

#Clock buffers 262 224 123

#Clock depth 7 9 7

Routed wirelength of clock tree (μm) 66643.0 60299.6 50469.3

Clock tree wirelength reduction 0.00% 9.52% 24.27%

Routed wirelength of data pins (μm) 295487.0 296491.0 301087.0

Routed wirelength ratio of data pins 100.00% 100.34% 101.90%

1. RISC32 CPU is a newer release than [4], gate count 120k.

2. 7279 single-bit flip-flops, chip size: 50 000×50 000 grids, bin size: 50×50 grids,
grid size: 10×10 unit-length2, Max. density (FF area per bin): 19 000, MBFF library:
<(1, 36789.3, 6.4), (2, 69713.6, 12.16)>.

3. In clock tree synthesis report, total power includes dynamic (internal and
switching) and static power. Clock power contains the flip-flop power and clock tree
power. Power supply voltage is 0.9 V, the target clock skew is 300 ps. Routed
wirelength is reported by SoC Encounter [18].

acceptable. Although the flip-flop power reduction is not large
due to the limit of the used MBFF library, the total clock
power reduction is still promising. According to the clock tree
synthesis report, compared with [4], we gain 15.15% more
clock power reduction (14.94% versus 30.09%). Moreover,
the number of clock sinks is greatly reduced, the number of
clock buffers is thus decreased to maintain the same clock
skew, 300 ps. The induced wirelength on data pins almost does
not affect the combinational power (only 1%–3% difference).
Compared with MBFF clustering at logic synthesis [4], it can
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be seen that the power overhead on data pins is negligible,
while power of the whole clock network can considerably
be improved by postplacement MBFF clustering, even under
timing and placement density constraints. Fig. 12 shows the
clock tree synthesis results; it can be seen that our method
generates a much simpler topology. Hence, MBFF clustering
can not only save the power and area of flip-flops but also
reduce the power and area of the whole clock network.

VII. Conclusion

In this paper, we presented a fast multibit flip-flop clustering
algorithm for clock power saving. To resolve the time and
space deficiencies encountered by recent works, we adopted
coordinate transformation and expressed the feasible regions
by two interval graphs. Our representation is a pair of linear-
sized sequences. We directly manipulated intervals, cluster-
ing/placing flip-flops on the sequences. Utilizing the properties
of interval graphs, we introduced the concept of decision
points and further reduced the number of times of clustering
applied. Our results show the concise representation brings
an efficient data structure and an effective algorithm. Even
under timing and placement density constraints, clock power
saving still can be substantial at the postplacement stage using
multibit flip-flops.
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