IEEE TRANSACTIONS ON COMPUTERS, VOL. 61, NO.2, FEBRUARY 2012

199

NUDA: A Non-Uniform Debugging Architecture
and Nonintrusive Race Detection
for Many-Core Systems

Chi-Neng Wen, Shu-Hsuan Chou, Chien-Chih Chen, and Tien-Fu Chen

Abstract—Traditional debugging methodologies are limited in their ability to provide debugging support for many-core parallel
programming. Synchronization problems or bugs due to race conditions are particularly difficult to detect with existing debugging tools.
Most traditional debugging approaches rely on globally synchronized signals, but these pose their own problems in terms of scalability.
The first contribution of this paper is to propose a novel non-uniform debugging architecture (NUDA) based on a ring interconnection
schema. Our approach makes hardware-assisted debugging both feasible and scalable for many-core processing scenarios. The key
idea is to distribute the debugging support structures across a set of hierarchical clusters while avoiding address overlap. The design
strategy allows the address space to be monitored using non-uniform protocols. Our second contribution is to propose a nonintrusive
approach to lockset-based race detection supported by the NUDA. A non-uniform page-based monitoring cache in each NUDA node is
used to keep track of the access footprints. The union of all the caches can serve as a race detection probe without disturbing
execution ordering. Using the proposed approach, we show that parallel race bugs can be precisely captured, and that most false-
positive alerts can be efficiently eliminated at an average slowdown cost of only 1.4-3.6 percent. The net hardware cost is relatively
low, so that the NUDA can easily be scaled to increasingly complex many-core systems.

Index Terms—NUDA, lockset, data race, nonintrusive, manycore, debugging.

<+

1 INTRODUCTION

MULTITASKING concurrency in the context of parallel
programs is essential to the future development of
MPSOC. However, nondeterministic parallel programs are
hard to debug with traditional methodologies because
subsequent executions with identical inputs are not
guaranteed to result in the same behavior. Using a software
instrument or debugger to insert probe code into the target
program can help to identify potential problems, but it may
cause a probe effect.

Many-core debugging poses several challenges.

First, the debugging or monitoring cannot disturb the
sequential consistency of the target program. This kind of
disturbance is called a “probe effect,” [1] and will tend to
mask certain synchronization errors after an unknown delay.

Second, in the context of parallel sequencing, on-chip
trace modules are usually employed to record program
execution or memory/register state changes and to allow for
reliable offline reexecution using this information. A tracer
requires a large on-chip trace buffer, as well as a global
timestamp to correlate traces across different cores.

Third, bugs due to unsynchronized access to shared
memory in parallel programs (or so-called data race) are

o C-N. Wen and S-H. Chou are with the Department of Computer Science
and Information Engineering, National Chung-Cheng University, 168,
University Rd., Min-Hsiung Township, Chia-Yi 722, Taiwan.

E-mail: {dave.tw, csh93chou}@gmail.com.

o C-C. Chen and T-F. Chen are with the Department of Computer Science,
National Chiao-Tung University, 1001 University Road, Hsinchu 300,
Taiwan. E-mail: {john740207, tfuchen)@gmail.com.

Manuscript received 25 Jan. 2010; revised 29 July 2010; accepted 17 Nov.
2010; published online 8 Dec. 2010

Recommended for acceptance by D. Gizopoulos.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TCSI-2010-01-0055.
Digital Object Identifier no. 10.1109/TC.2010.254.

0018-9340/12/$31.00 © 2012 IEEE

even harder to detect using traditional debuggers; even the
on-chip trace modules are supported. A lengthy trace may
be required in order to observe a race condition that results
from multiple concurrent accesses. Instead of fully tracing
the entire execution, we advocate detecting data races at
runtime, and alerting the debugger/monitor to record
traces for debugging replay.

Fourth, most debugging functions are based on watching
instructions and data addresses generated by the proces-
sors. The debug engine must constantly check with either
breakpoint or watchpoint registers. A many-core system
makes the debugging even more complicated.

Finally, traditional debugging facilities rely on globally
synchronized signals and are not scalable to many-core
systems. Synchronization problems or bugs due to race
conditions are particularly difficult to detect. In addition to
address comparisons using breakpoints and watchpoints,
data race detection involves the extra requirement to
watch many more lock/unlock and shared addresses at
the same time.

Hence, this paper proposes a “Non-Uniform Debugging
Architecture” (NUDA) to solve the above challenges in the
context of many-core debugging.

The key idea of the NUDA is that we distribute the
monitoring data and instruction addresses in a hierarchical
manner using a non-uniform address space, caching fre-
quent addresses (page-based) with distributed content
addressable memory (CAM) tables, and thereby avoiding
the need for centralized address comparisons. Once an alert
event is detected, the NUDA employs a synchronization-
token mechanism to notify each of the processor cores to stop
or to restart separately without relying on a synchronized
global signal. With the NUDA'’s distributed notification

Published by the IEEE Computer Society

200

abilities, we can implement various debugging facilities to
watch, detect, or even capture the execution trace in order to
help develop parallel programs in many-core systems.

This work also proposes a programmable debugging
methodology, by which users specify anchors and execu-
tion sequences to ensure that interactions between parallel
programs are executed in the correct sequence. The
performance slowdown associated with the NUDA is
almost negligible, because intra-cluster debugging event
checks are more frequent than inter-cluster interactions. We
demonstrate that the target system can remain nonintrusive
when being debugged and probed for synchronization
problems using the proposed NUDA mechanism.

In summary, the contributions of this work are as
following;:

1. An isolated nonintrusive debugging architecture
based on a non-uniform memory mapping.

2. A distributed and simultaneous notify mechanism
(Sync-token) upon NUDA for synchronous debug-
ging-control.

3. Software programming model (RunAssert) for
many-core debugging with NUDA.

4. A lockset-based data rece detection design on
NUDA.

2 RELATED WORK

2.1 Debugging and Architecture

Recently, the number of cores is increasing rapidly. For
instance, IBM Cell is a heterogeneous multicore system, the
Intel Larrabee [2] is an x86-based many-core system, and
the nVidia Fermi architecture [3] has 1,000+ cores in a
single chip. No matter how complicated those systems are
and how simple the applications on them, the software
developer must inevitably face that long-term stage of the
development cycle known as the debugging stage.

There are many hardware approaches [4], [5] to help
with debugging. Based on the previous works, this work
focuses on a nonprobe effect environment for automatic
parallel program fault detection. The standard data path [6],
[7] performs adequately and is popular and well known.
However, the protocol and configuration of those debug
buses do not have enough flexibility and capability to
handle manycore’s debugging information.

To address this issue, OCP-IP [6] announced an
independent debugging bus and corresponding core socket
for industry many-core debugging. The OCP-IP’s core
socket provides the multicore system with an isolated cross
trigger and tracing channel. Therefore, OCP-IP provides a
standard core interface for debugging purposes, regardless
of the debugging channel is or whether the core type is
heterogeneous. Contemporary embedded processor para-
digms such as ARM CoreSight [8] and MIPS On-Chip
Instrumentation [9] feature nonintrusive trace modules
embedded within the processors.

Architectural supports for runtime debugging are increas-
ingly important for future many-core systems, especially for
detecting race conditions or deadlock. Those hardware
approaches are usually monitor-based models [10], [11]
which are consuming lots of memory. Therefore, the concept

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61,

NO. 2, FEBRUARY 2012

of non-uniform cache architecture (NUCA) is originally used
for L2 cache sharing in many-core systems [12], because it
represents a distributed sharing mechanism with non-uni-
form memory access latency. The NUCA takes advantage of
high data locality to shorten access latency and low cache-
miss rates, without cache-coherency overhead. In this work,
we take similar design concept for supporting runtime
debugging.

2.2 Race Detection and Related HW Approaches

There are two algorithms to detect race conditions, the
“happened-before” [13], [14] and “lockset-based” [15], [16],
[17] algorithms. The happened-before algorithm works by
comparing the timestamps or vector clocks [18] of particular
synchronization operations, such as access to shared objects,
between threads. The benefit of the happened-before
algorithm is the fact that it is easily for hardware
implementation. However, the drawbacks are that it only
discovers those races that are manifested during the
monitored execution. On the other hand, the lockset-based
algorithm provides more precise information to overcome
the limitations of the happened-before algorithm. The Eraser
[15] probe all of the lock/unlock operations and memory
access events, in order to detect data races efficiently.

There are several hardware approaches for debugging.
FDR [19] and Rerun [20] are hardware approaches that use
a low-overhead hardware recorder in the context of caches
or cores, essentially to log the minimum thread ordering
information that is necessary to play back the multi-
processor execution faithfully after the event. It truly helps
programmers to debug, but a lengthy trace may be
required. HARD [11] provides a novel hardware-assisted
lockset-based race detection approach, and it employs
additional fields (such as a Bloom filter vector(BFVector))
in the cache and detects the race condition. The HARD [11]
is the first hardware feasible by efficiently storing and
maintaining the candidate set, which is a set of locks
protecting a variable in hardware, and radically simplifying
the set operations in the lockset algorithm. However,
because the design is architecture-dependent (passive), it
is subject to the following imperfections of degraded race
detection capability and high memory use:

1. Serious false negatives caused by cache miss.

2. False negatives caused by collisions of the Bloom
filter.

3. Architecture dependence and low scalability.

4. Large memory cost in L1 and L2 cache hierarchies.

5. Incomplete barrier handling.

Those imperfections debase the reliability and scalability
of the hardware race detection.

3 NONUNIFORM DEBUGGING ARCHITECTURE

Most of today’s many-core debugging is trace-based and
relies on the offline verification of history or execution
sequencing. The drawback of this methodology is an
unacceptably large storage requirement and slow operating
cycles. In order to support versatile real-time debugging
requirements, the NUDA is a technique that has been
proposed for debugging sequentially consistent parallel

WEN ET AL.: NUDA: A NON-UNIFORM DEBUGGING ARCHITECTURE AND NONINTRUSIVE RACE DETECTION FOR MANY-CORE SYSTEMS 201

Many-core ICE Debugging host

T e
Directory «———
Core 0 j{@lnter-cluster A
p _\r __________ debugging
)

|
I
| (\ | | g
| T
: \ | A S
——_—O_<*))
E Monitor 3
histogram 5
)
=]
Q
<

(Dintra-cluster -

| | debugging y
I |—>
I

|
NUDA-cluster

63

Fig. 1. The NUDA system architecture.

programs on many-core systems. It has a flexible and
configurable infrastructure to handle growing numbers of
cores in the future. However, debugging events are usually
triggered by core/memory/device components, and too
many unnecessary events will cause a traffic jam of the
NUDA'’s interconnections and degrade the system perfor-
mance. Moreover, unnecessary events may also intrude in the
histogram-table in the NUDA node and lower the debugging
capacity. Therefore, an efficient and hardware-feasible event
filter is urgently required. Race detection, nearly unlimited
break/watchpoints and cross-event trigger are critical for
multicore/multithreading real-time debugging, and are all
relative to memory access to a certain address.

Fig. 1 shows the NUDA system architecture, with a 64-
core system as a fundamental platform. Without loss of
granularity, the fundamental platform is unrestricted in its
memory architecture, interconnection between cores, 1/0O
facilities, etc. In fact, the NUDA is a scalable nonintrusive
subsidiary architecture that does not share any resources
with the fundamental platform. In brief, the NUDA frame-
work contains three major parts: the NUDA architecture
itself, the sync-token protocol on the NUDA and the related
software solutions.

The NUDA architecture consists of a cluster with a
NUDA node, the NUDA interconnection to transfer in-
formation between NUDA nodes, and the non-uniform
memory shared with NUDA nodes. Due to the distributed
coordinate architecture, the philosophy of the NUDA
defines the cluster as a collaborative unit.

Fig. 2 shows the concept of a NUDA cluster that features
two to eight neighboring cores and allows communication
with the related NUDA nodes (Node N —1 and Node
N +1) by an independent debugging channel (the vertical
gray bar) and shared non-uniform memory. System
designers can contribute their target system by clusters.

NUDA &
Node N-1 2
8
DCP i
u Core control NUDA | T Mem, Thread events
node N Dbus
S v
= / Core 7
S |5
oy
S A I 4 R
& NUDA Filter & Send/Receive
¥ Node N+1 debugging events

Fig. 2. The concept of the debugging cluster (NUDA cluster).

The use of clusters offers the following benefits. First, a
structure design is more flexible to face different system
configurations and increasing numbers of cores. Second, we
can classify the debugging into two categories, the
intracluster and intercluster debugging events. The in-
tracluster debugging events represent those of temporary/
special locality and we can handle them immediately; in
terms of the concept of time-to-space, the intercluster
debugging events happen infrequently. Finally, from the
perspective of the trend of parallel software structure, let
the related tasks aggregate into a clusters provide better
performance [21] and programmability [22].

A NUDA node is capable of gathering and organizing
related information as monitored records. It also provides a
programmable way for the user to reconfigure it, such as
user-defined assertions. Moreover, a NUDA node handles
the search/migrate/update to the non-uniform memory.
From the programmer’s viewpoint, a NUDA node is like a
simple subsystem that contains a NUDA node controller with
aseparated local memory and a global memory (non-uniform
memory) system. As shown in Fig. 2, the debugging
coprocessor (DCP) plays the role of the interface between
the fundamental platform and the NUDA. Massive histo-
gram information is gathered by the DCP on each core and
then sent to the NUDA node. Hence, the DCP should be
lightweight and filterable. In contrast to the NUDA node, the
DCP receives the NUDA node’s command packet, decodes it,
and then invokes the indicated debugging operations, such
as stop/step/continue executing a core.

A NUDA also contains flexible interconnections that can
be extended as the system grows. In this work, we use a
ring as the interconnection structure. The reason for using
the ring interconnections is not only to reduce costs but also
to take advantage of the ring broadcast mechanism for the
synchronization of core debugging events.

In addition, most of the essential debugging functions are
based on histogram data comparison. A larger storage space
is acquired as the system grows. As shown in Fig. 1, the
NUDA is based on distributed cluster architecture; this work
uses a local storage in each NUDA node and then unifies
those local storages into non-uniform memory architecture
(NUMA), which is totally isolated from the memory system
of the fundamental platform. First, the local storage is well
prepared by a CAM as a map for fast intracluster event
checking. Second, each NUDA node’s local storage is a page-
based non-uniform memory, and each page in this non-
uniform memory is mapped into a global dictionary in the

202

NUDA

5
Node N-1 >
§
DCP =
a Core control NUDA 9 Mem, Thread events
node N Dbus
= DCP
3
=
S
> Al &S’ d/Recei
%) NUDA Filter end/Receive
¥ Node N+1 debugging events

Fig. 3. The structure of the NUDA node.

many-core ICE in case of an intracluster check failure. Once
the dictionary indicates where the page is, the intercluster
event checking will be invoked automatically.

There are three main motivations to use non-uniform
memory as the NUDA'’s storage system:

1. Non-uniform memory is highly extendable, as more
clusters in system, and hence more memory space,
becomes available.

2. Non-uniform memory has at least one data copy in
this work; we don’t have to save a redundant
histogram in several pages. The proportionality of
memory cost and memory capacity for monitoring is
the most suitable for debugging purpose.

3. Non-uniform memory access operation is efficient.
Accessing the local pages is faster than accessing the
remote pages in the other NUDA nodes. Moreover,
the data migration can dynamically revise the page
locations and thus promote access efficiency.

3.1 The Structure of the NUDA Node

As shown in Fig. 3, the NUDA node structure consists of
three major parts: computing, memory, and communica-
tion. The specific router handles a NUDA node’s commu-
nication with its neighboring NUDA nodes, local
debugging bus (Dbus), and the internal computing part.
The specific router uses a packet-switched design for node-
to-node communication, but a circuit-switched design to
connect Dbus and the computing part directly with
intracluster core control signals.

The key component in the computing part is a program-
mable nanoprocessor (nP) that is triggered by user-defined
debugging events and activates the corresponding debug-
ging processes. The nP replaces dedicated hardware
functions and also handles events by predefined software
routines. The particular routines are stored in a small
instruction memory within each node. The event handler is
composed of an interface and a queue to receive events and
stimulate the corresponding behaviors.

The TAP controller (TAPc) is responsible for intracore
control. The synchronization module (Sync) is used to
manipulate the intercore communications, such as cross-
trigger events and synchronizations. However, it is still a
challenge for the nP to provide a quick response or to
record frequent events. An alternative solution is to employ
a small accelerator (embedded FPGA or configured data
paths) for an extended instruction set addition. The
configurable accelerator is implemented as a wide commu-
nication interface between computing and memory parts to
accelerate the debugging processes. In addition, some

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61,

NO. 2, FEBRUARY 2012

Nano-p Core Core Core
Core Translate DCP DCP
- TAPc.
Control | cemote Ring-_, Event "Cmd -
debug > links handler Control signals (Dbus)
Condition match
Event Event
Monitor handler > CAM e Data banks
Trace core —» DCP —» Dbus/ Hit
status
Remote Ring- o I-MEM
Rule) event ™ links ~, Event <& o—p a,e_ck
Check Monitor _ handler routine
core —» DCP —» Dbus Data banks
status
I-MEM Ring-
Nano-p Ring
Core 5 s Narage Event — links > Core
handler
Manage Data banks T ous —p Management
Miss Hit
Non- access
uniform > ""* Router { ---- -->-—> Router {-» I Data banks
access [- N
Node 0 Node 1 Many-core ICE Node N Node No1
Sync-Token
SYNC Sync |——>| Sync —®—>
Node 0 Node 1 Node 2

Fig. 4. Functionalities of a NUDA node.

frequent or urgent debugging events should be designed
with high priority and short processing latency.

The memory part includes a set of memory banks and
CAM in Fig. 3, which satisfy the large capacity and fast search
requirements. Moreover, the design strategy of CAM in-
volves a page-based fully associative cache structure to index
data banks as shared histogram pages. Distributed shared
histogram pages in the NUDA nodes form the proposed non-
uniform memory design for runtime debugging facilities,
and we present the details in the following section.

Fig. 4 depicts the available functionalities in each
NUDA node. Those functions can be combined to perform
various debugging facilities, such as variable hardware
breakpoints, runtime race detection [11], debugging event
order-recording [19], [23], and so on. For a core control
instance, the TAPc receives commands from the nP or the
event handler, translates them to sequential control signals
on Dbus, and then controls specific cores. When the
system is working on runtime debugging facilities, the rule
check and event trace functionalities can support system
monitoring and event tracing. The CAM can perform rapid
condition matching for event tracing, and related events
may trigger the nP to run the rule check routine with the
previous histogram stored in the memory of the NUDA
node. Moreover, the nP can monitor the status of the cores
and run the core management routine for the deterministic
relay of pervious execution or better system performance.
The embedding of a nanoprocessor in the NUDA node is
demonstrated to provide flexibility and reusability at an
affordable cost.

Furthermore, non-uniform debugging memory is orga-
nized with non-uniform access for greater scalability, and it
creates larger monitor capacity for runtime debugging on
many-core systems. The distributed event synchronization
mechanism by “Sync-Tokens” helps with global synchroni-
zation in debugging. Overall, each NUDA node includes a
programmable design implementation by software to
satisfy various requirements.

WEN ET AL.: NUDA: A NON-UNIFORM DEBUGGING ARCHITECTURE AND NONINTRUSIVE RACE DETECTION FOR MANY-CORE SYSTEMS 203

Debugging event .
P_index Granularity (G
+ <«——Granularity (G)—>

\—¢ fﬂé <«—Bit-width (W)——
- T
it

T 9;%‘1’30 Index |1S— Monitor —1\

L [0x200 % 'p Histogram ——

! ’ I

CAM memory J
SRAM memory

(@)

Many-core ICE
= Directory ‘
(2)[Page Que]

Add ess
e Space
1 o |
: I—)@m : oing Monitor
| ‘W region I
'CAM' B Wonitor
histogram

Monitor
region II

-

Fig. 5. Non-uniform debugging memory design space. (a) Page-grain
cache in a NUDA node. (b) Page-grain NUCA for scalable monitor
capacity.

3.2 Non-Uniform Debugging Memory Design Space

The architecture-dependent construction for debugging
purposes may suffer from mutual influences between
normal and debugging operations. For example, a debug-
ging storage aligned with cache hierarchies must inevitably
be polluted by useless debugging events that are used for
core execution, and the useful debugging histogram can be
lost or swapped out during a cache miss. On the contrary,
an independent debugging memory can be well utilized for
runtime monitoring without intruding unnecessary events.
Therefore, our design strategy use the independent memory
for runtime monitoring, but it is distributed, rather than
centralized, as a non-uniform cache architecture (NUCA
[12]), as shown in Fig. 5b.

The conventional NUCA design features larger shared
memory for the benefit of multicore communication, espe-
cially in some multithreading programs. It usually has a
lower miss-rate and sometimes a lower memory usage.
However, it sometimes has the drawbacks of long access
latency due to the access distance and ineffective data
migrations. In this work, the NUDA contributes a page-
based non-uniform memory design for runtime debugging. It
gains the benefits of NUCA, of having a larger monitor
capacity shared by multiple NUDA nodes without redundant
copies. Moreover, the longer latency caused by remote
debugging processes only slightly affects the runtime
debugging efficiency, for two reasons. First, debugging

events happeninfrequently. Second, the cores are not blocked
while processing debugging events.

Fig. 5a depicts the page-based memory design consisting
of CAM and SRAM. The CAM is used for parallel searching
for the location of the monitor page, and then accessing the
monitor histogram in SRAM. It acts as a fully associative
cache to swap out data only when meeting an overflow for
minimizing the probability of cache miss.

The page-grain design strategy is not only because of the
cost of CAM usage, but also for easy management. Fig. 5b
shows the page-grain NUCA distributing in multiple
NUDA nodes for scalable monitor capacity. Setting the
DCP by user-defined #pragma or compiler aids, interesting
address spaces are filtered out, and then monitored by the
page-grain NUCA. As shown in Fig. 5b, those interesting
regions correspond to a monitor page in a certain NUDA
node. For example, interesting region I is mapped to a
monitor page in NUDA node 3, and region I/III are mapped
to NUDA node 0.

In general programs, access to shared variables is
governed by data locality. For example, two threads may
access the same shared variables, but at different time slices,
by the protected locks, which means that a quantity of
debugging events are generated from a thread at a given
time slice. If the thread and the monitor page are in the same
NUDA cluster, the debugging event triggers an intracluster
histogram access. On the other hand, three steps are
required for an intercluster histogram access, with longer
processing latency. In order to eliminate the global stall
caused by too much intercluster histogram access, a good
page migration mechanism is necessary, and the informa-
tion of lock/unlock is a possible reference for prediction.

Fig. 5 (1-3) describes the intercluster debugging histo-
gram access flow. At first, the debugging event accesses the
local NUDA node to search for the matching monitor
region. If the search fails, the debugging event goes to
many-core ICE for a central location directory checking.
Then, the many-core ICE passes the event to the remote
NUDA node for the intercluster debugging histogram
access. Monitor page migration is necessary when different
threads are accessing the same shared variables at different
time slices. In our design strategy, a page queue in the
many-core ICE dynamically records intercluster access
counts of current frequent-used pages and makes a decision
for migration if the count is over a defined ratio. If a
monitor page migration is triggered in a NUDA node with
no available storage, it selects a monitor page to replace,
and the replaced page is swapped to neighbor NUDA
nodes or exchanged with the migration page.

The difference is that with fixed granularity which
depends on the cache size [11]. The monitor granularity of
NUDA is flexible and user declarable; high granularity G
represents a small peephole and precisely monitors the
target memory, low granularity represents coarse monitor-
ing, larger monitoring capacity, and fast examination. The
relationship between monitor capacity and memory usage
is shown in Fig. 6. Essentially, there are two major storage
spaces in each NUDA node, the CAM, and the SRAM. The
SRAM can be configured whatever the user demands.
However, the entry numbers and granularity should follow

204

e.g. a page owns 4 entries of SRAM, each entry monitors 16 words
of target memory, so a page monitors 64 words and costs 4* W\,

&= 4 Words =5 I
Page num. [Base |-

Granularity (G)

Page CAM
e —

WPage CAM

""Base field can'be”
configured to point the
. base address of the page |

M SRAM

[NUDA node processing to”
i chunk of target memory =
.. With granularity G

Target memory

Fig. 6. Monitor granularity, capacity, and memory usage.

the mapping constraint to prevent the memory from going
out of bounds.

The proposed non-uniform memory design is flexible to
satisfy the requirements of versatile runtime debugging
facilities, especially in address-based monitor and its
histogram management. For example, it is able to imple-
ment runtime race detection and trace for order recording.
In addition, unlimited break/watchpoints are supported,
by inserting interesting monitor addresses into CAM for
parallel comparing.

3.3 Sync-Tokens for Nonintrusive Control

The latency associated with debugging control propagation
is challenging. Such latency may interfere with the original
execution ordering in a runtime debugging scenario.
Nonintrusive control is essential for programmers to fully
understand the actual multithreading execution ordering in
a system. For example, when a breakpoint is reached by a
certain core, all the other cores may stop at different times if
there is no synchronized mechanism to bring them to a halt
simultaneously. This can cause a programmer to misidenti-
fy an actual breakpoint. Our solution is to stop all the cores
synchronously and to use a fixed latency to maintain
nonintrusive operation. Many-core nonintrusive control
plays a key role, as follows:

1. Start/Stop all cores

- Debugging exception.
- Tolerate the latency of runtime debugging
process.
2. Update all cores

- Updating NUDA nodes’ configuration.
- Globally examining debugging events.

It is sometimes necessary to start/stop/update all cores
simultaneously. While meeting a debugging exception, our
strategy relies on synchronously stopping all cores and
activating the related handling routine. The debugging

Sync-Token A

@]
Token A
s @8] [
Token B enmmm—y
m @ 1-cycle pass

(b)

&)

5
Auto-decrease @
T-oyele pass

(a)

Broadcast

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61,

NO. 2, FEBRUARY 2012

exception includes breakpoints, race detection, user-defined
assertions alert, histogram overflow, and so on. Sometimes,
too many debugging events concurrently happening in
close succession or a debugging event which has long
processing time may cause the event queue (in DCP or
NUDA node) to become full. In order to avoid losing
debugging events, our strategy consists of synchronously
stopping all cores to digest them as a tolerance without
disturbing the original execution order. In other words, it is
also necessary to support synchronously updating all
NUDA nodes or globally examining debugging events.

In this work, we propose a “Sync-Token” mechanism for
synchronous debugging-control. The key idea behind our
“Sync-Token” is to pass a specific and related countdown
number to each NUDA node, as shown in Fig. 7. This
countdown number decreases incrementally with time.
When the token passes though all of the NUDA nodes,
the countdown numbers across the nodes are allowed to
reach zero, whereupon they can be synchronized for start/
stop/update operations.

Fig. 7a shows an example of how the sync-token works.
Assume that Sync-event A happens in NUDA node N3 and is
associated with token number 4. One cycle later, Token A
broadcasts to NUDA node N2 and NUDA node N4 and
transmits token number 3. At the same time, the token
number at NUDA node N3 itself decreases to three. There-
fore, NUDA nodes N2, N3, and N4 are synchronized, as
shown in Fig. 7b. However, there is another Sync-event B that
is being concurrently processed by NUDA node N7. The
tokens broadcast conflict, as shown in Fig. 7c. NUDA nodes
N1, N2, N3, N4, and N5 are synchronized by token number 2
and NUDA nodes NO, N6, and N7 are synchronized by token
number 3. Under our mechanism, lower-numbered tokens
can inherit larger numbers, so Sync-event B will hold and
wait to be resent at NUDA node N7. When all the tokens
across the NUDA nodes count down to zero, all the NUDA
nodes can be synchronized for nonintrusive control.

Nonintrusive debugging control is one of the main
debugging targets of the NUDA system for greater scalability
in future many-core systems. The proposed “Sync-Token”
mechanism ensures “synchronously stopping and starting
all cores” to tolerate the latency caused overload debugging
processes without disturbing the original execution ordering.
Indeed, it causes some system performance degradation, but
very little, because overload conditions rarely happened.

To deal with a multicore system that runs at more than one
clock domain, the NUDA design keeps the main ring and
NUDA nodes in the same clock domain. The reason for this
choice is better data reference manipulation between NUDA

,,,,, Confilict, Token
A wins
Token Bis
hold to
resend ¥

ABEE

©:

FRIEH
XX

Token B

—)

2-cycle pass

oken A

N7

©

(c) (d

=

Fig. 7. Example of “Sync-Token” for many-core nonintrusive control. (a) Sync-event A happens. (b) Sync-event B happens. (c) Conflict, T_small

inherits T_large. (d) Count to zero, start synchronization.

WEN ET AL.:

Monitor core status
(PC, load/store, thread
I info, and so on)

. Debugging
g Configurable |Events .
£ oy Filter (CF) Unit 3
g g
2 2
a ‘ 8
FSM |[Status reg
“—Debugging Co-processor (DCP)
Monitor core status
vV 9
j=)] .
]2 Selectable Data-paths Debugging
LG 6| —» (includes AND, OR, XOR, Shifter, {-{-EXe0tS
5 Pa Compare, One-Hot encoding)
8| Sel
Read 9
[(1) Vector filter
u 3[‘) daZ (2) Bloom filter
Registers

(64 ~ 256-bit)

Configurable Filter (CF) Unit

Fig. 8. Configurable filter (CF) unit in DCP.

nodes and an accurate start/stop control on the ring.
Therefore, we can classify different clock domains into
different NUDA clusters and make sure each NUDA cluster
has only one clock domain. Then, we can add an asynchro-
nous module to each NUDA node to handle the different
clocks between NUDA node and NUDA cluster. The
additional NUDA nodes are the necessary cost of combating
different clock domains, but the same clock domain makes
modules within the cluster have a simpler design.

3.4 Event Filter and Memory Size Reduction

Debugging events are usually triggered by core/memory/
device components, and too many unnecessary events can
cause a traffic jam on the NUDA’s communication network
and degrade the system performance (all cores are stalled
when the event queue is full). Moreover, unnecessary
events may also intrude in the monitor histogram in the
NUDA nodes and lead to low debugging capacity. Conse-
quently, it is crucial to embed an efficient and hardware-
feasible event filter in the debugging coprocessor (DCP).
Fig. 8 shows the block diagram of the DCP. Instead of a
full in-circuit emulator (ICE) in a single core, the DCP
supports the minimal control (control the core and com-
municate with NUDA) for feasible hardware cost on many-
core debugging. The key component, the configurable filter
(CF) unit, is used to providing the above mentioned filter
functions to improve NUDA architecture efficiency. Our
target is to filter out only the necessary debugging events in
DCP and send them to the NUDA node. However, precise
filtering is unfeasible because it requires many registers and
comparators for each distributed debugging events (e.g., the
X86 processor only supports four hardware breakpoints).
Currently, verifying multiple events by a signature [24] is
popular, because the information can be compressed into a
fixed length signature without loss to much accuracy.
Therefore, using signature for filtering is a good design
style for runtime debugging. It can perform at a high filter-

NUDA: A NON-UNIFORM DEBUGGING ARCHITECTURE AND NONINTRUSIVE RACE DETECTION FOR MANY-CORE SYSTEMS 205

0x60000~0x70000 (64KB)

eChunk—sMﬁi<
Space HT)'\" ﬂrH pac? -

/ Intersection -7 =
[oJoTo[Tofo[i1 oTofoJofofo[ToJoTtfo[A* AT+ T 1Tt o]ofofo[o] encodin
4 Vector-filter (VF) Register 9

Granularity: 2KB

0xA800000~0xB000000 (8MB)
«Chunk-space—

Memory ;UU ﬁrﬂitrx»—s?a c&a <§ | ‘-
— 7 &

Space

Intersection o,
ne-Hot
[ofoJof1Tofo[t]ofo[t ToJoJofoJo[iTiTi T 1 1o [ofo[TJoJoJo 1 o ofo] encoding
4 Vector-filter (VF) Register

Granularity: 256KB

Fig. 9. Example of adaptive rerange “Vector-filter.”

rate and reduce the workload on the interconnections. This
work provides a configurable filter (CF) unit with two
filtering mechanisms for efficiently filtering out most
unnecessary events with low cost overhead.

Fig. 8 also depicts the composition of the CF unit, which
mainly includes a set of registers and selectable data paths.
The set of registers can be assumed to be the temporal
storage of some candidates that are compressed for
filtering, and those registers are totally reusable in the
proposed multiple functions. Data paths are built out of
multiple selectable paths with several basic operations,
including “AND,” “OR,” “XOR,” “Shifter,” “Compare,”
“One-Hot encoding,” and so on, by selecting a certain data
path for the desired operation and combing registers for
reading and updating. We plan to configure two filtering
mechanisms (“Vector-filter” and “Bloom-filter”). The cost of
the CF unit depends on the size of registers and the
operation bandwidth of the data paths.

An adaptive rerange “Vector-filter” is shown in Fig. 9,
which features a high filter-rate and low complexity for
multiple noncontinuous monitor-spaces. Usually, the inter-
esting regions for monitoring or observing will be user-
defined, and those regions may be distributed (different cores
or threads in different regions of interest). In the debugging
setting, a chunk region is defined for including multiple
fragmental monitor spaces. Therefore, there is a rough filter
to detect whether or not events hit the chunk region.

Therefore, fragmental monitor spaces can be linked to
those small segments by marking specified vector-bits be
the mapping transformation. Depending on the range of
chunk region, we take out a certain range of the monitor-
event’s address (e.g., chunk range 64 KB takes the
adr[15:10]), and translate it as one-hot code. The one-hot
intersects with VF-reg by selectable data paths in the CF
unit. If the result is nonempty, this means that the event is
likely necessary for debugging. The “Vector-filter” logic is
quite simple and low-complexity can easily be embedded in
each core. The starting address and range of the chunk
region can be adaptively defined by users due to different
fragmental monitor spaces. However, if the fragmental
monitor spaces are too sparse, the filter rate will be
degraded due to the coarser granularity of “Vector-filter.”

In order to address the problem of the low filter-rate
caused by sparse fragmental monitor spaces, another
alternative is to use a “Bloom-filter”. As shown in Fig. 10,
the basic idea is to compress monitor events into a Bloom-

206

Monitor Event Set C(v)
Address of M1 _

—»
Address of M2 _,, - [O[O[O[Z]OOT1[1]1]
Address of M3 —» @ g)% . § [T]OTI[I]I[O[I[1[1] é %
Address of M4 —»Q —» 02 a
LG [O[1]0TI[0[0]1[0][0] 2
Address of M5 —» & +—» 2 & [OIL[OLTO[O[1[0]0] =2 &
! 3% E] : =8
. — —>
' . [O[11[1]O[OTI[1[1]

Address of Mn ™
Compress monitor events into Bloom filter vector (static time)

| [IOTOMTOMII] | Non- Monitor
ofl $o N DMUMD | & 5| # empty > event
A InE X M1, M2, ...)
ol 2311 ' TG
g @~ AT TR AT i Empty

Fig. 10. “Bloom-filter” for sparse fragmental monitor spaces.

filter vector, which is used to filter out the desired monitor
events in runtime. The compressed BFVector is stored in the
set of registers in the CF unit at a static time. Therefore, in
runtime debugging, a monitor event just intersects with the
BFVector register to decide whether or not it is a candidate.
The method shows a hardware-feasible solution for sparse
fragmental monitor spaces, and it has very low miss
judgments to allow unnecessary events to pass though. In
our experimental results, either of the two filtering
mechanisms can perform well, depending on the specific
debugging requirements.

3.5 Software Assistance: RunAssert

The NUDA framework includes the software solution for
a better experience with parallel program debugging. We
used directive #pragma in C language as a programming
model, which is composed of directives, macro functions,
and assertion expressions in a library. Because it has the
characteristics of runtime assertion, we call this tool
RunAssert. Users can specify the assertion type, range,
scope, and target of directives and then define particular
rules by macro functions. Finally, assertion expression is
an option used to indicate the particular conditions of the
debugging rules. The concept of a nonintrusive program-
ming model for parallel program debugging is to decouple
the debugging and guarding operations from the ordinary
program execution.

There are two categories of RunAssert directives. The
first type is used for parallel program debugging and
runtime assertion/guarding. The second type is used for
profiling parallel programs. These types of directives can be
combined. Moreover, the directives can be separated into
in-place and casual types. In-place directives are bound
with target source code by source symbols and program
counters. The RunAssert compiler links position informa-
tion to a demand table that records related information,
such as program counters and thread symbols. RunAssert
helps to debug parallel programs in the following ways.

Acceptable sequence. In developing parallel programs,
a programmer’s first concern is whether the execution
sequence is acceptable. Fig. 11 illustrates the concept of
runtime acceptable sequence checking. The #pragrma
mdb_configuration declares the customized execution
sequence, and the #pragma mdb_anchor is an anchor
inserted into the target program. As a matter of conve-

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61,

NO. 2, FEBRUARY 2012

thread t1,t2,t3,t4;

void race_handler(void* data){ global char Array[S0];

global int X;

} #pragma mdb_breakpoint “A”
id s - id *) 4

main_procedure(){ void some_procedure(void *){

#pragma mdb_configuration global #pragma mdb_anchor thread “anchor1”

{ ;
SEQ(tl.anchorl, t2.anchor3, t4.anchor6); readlock(&S1); .
#pragma mdb_anchor function “anchor3”
ESR(race_handler); Jock(&S2);
LOCK(t1.S1); ram ’
MONITOR(&Array); y
X #pragma mdb_anchor thread “anchor6”
LOCK(t1.S1 && t4.S2); unlock(&:2);

MONITOR(&X);
}
tl = thread_create(...,&some_procedure,...);
2 = thread_create(...,&some_procedure,...);
t4 = thread_create(...,&some_procedure,...);
return; \

} s

#pragma mdb_breakpoint ##this_position
unreadlock(&S1);

#pragma mdb_watchpoint thread
###this_position

Fig. 11. Code snipped of RunAssert.

nience, RunAssert directives can group those anchors into a
subgroup, Si. Users can specify the execution sequence by
anchors or subgroups. In RunAssert, every function name
represents an anchor by default. A useful case is to group
the anchors initially by functions and then focus in on the
target in particular subgroups. Finally, users use the anchor
directive to identify the demand sequence in the suspect
region, which was investigated previously.

Race detection. Another case addressed with RunAssert
is race detection. Fig. 11 illustrates the race detection flow
using RunAssert from source code to reconfigurable logic on
NUDA node. The race condition is one of the hardest and
most significant problems in parallel programs, as a huge
number of debugging events spill from each core into the
debugging channel. The key issue in detecting races
nonintrusively is how to filter the massive suspected
memory accesses. With RunAssert directives, users can
easily define race conditions to locate precisely the critical
section that requires monitoring. At the beginning, pro-
grammer uses the RunAssert directives to identify the target.
In this case, we use the directive mdb_lock to indicate the
locks and use the directive mdb_shared to indicate the
shared objects. Second, the programmer needs to identify the
checking rules with objects within the RunAssert global
configuration directive. The macro ESR(void (*fp)(void*))
assists users to indicate the exception service routine that is
executed as the rules are established. Moreover, the macro
LOCK assists users to identify a guarding lock, and the
following macro MONITOR assists users to list the monitor-
ing shared objects. In order to express the lock hierarchy in
the source code, we use the horizontal expression to identify
nested locks. In Fig. 3, the shared variable X is under the
nested locks S1 and S2, so the RunAssert representative is
LOCK(t1.S1 && t4.S2). The main benefit of using the
horizontal expression is that users can narrow the monitor
scope in the inner locks. For instance, we only need to use
LOCK(t1.52) to describe the process of monitoring S2.

4 A PARALLEL PROGRAM DEBUGGING PARADIGM

Although the NUDA architecture provides a fast and
nonintrusive parallel program debugging environment, it
is not straightforward or easy to do so. Actually, in the
process of software development, debugging occupies most
of the time [25], [26]. In fact, the total ordering characteristic
of parallel programs implies that detecting and fixing the
partial ordering errors cannot guarantee the total ordering

WEN ET AL.: NUDA: A NON-UNIFORM DEBUGGING ARCHITECTURE AND NONINTRUSIVE RACE DETECTION FOR MANY-CORE SYSTEMS 207

NUDA Debugging
Software

NUDA Debugging
Architecture

. feedback NUDA debugging
User’s 12.1Direct debugging :
rogram c
— 12'20/’6) c[eole |22
NUDA debugging |5 ey L | 8| £ |[5al®gl
directives injection|w S S| 2 |EF g a
v 1 gls 28|22
Program with feedback & 9 |e g =
RunAssert |~)) &3
library 12,5Direct execution N \ L3

NUDA runtime detection

2
w;:f;;;-% Sync-token (bregkif;int) Nog;zZZZrm RunAssert
1 V V
1 14 V V
Vi V V V V
V4 V V V V

Fig. 12. The proposed parallel program debugging paradigm.

correctness. The hardest part in debugging parallel pro-
grams, or even the traditional sequential programs, is
identifying the bugs. Currently; the interactive debugging is
the most famous and important methodology to identify
faults in the program. However, it is unrealistic to identify
faults step by step, especially when the user is faced with a
large and complex program. For this reason, this work
proposed a parallel program debugging paradigm. The
high speed automatic bug detection can help users to locate
probable bug locations as quickly as the program runs
under normal execution speed, and the high precision
interactive debugging can point out the bugs and solve
them efficiently.

Fig. 12 illustrates the novel parallel program debugging
cycle proposed in this work. According to RunAssert and
the NUDA debugging architecture, programmer can trace
the faults by iterations.

The NUDA debugging architecture is composed of
NUDA runtime detection and a NUDA direct debugging
interface. Both of them share four key features of NUDA, a
programmable user-defined function unit for RunAssert,
synch-tokens for the synchronized triggering of global
debugging events, DCP filters for high speed and high
performance debugging event filtering, and non-uniform
storage to provide a larger and smarter storage space for
particular histogram recording.

The interaction cycle between debugging software and
NUDA architectures can be illustrated in Fig. 12. A
waterfall debugging flow based on the NUDA debugging
paradigm can be further elaborated in the following four
steps with debugging functionalilities we used.

1) General sequential debug. Programmers develop
their routines in a normal sequential circumstance. The
traditional debugging tools, such as gdb, perform very well
in this stage. However, NUDA’s DCP filtering can leverage
the legacy debugging tools in the manycore environment
(Fig. 12.1). Moreover, the RunAssert can be inserted into the
target program as an on-the-fly debugger (Fig. 12.3).
Because the NUDA has an online monitoring property,
the RunAssert can help to monitor the logical faults without
influencing performance, and even better, the RunAssert

code can remain in the program to provide human readable
debugging information for future maintenance (Figs. 12.2
and 12.4).

2) General parallel debug.As the components of those
routines are run in parallel, programmers usually need a
parallel program debugger to deal with the synchronous
“capture-and-stop” mechanism. The proposed sync-token
mechanism in NUDA can help the many-core system stop/
resume precisely and simultaneously according by user
specifying (Figs. 12.1 and 12.4). More hardware break-
points/watchpoints are supported to enhance the parallel
debug capability.

3) Parallel program behavior debug. After most logical
faults are detected, the parallel program development is
moved on overall detection stage to identify parallel faults.
RunAssert supports to check the program execution
sequence, coupled with high-level languages, such as C
language. Programmers can define the check points, called
anchors, by RunAssert, and then define an expected
execution sequence with flexible RunAssert descriptions.
At runtime, NUDA will perform the nonintrusive checking
in order to ensure that the program behavior is executed as
specified (Fig. 12.5).

4) Runtime race detection. In case of suspicious race
conditions existing in a program, programmers can narrow
down the focus of the certain detection range by only
monitoring activities within specific memory range. In
general, larger ranges result into higher false positive rate.
However, with less number of comparisons, the NUDA
dealing with a larger monitor range is faster than the one
with a smaller range. By iteratively refining monitor ranges,
programmers can gradually “zoom in” those problems in
the suspected memory area.

Whenever to catch a fault in each of the above four steps,
programmers can go back to the previous steps smoothly or
remaining in the current step to fix the faults with
RunAssert and NUDAs’ support.

5 NUDA APPLICATION

This section will introduce the automatically monitoring
capability of NUDA system. We will demonstrate NUDA
under different configurations to handle data race detection
and deadlock detection. In addition, several advanced
design issues are discussed, including histogram migration
for less remote race detection, overflow handling, and more
efficient barrier handling.

5.1 Data Race Detection Flow

This work proposes a case study of hardware lockset-based
race detection by configuring a NUDA. Our approach is
based on the previous work [11], which uses hardware
Bloom filters, but features false negative elimination, high
scalability, and nonintrusion via the independent NUDA
structure and its efficient histogram management strategy.

The Eraser [15] is one of the most popular data race
detection algorithm. The key components of Eraser are as
following;:

1. Thread lockset L(t): locks currently held by a thread.
2. Candidate set C(v): locks for variables protection.
3. Access state “LState”: pruning false positive.

208

Trigge| (]
ey LA [y
Q: handler—=—— Nano-P (1p)—Race Detection Routine
Debug

b T Histogram management
events T e C(w)FLHNCY)
{ . - Lockset add/remove
" - Page allocate/migration/release

Qyﬁémic monitor & update

T C(v)=0, Race!!
2 ; + Syne, Overflow-handling
v < Y
<3-byte 2-bit €——4-byte—> <«4-byte»€—8-byte—P»
f [[0x8000 | oo/ IR 01101100 3001130010
Z | []]
- = ; 7
=1 T Z]| - L(t) BFVec Counter
5. Page NO. v T — Monitor
g IR A S S | m—
i \ ‘ ‘ g Core Status Table
3. .
Page TaEIEM ., LState C(v) BFVec 3 A €2bYe> Numberof cores
‘ l z ina NUDA cluster
o
=
g
| — A IO S
Shared Access Table v
Thread Set Table SRAM

Fig. 13. The race detection configuration in a NUDA node.

The HARD [11] translates C(v) and L(t) into fixed-length
Bloom filter vectors and implements them on traditional
memory hierarchies for the first approach to hardware-
assisted lockset-based race detection.

Fig. 13 shows the configurations of memory and race
detection processing in a NUDA node. To maintain data
structures in Eraser [15] and HARD [11], four tables are
configured for the monitor histogram by using the internal
memory built into the NUDA node. There are three tables in
SRAM memory, and one table in CAM for fast comparing
or searching. At first, the main histogram table (called the
“Shared Access Table”) in SRAM records the access status
(LState) and compressed locks (C(v) BFVector) of each
variable. The required monitor capacity can be adaptively
configured by the defined monitor granularity, bit-width of
C(v) BFVector, and how many entries in “Shared Access
Table.” Next, “Page Table” is used to index “Shared Access
Table” by dividing it into different monitor pages, and it is
constructed in CAM to support the fast searching of page
locations, and to reduce the probability of data swap-out.
Third, “Core Status Table” in SRAM memory is responsible
for maintaining those locksets (L(t) BFVector) and Counter
registers (for BFVector adding/removing locks) currently
held by the threads. The number of “Core Status Table”
entries is equal to the number of cores in the NUDA cluster.
Finally, “Thread Set Table” is used for our barrier handling
mechanism to address advanced design issues, and it
records the thread access histogram on each monitor page.

For the configuration example shown in Fig. 13, a 64-core
system with 8 NUDA clusters requires 128 KB monitor
capacity for shared variables and 32 B monitor granularity. So
each NUDA cluster is responsible for 16 KB monitor capacity,
and BFVector is extended to 4B for rare collisions. If a monitor
page size is defined as 1 KB, then “Page Table” will contain
16 entries (~3B per entry for page number), and there are
512 entries (16 KB/32 B) and ~4B per entry in “Shared Access
Table.” “Core Status Table” has eight entries corresponding
to the number of cores in a NUDA cluster, and it costs 12 B
(4 4 8) per entry torecord L(t) and Counter registers. “Thread
Set Table” has the same entries as “Page Table” to record the
thread access histogram by T(p) BFVector (2 B). In this
example, the total memory usage of a NUDA node costs about

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61,

NO. 2, FEBRUARY 2012

------- »
* Events for migrating
or releasing pages

Monitor Core0 Status

o Configurable
Filter in DCP

Intra-cluster
Processing

+ Debug events
- load/store, lock info
- thread info, barrier

1 Local race detection, and
maintain C(v)/L(t)/T(p)

+ Filter out candidates
(through Dbus)

| (NUDA node0)
+ Histogram isn't existed,

sending a event for i
A\

allocating a new page
[{ check Directory
(Many-core ICE)
v i

Inter-cluster
Processing
(NUDA nodeX)

+ Histogram isn't in this node,
sending a event for searching
location (through Ring links)

+ Finds the location of histogram,
sending a event for remote
race detection

+ Remote race detection
—_

Fig. 14. Proposed race detection flow on NUDA.

22 KB (512 4B + 8 * 12B + 16 * 2B) SRAM memory and
48 B (16 * 3B) CAM.

In race detection processing, the event handler takes care
of receiving and sending debugging events and triggers a
nanoprocessor (np) to execute the race detection routine. The
np built into the NUDA node is programmable to support
several functions, not only detecting race conditions. The
race detection routine includes histogram management, race
detection, event synchronization, and exception handling
(like overflow) for flow completion. The np processing speed
should be considered not to slow down the whole debugging
system, and the configured data paths in np can accelerate it
with specific instructions (like fast intersection in this case
study). In order to improve the processing speed of np, the
most frequent operation “race detection, then update C(v)”
should be accelerated. In this work, the np design with
accelerated (configurable) data paths can process this
operation in five cycles (event trigger — searching page
location — parallel read C(v) and L(t) — intersection C(v)
and L(t) and if empty, possible race — update C(v)). The
other operations, like L(t)/monitor page/overflow manage-
ments, are not critical (they happen infrequently) and are
designed to have a longer processing latency.

After illustrating the lockset-based race detection con-
figuration in a single NUDA node, Fig. 14 represents the
overall race detection flow on NUDA, and there are four
processing steps at most. The solid line illustrates the non-
uniform race detection, and the histogram management
represents in the dotted line. In the first step, debugging
events (load/store, locks, and so on) will be filtered out by
the configurable filter in DCP and sent to the related NUDA
node through the local debugging bus (Dbus). While the
debugging events reach the related NUDA node, intraclus-
ter processing is triggered as the next step, and the process
may contain local race detection or a histogram update
according to the event type. In our design strategy, the non-
uniform memory for the shared variables histogram (C(v))
is distributed in and shared for each NUDA node. If the
monitored shared variable is not in the local NUDA node,
remote race detection is triggered in our third step. Through
ring-links between nodes, the remote race detection looks
up the directory in many-core ICE for searching for the

WEN ET AL.:
Many-core ICE | * Search v1 histogram's location
Directory | <
k

o ! t2
S 2 (NUDA A s
2 e Node 4)%2 sccess
2 & (Node 3 ¢
z — variable v1

9
85
8 ., [(NUDA
; 8 Node 2 (2, t70:)
£3 | Part of C(v)BLState
& = (NUDA T if v1 histogram is't in this
= Node 1 node, remote race detection|

...... \

tlenters
Lock(MU1)

NUDA-cluster

py [(t1,t4,5 ...)] Page-based
Part of C(v)&LState
+ C(vD)=L(2)NC(v1)
if C(v1)=@, Race!!
T L(t1) add lock 'MU1'

Fig. 15. Example of non-uniform race detection on NUDA.

variable’s location. If the location is existed, the many-core
ICE passes the debugging event to the related NUDA node
for remote race detection. On the other hand, if the location
does not exist, the many-core ICE sends a management
event back to the original requested NUDA node for new
monitor page allocation.

In the other monitor histogram management, the many-
core ICE detects monitor pages that are frequently used in
remote race detection and migrating those pages to related
local NUDA nodes for eliminating overall race detection
latency. Releasing monitor pages is another important
management to avoid data overflow, and we discuss those
advanced design issues in the next section.

Fig. 15 shows an example of non-uniform race detection.
There are several NUDA clusters with their NUDA nodes,
and we present two of them in detail as an example.
Multiple threads are executed in parallel in different cores
and different NUDA clusters, and their NUDA nodes
dynamically monitor debugging events, check violations,
and update histograms. In this example, thread 1 (t1) enters
a lock (MU1) at the current running program, and the lock
event triggers “NUDA node(” to update L(t1) with adding
a new lock (MU1). Concurrently, a shared access (v1) by
thread 2 (12) is filtered out and sent to “NUDA node4” for
local race detection. However, the vl histogram is not in
“NUDA node4,” and remote race detection is triggered, as
shown in Fig. 12. At first, the remote race detection process
uses the address of v1 to search for its location in the many-
core ICE directory. In this case, the histogram C(v1) is in
“NUDA node 0,” and the v1 address and t2 lockset L(t1) are
sent to the node for completing the race detection
(C(vl) = L(t2) N C(v1). If C(v1) is empty, there is a possible
race alert).

5.2 Advanced Design Issues

In this section, we discuss several advanced design issues
with the NUDA, to improve the many-core runtime race
detection efficiency. Those design issues are targeted
toward low false positive warnings, catching possible race

NUDA: A NON-UNIFORM DEBUGGING ARCHITECTURE AND NONINTRUSIVE RACE DETECTION FOR MANY-CORE SYSTEMS 209

t1 2 o
IFalse positives, while oft
tmpl[;]=A[]:, not releasing C(A[])
All=tmpl[ID of t1
Barrier BI __Barrier B Oﬂ [oi[iT]
ur solution
tmp2{J=A[J; v
Al]=tmp2[{; | T [0110[]1001]
T(B1) BFVector
08000 I0T00i0001] <Release L,
= If T(B1) N T(p)!=2,
x9000 ---11000:0100 Rel T I th itored
Z [oxiA000 ~-T01001000 elease I release the monitored page
2 I |
5. Page NO. T(p) BFVector
Record thread
[] [| _~access histogram on
Page Table Thread Set Table each monitor page

Fig. 16. Our barrier handling mechanism for releasing partial monitor
pages.

conditions, low system performance overhead, and the
backend analysis.

5.2.1 Debugging Event Filter

Too many unnecessary debugging events (not in monitor
space) will cause a traffic jam on the NUDA network to
degrade the system performance. In addition, those events
also intrude histogram-tables into the NUDA nodes and
lead to low monitor capacity. For race detection, the filter
should only filter out the desired shared variables. Since
shared variables are distributed in memory space, it is vary
hard to use small hardware to exactly filter them. Our
design strategy is to gather possible or desired shared
variables and compressing their addresses (page numbers)
into a Bloom filter vector, and then configuring the vector
into the proposed filter in DCP. Therefore, all desired
shared variables can be filtered out while only mixing up
very few undesired variables due to the Bloom filter
collisions, and our experimental result shows its efficiency.

5.2.2 Barrier Handling

As shown in Fig. 16, barriers cause many false positives in
the lockset algorithm, because the accesses from different
threads to a variable can be ordered by barriers without
races. HARD [11] observed the problem but does not have a
complete solution, and its barrier handling mechanism is to
discard all histograms in the cache hierarchy. However, if
different groups of threads go through different barriers, or
some threads do not go through the barrier, this approach
may cause false negatives. Our barrier handling mechanism
discards partial histograms by checking the “Thread Set
Table” and avoids the negative effect.

Fig. 16 represents an example of releasing partial
monitor pages. Thread 1 (t1) accessed “Array A” before
“Barrier B1,” and thread 2 (t2) accessed “Array A” after
“Barrier B1.” “Thread Set Table” records the thread access
histogram in the form of a BFVector on each monitor page.
We also modify the barrier API in the thread library to
launch a page releasing command to the NUDA to release
the related monitor pages. In this example, the barrier API
gathers the IDs of the threads that are grouped to go
through “Barrier B1” to produce T(B1) BFVector and sets
the DCP as a page releasing command. Then, the T(B1)

210
TABLE 1
Target System Parameters
Simulator parameters

=S 1 mcore ISA x86

:g #core 64 CPU family | Intel® Atom™

g 1T Intel® PIN ISA X86-64

% | #core 32 CPU family | AMD® Opteron™

NUDA parameters

#cores in cluster 4,8
parallel processing ability in NUDA-node single, bi-direction
bit-width of ring interconnection (bit) 8, 16
latency of ring interconnection (cycle) 1,2
DCP buffer size (word) 4,8
NUDA-node monitor block size (words) 8, 16,32
Shared access table size 16~256KB
CAM mapped page size 0.5~4KB

BFVector s broadcasted to each NUDA node, and the np
uses it to check each entry of “Thread Set Table.” If T(B1)
BFVector N T(p) BFVector is not empty, it means that thread
1 or 2 had accessed the monitor page, and then released it.

5.2.3 Avoid Monitor Histogram Overflow

Given the limited hardware monitor capacity, it is im-
portant to release monitor pages in order to avoid
histogram overflow. In the lockset algorithm, going through
a barrier is the only way to release them. Fortunately,
barriers are commonly used in multithreading programs,
and our barrier handling mechanism (Fig. 16) can precisely
release useless monitor pages without causing both false
positives and negatives. In addition, the good programming
concept of using global barriers (programming complexity
reduction and reliability improvement) should be promoted
both in compiler techniques and in user programming
guides, and it also helps for the NUDA to have a feasible
monitor capacity. When a histogram overflow occurs, the
many-core ICE selects a monitor page and swaps it out, and
notifies the programmers of the overflow information.

6 EXPERIMENTS

In this work, we contribute two different simulation
environments for the NUDA evaluation. Table 1 shows a
parallel simulator mcore [27] in the context of the SPLASH2
benchmarks [28]. In order to support more benchmarks, we
also use Intel PIN for this purpose. PIN is a dynamic
instrumentation tool that allows users to contribute their
PIN tools for different purposes. We used seven race-free

IEEE TRANSACTIONS ON COMPUTERS,

VOL. 61, NO. 2, FEBRUARY 2012

buffers in DCP, no page-migration
buffers in DCP, page-migration

04
04
3.0 m 8 buffers in DCP, no page-migration
m 8 buffers in DCP, page-migration
~ 2.5 & HARD (4 cores CMP)
g -
~ 2.0
g —
o 1.5
E
5 1.0
%)
0.5

water-
spatial

water-
nsquared

radix

mp3d

Fig. 17. Slowdown effects.

SPLASH2 benchmarks to evaluate the NUDA. Those
benchmarks work with a lock-based multithreading pro-
gramming model.

Race detection by the NUDA is essentially real-time and
nonintrusive to the original execution. However, in the case
that the monitoring buffer is full, the whole system has to be
stopped. Table 2 illustrates the NUDA overhead in
SPLASH-2 for runtime race detection. We found the over-
head to be inversely proportional to the buffer size; more
DCP bulffers can tolerate more concurrent memory access
events. Fig. 17 shows the slowdown effects with respect to
buffer size; the average overhead for 4-word to 8-word
buffers is small. In addition, the stall caused by shared
access table migration is also low. This is because most of the
benchmarks use the shared spaces separately. In contrast,
we note that benchmarks ocean, mp3d, and water-nsquared
all have high density spaces and higher migration stall rates.
The page usage column in Table 2 shows the maximum
usage of the shared access table pages across the whole
system. Lower page usage rates can reduce intercluster
traffic and improve performance. The inter-/intracluster
ratio represents the relation between intercluster and
intracluster events. More intercluster events cause more
chances for NUDA migration and affect the performance.

Table 3 shows the results in comparison with other
approaches, the race detection. The hardware approach,
[11], offers fewer false positives than Valgrind and operates
as fast as runtime (0.1-2.6% |). However, it depends on the
cache and cache coherence mechanisms. We believe that
this implicit cost of cache coherence is too high and is
infeasible in most many-core environments. Our proposed
NUDA features nonintrusive truly race detection without
false positives. The system offers negligible slowdown
(0.51-23.06% |), and supports user defined assertions.

TABLE 2
Benchmarks’ Statistics, Resource Requirements, Debugging Event Rate, and Performance
Benchamarks | Data set Shargd Max. page Shared Locks eVGents Inter-/Intra- Slowdown Buffer-full | Migration
Data size usage access events | (number/10°cycles) cluster stall stall
lu 512x512| 132KB 41 10.67% 0.002144 0.04% / 99.6% 0.814% 0.753% 0.061%
ocean 130x 130 | 132KB 63 1.8% 4322 19.3%/ 80.7% 2.5% 0.525% 0.975%
fft 256K 396KB 52 3.3% 0.00322 64.9% /35.1% 0.93% 0.068% 0.25%
mp3d - 132KB 64 2.66% 0.000133 2.7%/97.3% 3.06% 2.24% 0.82%
radix 4M keys 396KB 33 9.4% 0.00543 1.2%/98.8% 0.51% 0.486% 0.024%
water-nsqared 512 132KB 61 4% 0.00771 49.2% /50.8% 2.2% 1.82% 0.38%
water-spatial 512 132KB 40 1.2% 0.00802 37.56% / 62.44% 0.422% 0.225% 0.197%

* Rate of Shared access events = #shared memory access/#total memory access, Inter-/Intra-cluster, Slowdown, Buffer-full stall, Migration stall = cycles / total execution cycles

WEN ET AL.: NUDA: A NON-UNIFORM DEBUGGING ARCHITECTURE AND NONINTRUSIVE RACE DETECTION FOR MANY-CORE SYSTEMS 211

TABLE 3 TABLE 4
Comparisons of Race Detection Methods (64-Core) Race Detection by Renaming Locks
Valgrind” [8] HARD' [11] NUDA' (This Work) . :
Slowdown 60-400X 0.12.6% 0.1-3.06% Benchmarks i 'Faults info. Valgrind NUDA
Non-intrusive No Probably Yes Yes inject | appear | [30](slowdown)
False positive/negative Positive Both None
User-defined assertions No No Yes lu 68 2584 48688 (36) 118
Cache coherency No Required No
) N 64KB extra in L1S, 64KB cxtra SRAM, ocean 208 5148 128953(34) 354

Memory-bit usage No IMB extra in L2$ 1KB extra CAM fft 38 365 258129(74 98
Area estimation” (65nm) 0.0% 5.53mm" (0.98% ") 2.08mm~(0.37%") ()
* Valgrind works on Intel Core2 Quad CPU 2.5G RAM 2G workstation with Linux kernel 2.6.24 mp3d 102 4025 - 225
+ The SPEC of HARD [11] (normalize to 65nm): 2B BFVector/L1 $line (1.94mm?), 2B BF Vector/L2

$line (3.58mm?), the estimated area: 5.53 mm”. radix 414 11642 535020(36) 454
+ The proposed SPEC of NUDA (normalize to 65nm): 8 NUDA clusters, SKB SRAM (8*0.19mm2),

32entries CAM (8*0.041mm?) in each NUDA node (C:32/P:1KB/B:32B), 2B-width local Dbus in each water-nsqared 19 524 15375(27) 55

NUDA cluster (0.1mm?), ring int tion (9 nodes, 2 rings, 1B-width/per-ring) (0.135mm?), tt B

estima‘e{;jl.:]sr:;: 2.0;1::]1"]2.”11 mterconnection nodes. Tings. W1 per-rin;) mm’) he Watcr_spatlal 20 601 6 1 59(28) 34

§ Memory ref (cacti 5.3v, 65nm): 32B/line 2048-entry DRAM: 0.34mm?’, 2B/line 2048-entry DRAM:
0.014mm’, 2B/line 128-entry SRAM: 0.0076mm’, 8B/line 1024-entry SRAM: 0.19mm”, 4B/line 32-
entry CAM: 0.041mm’

9/ The assumed SPEC of many-core SOC (normalize to 65nm): 64 Atom cores with 16KB 4-way 32B/
line I/D-cache (6.1mm” per core), 16MB 8-way 32B/line 256 banks L2-NUCA with Mesh NoC

(l74,4mmz), the estimated area: 564 mm’.
\\ Many-core chip ref: Intel’s 80-Core (80 tiles, 65nm): 275mm?’, 0.5Smm’ (per router), The CELL
processor (12 tiles, 90nm): 235mm’, The UltraSPARC T1 (14 tiles, 90nmm,): 378mm? The Atom (1

tiles, 45nm): 25mm?, EIB in CELL (12 nodes, 4 rings, 16B-width/per-ring, 90nm): 5.98mm>.

Table 3 also shows the related hardware cost estimates for
several popular many-core processors, interconnection
units, and memory, by CACTI 5.3 [29]. We assume that
the many-core environment is composed of 64 Intel Atom
processors, with 16 KB I/D cache for each core, and 16 MB
L2-NUCA for sharing. The total estimated area is 564 mm2
under 65 nm technology. Comparing HARD and NUDA,
the main factors in our estimates were memory-usage and
interconnections. Other elements (logic, FSM, etc.) do not
impact the chip area. In HARD, the BFvector (2 B/per line)
in the L1 cache is estimated from SRAM usage, while the
BFvector (2 B/per line) in the L2 cache is estimated from
DRAM usage. There are eight NUDA nodes in our
proposed system. In addition, the width of the ring
interconnection that links all nine nodes (include the
many-core ICE) is 1 B, and we also include the ring routers.
As shown in Table 3, the HARD has 0.98% (5.53/564) of the
area cost compared with the proposed many-core system,
and this work has 0.37% (2.08/564) overhead.

Table 4 compares the detected races between the NUDA
and the software race detection tool, Valgrind. We modified
the SPLASH?2 macro to create “delta locks,” where the
library on purpose acquires/releases the same lock but
using different locks in each thread. By the delta lock, the
parallel program apparently produced incorrect results,
because of many race conditions. The first column provides
the number of faults we injected and the possible fault
points that may be found in the parallel program. Because
we injected the fault in a static program sequence, those
faults expanded during runtime. For example, a single delta
lock in source code can derive multiple potential fault
points due to thread parallelism. The third and forth
columns show the faults caught by NUDA and Valgrind
[30]. This work was not meant to be a direct comparison
with HARD because HARD cannot be modeled precisely in
a 64-core system. However, according to the literature of
HARD, false positives and false negatives would be
significantly increased because of insufficient Bloom filter
size and L1 cache misses.

There are two important observations as shown in Table 4.
First, the NUDA is faster than the software solution. Basically,
the Valgrind is 30 times slower than the normal execution on

average. Second, the nonunified memory supports more
storage space for the memory access histogram. NUDA can
support higher precision than Valgrind. In fact, it is not
impossible for Valgrind to reach the same precision, but the
race detection time will become unacceptable.

7 CONCLUSION

The main theme of this paper is to contribute a nonintrusive
debugging framework for many-core systems. The key
features include the fact that 1) the NUDA is operated in
parallel to the original data interconnection, enabling
“nonintrusive” debugging methods. Complicated debug-
ging methodologies for parallel programs can be supported
without causing a probe effect or behavior distortion, 2) A
cluster-based ring interconnection facilitates local commu-
nication exploration and the related Sync-Token protocol on
the ring guarantee the accuracy of debugging operations,
and 3) The NUDA-node (consisting of memory, configura-
tion logic, and a nanoprocessor) provides a unified
structure to support advanced debugging with minimal
hardware cost. Finally, we demonstrate the implementation
of three published testing and debugging schemes on our
NUDA architecture.

REFERENCES

[1] C.E. McDowell and D.P. Helmbold, “Debugging Concurrent
Programs,”]. ACM Computing Surveys, vol. 21, no. 4, pp. 593-
622, 1989.

[2] L. Seiler et al., “Larrabee: A Many-Core x86 Architecture for
Visual Computing,” ACM Trans. Graphics, vol. 27, no. 3, pp. 1-15,
2008.

[3] nVidia, “Next Generation CUDA Architecture,” http://www.
nvidia.com/object/fermi_architecture. html, 2011.

[4] B. Vermeulen, M.Z. Urfianto, and S.K. Goel, “Automatic Genera-
tion of Breakpoint Hardware for Silicon Debug,” Proc. 41st Ann.
Design Automation Conf., 2004.

[5] K. Goossens et al.,, “Transaction-Based Communication-Centric
Debug,” Proc. First Int’l Symp. Networks-on-Chip, 2007.

[6] “Standard Debug Interface Socket Requirements for OCP-Com-
pliant SoC.”

[71 S. Tang and Q. Xu, “In-Band Cross-Trigger Event Transmission
for Transaction-Based Debug,” Proc. Conf. Design, Automation and
Test in Europe, 2008.

[8] A.RM. Ltd., “CoreSight Architecture Specification,” 2004.

[9] R. Leatherman, “On-Chip Instrumentation Approach to System-
on-Chip Development,” OCI White Paper, available at http://
www.fs2.com, 2011.

[10] S. Min and]. Choi, “An Efficient Cache-Based Access Anomaly
Detection Scheme,” ACM SIGARCH Computer Architecture News,
vol. 19, no. 2, pp. 235-244, 1991.

212

(1]

[12]
[13]

(14]

[15]

(16]

(7]

(18]

[19]

(20]

(21]

[22]

(23]

(24]

(23]

[20]

[27]

(28]

[29]

(30]

(31]

P. Zhou, R. Teodorescu, and Y. Zhou, “HARD: Hardware-
Assisted Lockset-Based Race Detection,” Proc. IEEE 13th Int’l
Symp. High Performance Computer Architecture, 2007.

J. Huh et al, “A NUCA Substrate for Flexible CMP Cache
Sharing,” Proc. 19th Ann. Int’l Conf. Supercomputing, 2005.

L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System,” Comm. ACM, vol. 21, no. 7, pp. 558-565, 1978.
P. Keleher, A. Cox, and W. Zwaenepoel, “Lazy Release Consis-
tency for Software Distributed Shared Memory,” Distributed
Shared Memory: Concepts and Systems, p. 96, 1998.

S. Savage et al, “Eraser: A Dynamic Data Race Detector for
Multithreaded Programs,” ACM Trans. Computer Systems, vol. 15,
no. 4, pp. 391-411, 1997.

J.W. Voung, R. Jhala, and S. Lerner, “RELAY: Static Race Detection
on Millions of Lines of Code,” Proc. Sixth Joint Meeting of the
European Software Eng. Conf. and the ACM SIGSOFT Symp.
Foundations of Software Eng. (ESEC-FSE '07), 2007.

Y. Yu, T. Rodeheffer, and W. Chen, “Racetrack: Efficient Detection
of Data Race Conditions via Adaptive Tracking,” ACM SIGOPS
Operating Systems Rev., vol. 39, no. 5, pp. 221-234, 2005.

M. Singhal and A. Kshemkalyani, “An Efficient Implementation of
Vector Clocks,” Information Processing Letters, vol. 43, no. 1, pp. 47-
52, 1992.

M. Xu, R. Bodik, and M.D. Hill, “A “Flight Data Recorder” for
Enabling Full-System Multiprocessor Deterministic Replay,” Proc.
30th Ann. Int’l Symp. Computer Architecture, 2003.

D.R. Hower and M.D. Hill, “Rerun: Exploiting Episodes for
Lightweight Memory Race Recording,” Proc. 35th Ann. Int’l Symp.
Computer Architecture, 2008.

A. Alameldeen et al, “Evaluating Non-Deterministic Multi-
Threaded Commercial Workloads,” Proc. Fifth Workshop Computer
Architecture Evaluation Using Commercial Workloads, pp. 30-38,
2002.

R. Chandra et al., Parallel Programming in OpenMP. Morgan
Kaufmann Publishers, Inc., 2001.

M. Ronsse and K.D. Bosschere, “RecPlay: A Fully Integrated
Practical Record/Replay System,” ACM Trans. Computer Systems,
vol. 17, no. 2, pp. 133-152, 1999.

A. Muzahid et al., “SigRace: Signature-Based Data Race Detec-
tion,” Proc. 36th Ann. Int’l Symp. Computer Architecture, 2009.

B. Boehm, “Software and Its Impact: A Quantitative Assessment,”
Software Eng.: Barry W. Boehm’s Lifetime Contributions to Software
Development, Management, and Research, vol. 19, no. 5, p. 91, 2007.
B. Boehm, “Improving Software Productivity,” Software Eng.:
Barry W. Boehm’s Lifetime Contributions to Software Development,
Management, and Research, vol. 20, no. 9, p. 151, 2007.

A.-T. Nguyen et al., “The Augmint Multiprocessor Simulation
Toolkit for Intel x86 Architectures,” Proc. Int'l Conf. Computer
Design, VLSI in Computers and Processors, 1996.

S.C. Woo et al., “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” Proc. 22nd Ann. Int’l Symp.
Computer Architecture, 1995.

S. Wilton and N. Jouppi, “CACTI: An Enhanced Cache Access and
Cycle Time Model,” IEEE]. Solid-State Circuits, vol. 31, no. 5,
pp. 677-688, May 1996.

N. Nethercote and]. Seward, “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation,” Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation,
2007.

M.-C. Hsieh and C.-T. Huang, “An Embedded Infrastructure of
Debug and Trace Interface for the DSP Platform,” Proc. 45th Ann.
Design Automation Conf., 2008.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 61,

NO. 2, FEBRUARY 2012

Chi-Neng Wen received the MS degree from
computer science and information engineering
department at the National Chung Cheng Uni-
versity, Chia-Yi, Taiwan, in 2006, and is cur-
rently working toward the PhD degree in the
same affiliation. His research interests include
Electronic System Level simulation and verifica-
tion methodologies, embedded system hard-
ware/software codesign, multicore architecture
design, and multicore debugging from improving
the real-time race detection and system monitoring performance.

~ A

Shu-Hsuan Chou received the BS and master’s
degrees from the Department of Computer
Science and Information Engineering at National
Chung Cheng University (CCU), Chia-Yi, Tai-
wan, in 2004 and 2005, respectively. He is
currently working toward the PhD degree in
Department of Computer Science and Informa-
tion Engineering at National Chung Cheng
University. His recent research has produced
multithreading/multicore media processors, mul-
ticore on-chip networks/memory system, multicore debugging architec-
ture, and adaptive processor architecture techniques. His current
research interests include multicore SOC design, embedded system
design, low power methodology, and design for characterization.

Chien-Chih Chen received the BS and the MS
degrees in Department of Computer Science
and Information Engineering from National
Chung Cheng University (CCU), Chia-Yi, Tai-
wan, in 2007 and 2009, respectively. He is
currently working toward the PhD degree in
Department of Computer Science at National
Chung Cheng University. His research interests
include multicore SOC design, embedded sys-
tem design, and computer architecture.

Tien-Fu Chen received the BS degree in
computer science from National Taiwan Univer-
sity (NTU), Taipei, Taiwan, in 1983. He received
the MS and PhD degrees in computer science
and engineering from the University of Washing-
ton, Washington D.C., in 1991 and 1993,
respectively. He joined Wang Computer Ltd.,
Taiwan, where he worked as a System Software
Engineer for three years. Currently, he is a
professor with the Department of Computer
Science and Information Engineering, National Chiao Tung University
(NCTU), Taiwan. He has published several widely-cited papers on
dynamic hardware prefetching algorithms and designs. He has made
contributions to processor design and system-on-chip (SoC) design
methodology. His recent research has produced multithreading/multi-
core media processors, on-chip networks, and low-power architecture
techniques, as well as related software support tools and SoC design
environments. His current research interests include computer archi-
tectures, SoC design, and embedded systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

