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Abstract-A frequency permutation array (FPA) of length
n == m.). and distance d is a set of permutations on a multiset
over rri symbols, where each symbol appears exactly A times
and the distance between any two elements in the array is
at least d. FPA generalizes the notion of permutation array.
In this paper, under the distance metric Roo-norm, we first
prove lower and upper bounds on the size of FPA. Then
we give a construction of FPA with efficient encoding and
decoding capabilities. Moreover, we show our design is locally
decodable, i.e., we can decode a message bit by reading at most
A+ 1 symbols, which has an interesting application for private
information retrieval.

I. INTRODUCTION

Let n, m and A be positive integers with n == tti);
and S~ be the set of all permutations on the multiset

A A
~~

{I, ... , 1, ... , m, ... , m}. A frequency permutation array
(FPA) is a subset of S~ for some positive integers m, A
and n == m): A (A, n, d)-FPA is a subset of S~ and the
distance between any pair of distinct permutations is at
least d under any metric, such as Hamming distance, £00
norm, etc. Permutation array (PA) is simply a special case
of FPA by choosing A == 1. With a fixed length n, FPA has
a smaller set of symbols than PA. Thus, codes with FPA
have a better information rate than those with PA. A widely
adopted approach to building PAs under Hamming distance,
see for example [2], is using distance preserving mappings
or distance increasing mappings from Z~ to S;. Most of
those encoding schemes are efficient but it is not clear how
to decode efficiently. Lin et al. [8] proposed a couple of
novel constructions with efficient encoding and decoding
algorithms for PAs under loo-norm. FPA was proposed by
Huczynska and Mullen [4] as a generalization of PA. They
gave several constructions of FPA under Hamming distance
and bounds for the maximum array size. In this paper, we
extends the ideas in [8] to constructing FPA under loo -norm.
We prove lower and upper bounds of FPA. Then we show
the efficient encoding and decoding algorithms. Besides, we
show that our FPAs are locally decodable codes under loo
norm.

Recently, researchers have found that PAs have applica
tions in areas such as power line communication (e.g. [9],
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[12], [13] and [14]), multi-level flash memories (see [5]
and [6]). Similar to the application of PAs on power line
communication, we can encode a message as a frequency per
mutation from S~ and associate each symbol i E {I, ... , m}
with a frequency !i. Then the message is transmitted as a
series of corresponding frequencies. For example, to send
a message encoded as (1,2,2,1,3,3), we can transmit the
frequency sequence (!1, !2, !2, !1, !3, !3) one by one.

For flash memory application, different from the approach
by Jiang et. al. [5], [6], we can use FPA to provide multi-level
flash memory with error correcting capability. For example,
suppose a multi-level flash memory, where each cell has
m states, which can be changed by injecting or removing
charge into or from it. Over injecting or charge leakage
will alter the state as well. We can use the charge ranks
of n cells to represent a permutation from S~, i.e., the cells
with the lowest A charge levels represent symbol 1, and so
on. With our efficient encoding and decoding algorithms,
a (A, n, d)-FPA can be used in flash memory system to
represent information and correct errors caused by charge
level fluctuation.

A locally decodable code has an extremely efficient decod
ing for any message bit by reading at most a fixed number
of symbols from the received word. Suppose that a FPA is
applied to a multi-level flash memory where the length of
a codeword is nearly a block of cells (about 105) [ 1]. This
feature allows us to retrieve the desire message bits from
a multi-level flash without accessing the whole block. With
the locally decodable property, we can raise the robustness
of the code without loss of efficiency. On the other hand,
locally decodable codes have been under study for years, see
[10] for a survey and [15], [3] for recent progress. They are
related to a cryptographic protocol called private information
retrieval (PIR for short). We show our construction of FPA
can also be used in cryptographic application.

Notations: Let m and A be positive integers and let
n == m). throughout the paper unless stated otherwise.
We use [n] to represent the set {I, ... ,n}. S~ denotes the

A A

permutations over the multiset{~, ... ,~}. For
two vectors x and y of the same dimension, let loo (x, y) ==
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perA(A,n,d)
V(XJ('x, n, d) = (,X!)njA .

Let ri 1,m,d) be the row sum of A (l,m,d) 's i-th row. We have:

{

d + i if i :S d,
ri 1,m,d) == 2d + 1 if d < i :S m - d,

m - i + 1 + d if i > m - d.

Then for i E [m] and j E [A], the row sum of the
(iA - A + j)-th row of A (A,Am,d) is Ari1,m,d), due to
A(A,Am,d) == A(l,m,d) Q9 lA. We first calculate Voo(A, n, d)
by using perA(A,n,d).

Lemma 1.

Proof'

perA(A,n,d)

I{ x E s: .Vi a~A,n,d) == 1}1
n. : '~,Xi

I{x E S; : max, Ir±l - r~i II :S d} I
(A!)n/AI{y E S~: maxi Ir±l- Yil :S d}1
(A!)n/AI{y E S~ : loo(I~, y) :S d}1
(A!)n/ AV00 (A, n, d)

The first equality holds since A (A,n,d) is a (0,1 )-matrix and
by the definition of permanent. We can convert XES; into
y E S~ by setting Yi == r~i l, and there are exactly (A!)n/ A
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Define a symmetric n x n matrix A(A,n,d) = (a~~,n,d)),

where a~A.,n,d) == 1 if Iril - rill < d· else a~A.,n,d) == 0
~,J 'A A -, ~,J •

Note that a permutation (Xl, ... , xn ) is d-close to I~ if
and only if a~;~,d) == 1 for every i E [n]. Now we
consider A (A,Am,d). Since the A copies of a symbol are
considered identical while computing the distance and the
entries indexed from (fA - A + 1) to fA of I~m represent
the same symbol for every f E [m]. It implies that row
(fA - A + 1) through row fA of A (A,Am,d) are identical and
so are columns indexed from (fA - A + 1) to fA for every
f E [m]. Thus, we have A(A,Am,d) == A(l,m,d) Q9lA where Q9

is the operator of tensor product and 1A is a A x A matrix
with all entries equal to 1. For example, take A == 2, m == 5
and d == 2:

1 1 1 0 0
1 1 1 1 0

,12 = ( ~
1 )1 1 1 1 1
1

0 1 1 1 1
0 0 1 1 1

1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1 1

A (2,10,2) ==

A (1,5,2) ==

max, IXi - Yi I. We say two permutations x and yare d-close
to each other under metric 8(., .) if 8(x, y) :S d. The identity
permutation I~ in S~ is (1, ... ,1, ... ,m, ... ,m).

Voo (A,n,d-1)·
1) C f- 0, D f- S~.

2) Add an arbitrary xED to C, then remove all
permutations that is (d - 1)-close to x from D.

3) If D -1= 0 then repeat step 2, otherwise output C.

D has initially IS~ I elements and each iteration of step 2
removes at most Voo(A, n, d - 1), so we conclude ICI 2:

Is~1

Theorem 1.

ISnAI ISAI---'------'--- < F (A n d) < n
Voo(A,n,d-l) - 00 " - Voo(A,n,ld;lJ)·

Proof: To prove the lower bound, we use the fol
lowing algorithm to generate a (A, n, d)-FPA with size 2:

Is~1

n

perA == L II ai,7ri '

7rESn i=l

Voo (A,n,d-1)·
Now we tum to the upper bound. Consider a (A, n, d)-FPA

C* with the maximum cardinality. Any two ld;l J-radius
balls centered at distinct permutations in C* do not have any
common permutation, since the minimum distance is d. In
other words, the ld;l J-radius balls centered at permutations

in C* are all disjoint. We have IC* I .,:: V
OO
(A~~~LI¥ J). •

It is clear that IS~ I == (A!)l/ A. It is already known that
Voo (l , n, d) equals to the permanent of some special matrix
[8]. In this paper, we generalize previous analysis to give
asymptotic bounds for Theorem 1. The permanent of an n x n
matrix A == (ai,j) is defined as

II. LOWER AND UPPER BOUNDS

Let F00 (A,n, d) be the cardinality of the maximum
(A, n, d)-FPA and Voo(A, n, d) be the number of elements
in S~ being d-close to the identity I~ under foo-norm. In
this section, we give a Gilbert type lower bound and a
sphere packing upper bound of F00 (A,n, d) by bounding
Voo(A,n, d).

First, we show that any d-radius ball in S~ under loo-norm
has the same cardinality.

Claim 1. For any x == (Xl, ... ,Xn) E S~, there are exactly
Voo(A,n,d) y's in S~ such that loo(x,y):S d.

Proof Since every i E [m] appears exactly A times in
x, there exists a permutation 1r E S; such that x == 1r 0 I~.

As a consequence, we have that loo (I~ , z) == loo (x, 1r 0 z)
for any z E S~. Let Z == {z : z E S~,loo(I~,z) :S d},
Y == {1r 0 Z : z E Z} and Y == S~ - Y. For any y E Y,
we have loo(x, y) == loo(I~, 1r- 1

0 y) :S d, since 1r- 1
0 Y E

Z. While for y' E Y, loo (x, y') == loo (I~, 1r- 1
0 y') > d.

Therefore, only IYI == IZI == Voo(A, n, d) permutations in S~

are d-close to x. •
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x's in S; converted to the same y. Thus, we know the
third equality holds. Therefore, the lemma holds by moving
(,\!)n/ A to the left-hand side of the equation. •

We still need to estimate perA(A,n,d) in order to get
asymptotic bounds. Kleve [7] reports some bounds and
methods to approximate perA(l,n,d). We extend his analysis
for perA(A,n,d).

Lemma 2. perA(A,n,d) ::; [(2d'\ + ,\)!] 2d;:+>' •

Proof' It is known (Theorem 11.5 in [11]) that for (0, 1)-
1

matrix A, perA ::; Il~= 1 (ri!)-;;: where ri is the sum of
the i-th row. Since the sum of any row of A (A,n,d) is at

n 1
most 2d,\ + '\, we have perA ::; Ili=l [(2d'\ + ,\)!] 2d>'+>' ==
[(2d'\ + ,\)!] 2d;:+>' •

We give perA(A,n,d) a lower bound by using the van
der Waerden permanent theorem (see p.I04 in [11]): the
permanent of an n x n doubly stochastic matrix A (i.e., A
has nonnegative entries, and every row sum and column sum
of A is 1.) is no less than :;:l. Unfortunately, A (A,n,d) is not
a doubly stochastic matrix, since the row sums and columns
sums range from d); + ,\ to 2d,\ +,\. We estimate the lower
bound via a matrix derived from A (A,n,d) as follows.

Lemma 3 perA(A,n,d) > (2dA+A)n . -.!?l
• - 22d >' ri":'

Proof' Let A == _l_A(A,n,d) which has the sum
'J. 2dA+A'

of any row or column bounded by 1, but is not a doubly
stochastic matrix. Observe that every row sum of A is 1
except the first d,\ and last d,\ rows. For i E [d] and j E [,\],

both row (i'\ - ,\ + j) and row (n - i,\ + j) sum to 2~~\'

Now we construct an n x n matrix B from A with each row
sum equal to 1 as follows:

For i E [d] and j E [,\], add 2d1+A to
1) The first (d - i + 1)'\ entries of row (i'\ - ,\ + j).
2) The last (d - i + 1)'\ entries of row (n - i,\ + j).

The row sums of the first d); and last d); rows of B are now
(d-i+l)A + d+i == 1

2dA+A 2d+l .
We tum to check the column sums of B. Since A is

symmetric and by the definition of B, we know B is
symmetric as well. Thus we have that B is doubly stochastic
and perB 2: :;:l.

Now we tum to bound perA(A,n,d). Observe that the
entries of the first d,\ and last d); rows of B are at most
2d;+A times of the corresponding entries of A (A,n,d), and

the other rows are exactly 2d1+A times of the corresponding
rows of A(A,n,d). We have perA(A,n,d) > (2dA+A)n p er B >

- 22d >' -
(2dA+A)n -.!?l •

22d >' nn .

With Lemma 2 and Lemma 3, we have the asymptotic
bounds as follows.

Theorem 2.

n! 22A' Ld;-l Jn"
----- < F (,\ n d) < .
[(2d'\ - ,\)!] 2d;:->. - 00 " - (2,\· ld;l J+ ,\)n
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III. ENCODING AND DECODING

Our construction idea is based on the previous work[8]
by Lin, et al. We generalize their algorithm for constructing
FPAs. Furthermore, we give the first locally decoding algo
rithm for FPAs under loo-norm.

A. Encoding algorithm

We give an encoding algorithm E~ k (see Figure 1) which
convert k-bit message into a permutation in S~ where n 2:
u;».

Algorithm E~ k

Input: (ml, .. '. , mk) E Z~
Output: (Xl,""Xn ) E S~

max ~ n; min ~ 1;
for i ~ 1 to k do

if m; == 1
then {Xi ~ rm~xl; max ~ max - I;}
else {Xi ~ rm;nl; min ~ min + I;}

for i ~ k + 1 to n do
x· ~ rminl' min ~ min + I:

1, A' ,
Output (Xl, ... , x n ) .

Fig. 1: E~,k encodes messages in Z~ with S~.

The encoding algorithm E~ k maps binary vectors from Z~

to S~ and it is a distance preserving mapping. It is clear that
E~ k runs in O(n) time while encoding any k-bit message.
Ne~t we investigate the properties of the code obtained by
E~ k' Let C~ k be the image of E~ k'

" ,

Theorem 3. C~,k is a ('\, n, l n>..k J)-FPA with cardinality
2k

.

Proof Consider two messages p == (PI, ... ,Pk) and
q == (ql, ... ,qk) E Z~. Let x P and x q be the outputs of
E~,k' respectively. Let r be the smallest index such that Pr -I
qr' Without loss of generality, we assume Pr == 1, qr == 0 and
there are exactly z zeroes among PI, ... ,Pr-l. Consequently,
x~ is set to rm~xl == rn-rtl+zl and x~ is set to rm;nl ==
rl!Z l by E~,k . The distance between x P and x q is:

in-r:l+zl-il:zl
n-r+1+z_1+z_

1
,\ ,\

n-r
---1

,\
n-k
-- - 1 since r <_ k.,\ ,

The first inequality holds by the fact of ceiling function:
a ::; ral < a + 1, for any real number a. Note that the
distance has integer value only here. If n>..k is integer then
the distance is at least ln>..k J; else it is at least rn>..k - r],
which is ln>..k J exactly, i.e., the distance between any two
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codewords in C~,k is at least ln~k J. Since every message is
encoded into a distinct codeword, we have C~ k == 2k . •

Since C~,k is a (A, n, ln~kJ)-FPA, we let d' == ln~kJ for
convenience.

B. Unique decoding algorithm

Unique decoding algorithms for classic error correcting
codes are usually much more complicated than their encoding
algorithms. While, our proposed decoding algorithm U A kn,
(see Figure 2) remains simple.

Algorithm U~ k

Input: (Xl, ...',Xn) E S~
Output: (ml,"" mk) E Z~

max ~ n; min ~ 1;
for i ~ 1 to k do

if IXi - rmtXll < IXi - rm~nll

then {mi ~ 1; max ~ max - I;}
else {mi ~ 0; min ~ min + I;}

Output (ml' ... ,mk).

Fig. 2: U~,k decodes words in S~ to messages in Z~.

The running time of U~ k is clearly O(k), even faster than
the encoding algorithm. We show its correctness as follows.

Theorem 4. Given a permutation x == (Xl, ... , xn) which
is d;l-close to E~,k(m)for some m E Z~, algorithm U~,k

outputs m correctly.

Proof By contradiction, assume U~ k outputs m ==
(ml' ... ,mk) I- m. Let E~ k(m) == (YI' : .. ,Yn), r be the
smallest index such that mr'l- iii; and z be the number of
zeroes among tru , ... ,mr-l' At the beginning of the r-th
iteration, max == n - r + 1 + z and min == 1 + z because for
every i < r, m; == mi. Without loss of generality, assume
1 == m; I- iii; == O. Note that Yr is set to rmtXl=rn-rtl+zl

by E~,k' While iii; is decoded to 0 by U~,k' we have

IXr - rmtXll2: IXr - rm~nll. Thus,

loo(x, E~,k(m)) > IXr - Yrl == IXr - rmtXll
> 1 (Ix r - rmtXll + IXr - rm~nll)

> ! (rm~xl - rm;nl)
~ (rn-rtl+zl - rl!Zl) 2: ~.

The last inequality is true, since we know rn-rtl+zl

rl!Zl 2: ln~kJ == d from the proof of Theorem 3. This
contradicts that x is d;l-close to E~,k(m). •

C. Locally decoding algorithm

Next we show a locally decoding algorithm L~ k' see
Figure 3, which is a probabilistic algorithm. We discuss its
efficiency and error probability in this subsection. We prove
that it reads at most A + 1 entries of the received word in
Lemma 4, hence its running time is O(A). It has a chance
to output wrongly, but we show that the error probability
is small in Theorem 5. Furthermore, L~,k always outputs
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correct message bit when it was given a codeword as input,
see Corollary 1.

Algorithm L~ k

Input: i E [n],' (Xl, ... ,Xn) E S~
Output: rru, the i-th message bit
J~{i+1, ... ,n};
do

Uniformly and randomly pick j E J;
if Xi > Xj then output 1;
if Xi < Xj then output 0;
J ~ J - {j};

loop;

Fig. 3: L~,k decodes one bit by reading at most A+1 symbols.

Lemma 4. Given a permutation x == (Xl, ... , Xn) E S~ k
and an index i E [k], L~,k terminates within A iterations. '

Proof' By contradiction, assume L~ k does not output
before the end of the A-th iteration. For' f ~ A, let jg be
the index picked in the f-th iteration. For every f ~ A, we
have Xi == Xie» otherwise L~ k outputs at the f-th iteration.
Therefore, there are at least A'+ 1 entries of x equal to Xi. It
implies x ~ S~,k' a contradiction. There is some Xj£ I- Xi,
and L~,k outputs in the f-th iteration. •

Theorem 5. Given a permutation x == (Xl, ... ,Xn) 8-close
to a codeword E~,k (m) == (YI' ... ,Yn) E S~,k for some m
and an index i E [k], L~ k outputs m, with probability at
least 1 - 28: I at its first iteration.

Proof' Without loss of generality, we assume m, ==
0, Yi == t and let u be the maximum number among
Yi+l, ... , Yn, i.e., at the start of the i-th iteration min == t and
max == u while encoding. Assume there are, numbers equal
to t among YI, , Yi-l, and there are " numbers equal to
u among Yi+l, ,Yn' According to the encoding algorithm,
we have

A-~-l A I

~~~
{Yi+l, ... ,Yn} == {t, ... ,t, t + 1, ... , t + 1, ... ,u, ... ,u}

Since loo(x, E~ k(m)) ~ 8, we have IXj - Yjl ~ 8 and
IXi - Yil ~ 8. The probability that L~ k does not output m,
at the first iteration is: '

Pr[xi 2: Xj] < Pr[Yi + 8 2: Xj]
< Pr[Yi + 8 2: Yj - 8]

Pr[Yi + 28 2: Yj]·

There are at most 28A+ A-, - 1 possible Yj'S less than or
equal to Yi + 28. Thus,

Pr[x. >x.] < (28+1)A-,-1 < 28A+A == 28+1.
2 - J - n - i - dA d

Therefore, the probability that L~ k outputs m; correctly at
the first iteration is at least 1 - 28: I . •
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Corollary 1. Given a codeword x == E~ k(m) for some m

and an index i, L~,k outputs m, correctly.

Proof By Lemma 4, there exists f ~ A such that L~ k

terminates at the f-th iteration. Let j be the index picked ~t
the f-th iteration, we have Xj -I- Xi, where j > i. Note that x

is a codeword: Xi < Xj implies m, == 0 and Xi > Xj implies

m, == 1. Hence, L~,k outputs m, correctly. •

A private information retrieval system (PIR) consists of

q servers. All servers know a codeword x == (Xl, ... ,x n )

representing a message m == (ml, ... ,mk), and a user

wants to know one bit m, of m via query a symbol

from each server. We say a PIR has retrievability r if the

user can obtain the message bit with probability r. Let

V(s, i) be the distribution of entry queried from server i
when the user tries to retrieve mi. A PIR has privacy p if

maXi,jE[k],sE[q] ~(V(s, i), V(s,j)) ~ p, where ~(.,.) is the

statistical distance. A (q, r, p)-PIR is a q-server PIR with

retrievability r and privacy p. A (q,r,p)-PIR has perfect

retrievability if r == 1 and perfect privacy if p == O.
With our FPA C~ k' we construct a (A+ 1, 1, r)-PIR with

perfect retrievability and privacy r. The scheme is simple:

• For a message m, we put x == E~,k (m) on all A + 1
servers.

• We retrieve m; by L~ k by querying entries from servers

in a random order. '

The perfect retrievability is guaranteed by Corollary 1. How

ever, in order to retrieve tru, Xi must be queried from some

servers at certain positions f > i, and we have r > O. We

leave the improvement on the privacy r as our future work.
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