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The initial value problem for some
hyperbolic-dispersive system
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We consider the initial value problem for some nonlinear hyperbolic-dispersive systems in one space dimension. Com-
bining the classical energy method and the smoothing estimates for the Airy equation, we guarantee the time local
well-posedness for this system. We also discuss the extension of our results to more general hyperbolic-dispersive system.
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1. Introduction

We consider local well-posedness for the initial value problem of the hyperbolic-dispersive system
8̂
ˆ̂̂<
ˆ̂̂̂
:

@tuC @3
x uC u@xvC v@xuD 0, t, x 2 R,

@tvC @xwC u@xuC v@xv D 0, t, x 2 R,

@twC @3
x wC u@xuCw@x wD 0, t, x 2 R,

u.0, x/D u0.x/, v.0, x/D v0.x/, w.0, x/D w0.x/, x 2 R,

(1)

where u, v, and w are real valued unknown functions. The notion of well-posedness used here includes the existence and uniqueness
of a solution, and its continuous dependence upon the initial data.

System (1) is the modified version of the following system proposed by Lin-Wong [1]:
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

@tuC i@2
x uC u@xvC v@x uD 0, t, x 2 R,

@tvC @xwC
1

2
@xjuj

2C v@xv D 0, t, x 2 R,

@twC @3
x wC

1

2
@xjuj

2Cw@xwD 0, t, x 2 R,

u.0, x/D u0.x/, v.0, x/D v0.x/, w.0, x/D w0.x/, x 2 R,

(2)

where u is the complex valued function, and v and w are the real valued functions. They derived (2) to study the zero-dispersion limit
of the water wave equations that arise in modeling surface waves in the presence of both gravity and capillary modes. We replaced the
second derivative i@2

x u in the first equation of (2) by the third derivative @3
x u. We briefly explain why we make the above modification.

Letting u1 D<u, u2 D=u be the real and imaginary parts of u and u3 D v in (2), we obtain the following system:
0
@ @tu1

@tu2

@tu3

1
AC

0
@ 0 �@2

x 0
@2

x 0 0
0 0 0

1
A
0
@ u1

u2

u3

1
AC

0
@ u3 0 u1

0 u3 u2

u1 u2 u3

1
A
0
@ @xu1

@xu2

@xu3

1
AD

0
@ 0

0
�@xw

1
A ,

@twC @3
x wC u1@xu1C u2@xu2Cw@xwD 0. (3)
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There are several results on the solvability for the system of hyperbolic and dispersive equations. In [2], they study the time local well-
posedness of the interaction equation between short and long waves by applying Bourgain’s Fourier restriction norm method. In [3–5],
they study the local and global solvability for Benney type system by successfully using the energy method. We notice that the equa-
tions treated in those papers do not contain the linear coupled derivative term. As will be discussed in detail below, the coupled term
�@xw in (2) prevents us from using the classical energy method of the quasi-linear hyperbolic system or the contraction principle via
the integral equation. Therefore, it seems that it is extremely difficult to prove the well-posedness of (2). In this note, modifying the
system (2) into (1) and employing the theory of dispersive equation, we prove the well-posedness for (1). This is an intermediate step
of the study of the zero-dispersion limit of the water-wave equation. In addition to proving the well-posedness of (1), we consider the
well-posedness of more general hyperbolic-dispersive systems including the linear coupled derivative term.

The notable difference between the hyperbolic equations and the dispersive equations is the gain of the regularity of their solutions.
More precisely, Kenig–Ponce–Vega [6] derived the following smoothing property of a solution to the linear dispersive equations: Let
fVm.t/gt2R be a unitary group generated by i.�i@x/

m. Then we have

kD.m�1/=2
x Vm.t/�kL1x L2

T
� Ck�kL2

x
, (4)

kDm�1
x

Z t

0
Vm.t� �/F.�/d�kL1x L2

T
� CkFkL1

x L2
T

. (5)

Those estimates tell us that for large m, the operator fVm.t/gt2R induces the strong smoothing effect. Thanks to the smoothing prop-
erty of solutions to the Airy equation @tuC @3

x u D 0 (Lemma 2.2 below), we can control the worse term �@xw and guarantee the local
well-posedness of (1).

Before stating main theorem, we introduce several notations and function spaces. We denote the Fourier and its inverse transforms
by F and F�1:

F Œf �.�/D 1
p

2�

Z
R

e�ix�� f .x/dx, F�1Œf �.x/D
1
p

2�

Z
R

eCix�� f .�/d� .

Let hxin D .1Cjxj2/n=2. The operators Dm
x and hDxi

m are given by Dm
x D F�1j�jmF and hDxi

m D F�1h�imF . Let Hm,n
x be the weighted

Sobolev space: Hm,n
x D fujkukHm,n

x
D khxinhDxi

mukL2
x
<1g. For 1 � p, q �1, let Lp

T Lq
x D Lp

T .0, T ; Lq
x .R// and Lp

x Lq
T D Lp

x .R; Lq
t .0, T//. The

main result in this note is the following:

Theorem 1.1
There exists � > 0 such that for any .u0, v0, w0/ 2 .H

6,0
x \ H3,1

x / � .H6,0
x \ H1,1

x / � .H7,0
x \ H2,1

x / and ku0kH6,0
x
C ku0kH3,1

x
C kv0kH6,0

x
C

kv0kH1,1
x
C kw0kH7,0

x
C kw0kH2,1

x
< � the initial value problem (1) has a unique solution .u.�/, v.�/, w.�// defined in the interval Œ0, T�,

T D T.ku0kH6,0 , kv0kH6,0
x

, kw0kH7,0
x
/ satisfying

.u, v, w/ 2 C.Œ0, T�; H6,0
x \ H3,1

x /� C.Œ0, T�; H6,0
x \ H1,1

x /� C.Œ0, T�; H7,0
x \ H2,1

x /� XT .

Moreover, for any T 0 2 .0, T/ there exists ı > 0 such that the map .Qu0, Qv0, Qw0/! .Qu.t/, Qv.t/, Qw.t// from f.Qu0, Qv0, Qw0/jkQu0�u0kH6,0
x
CkQv0�

v0kH6,0
x
Ck Qw0 �w0kH7,0

x
< ıg into XT0 is Lipschitz continuous.

Remark 1.2
In Theorem 1.1, we assumed the smallness condition on the initial data. The reason is as follows: We establish Theorem 1.1 by applying
the Banach fixed point theorem to the corresponding integral equation. In this proof, to close the estimate, we need to regard the
coupling term �@xw as a perturbation and evaluate it by making use of the smoothing effect of the dispersive term. In this step, we
have to impose the smallness condition not only on the time interval T but also on the initial data. The large data well-posedness of (1)
is an issue in the future.

Remark 1.3
It is natural to arise the following question: Does (1) have a unique local solution for smooth large data? If the system has some sym-
metry and the coupling term has special structure such as the Benney type system, then the answer is affirmative. However, we do not
know whether the general hyperbolic-dispersive system including (1) has a large smooth solution or not.

We give the outline of the proof of Theorem 1.1. As we explained in the introduction, the difficulty comes from the coupling term
�@xw in the second equation on (1).

The second equation includes the linear term @xw and quadratic term u@xu. Therefore, the reader might think that we need to assume
.u, w/ 2 L1T HsC1,0

x � L1T HsC1,0
x to control the L1T Hs norm of v. Indeed, we need to assume w 2 L1T HsC1,0

x to guarantee that L1T Hs norm
of v is bounded because of the linear term @xw. However, thanks to the quadratic structure, the smoothing effect of the Airy group, and
the inclusion L2

x L1T � L
1
x L2

T � L2
x L2

T , it suffices to assume u 2 L1T Hs,0
x to guarantee v 2 L1T Hs,0

x .
On the other hand, the third equation includes the derivative term u@xu. Therefore, we meet the loss of the second order derivatives

to evaluate w 2 L1T HsC1,0
x . Thanks to the smoothing effect for the Airy group of the inhomogeneous type that gains the “two" deriva-

tives (see (5) with mD 3), we can estimate this term using only the fact u0 2 Hs,0
x . We note that the weak smoothing property of the free

1
2

6
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Schrödinger group does not overcome the loss of two derivatives. Therefore, we replaced the second derivatives in the first equation
of (2) by the third derivatives. In the nonlinear estimate, the inclusion L1

x L1T � L
1
x L2

T � L1
x L2

T appears. Therefore, we need to estimate the
maximal function (L1

x L1T �type estimate, see Lemma 2.3 below). Because the quantity k � kL1
x L1T

is not expected to be small even when

T # 0, we need the smallness assumption on the initial datum. We note that the estimate of the maximal function gives the regularity
and weight conditions on the initial datum.

We rewrite the first and third equations in (1) into the integral equations to apply the smoothing property of the Airy group, and we
employ the standard energy method to the second equation in (1). Therefore, we introduce the following linearization that is not the
standard linearization. As we explained in the introduction, the coupling term @xw prevents us from using the standard linearization.

For .u0, v0, w0/, we denote by .u, v, w/Dˆ.Qu, Qv, Qw/ the solution to the linearized problem8̂
ˆ̂̂<
ˆ̂̂̂
:

@tuC @3
x uC Qu@x QvC Qv@x QuD 0, t, x 2 R,

@tvC @x QwC Qu@x QuC Qv@xv D 0, t, x 2 R,

@twC @3
x wC Qu@x QuC Qw@x QwD 0, t, x 2 R,

u.0, x/D u0.x/, v.0, x/D v0.x/, w.0, x/D w0.x/, x 2 R.

(6)

Define

Za
T � f.u, v, w/j jjj.u, v, w/jjjZT � ag,

where

jjj.u, v, w/jjjZT �kukL1T H6,0
x
CkukL1T H3,1

x
Ck@7

x ukL1x L2
T
CkukL1

x L1T
C

1X
jD0

k@
j
x ukL2

x L1T

CkvkL1T H6,0
x
CkvkL1T H1,1

x
CkvkL2

x L1T

CkwkL1T H7,0
x
CkwkL1T H2,1

x
Ck@8

x wkL1x L2
T
C

1X
jD0

k@
j
xwkL2

x L1T
.

It will be established that for appropriate a and T if .Qu, Qv, Qw/ 2 Za
T , then the solution .u, v, w/Dˆ.Qu, Qv, Qw/ to (6) belongs to Za

T andˆ is a
contraction on Za

T .
In the next section, we list some linear estimates including the estimate for the smoothing effect and the maximal function for the

Airy group. In the third section, we show the crucial nonlinear estimate and prove Theorem 1.1.
We can extend Theorem 1.1 to more general hyperbolic-dispersive system. We shall discuss the generalization of our result in

Section 4.

2. Linear estimates

In this section, we consider the properties of a solution to the Airy equation. Let

V.t/� D
1
p

2�

Z C1
�1

eix�Cit�3
O�.�/d� . (7)

Lemma 2.1 (Strichartz estimates)

kV.t/�kL1T L2
x
� Ck�kL2

x
, (8)

k@x

Z t

0
V.t� �/F.�/d�kL1T L2

x
� CkFkL1

x L2
T

. (9)

Proof of Lemma 2.1
The inequality (8) follows from the standard energy method. For the proof of (9) see [6, Theorem 3.5 (ii)]. �

Lemma 2.2 (Local smoothing effects)

k@xV.t/�kL1x L2
T
� Ck�kL2

x
, (10)

k@2
x

Z t

0
V.t� �/F.�/d�kL1x L2

T
� CkFkL1

x L2
T

. (11)

Proof of Lemma 2.2
For the proof of (10) and (11), see [6, Theorem 3.5 (i)] and [6, Theorem 3.5 (iii)], respectively. �
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Lemma 2.3 (Estimates for the maximal functions)

kV.t/�kL2
x L1T
� C.1C T/k�kH1,0

x
, (12)

kV.t/�kL1
x L1T
� C.1C T/2.k�kH5,0

x
Ck�kH3,1

x
/. (13)

Proof of Lemma 2.3
For the proof of (12), see [7, Corollary 2.9]. To prove (13), we employ the method due to [8, Proposition 3.7]. By Sobolev’s inequality with
respect to t variable, we see

kV.t/�kL1
x L1T
� CT�1kV.t/�kL1

x L1
T
C Ck@tV.t/�kL1

x L1
T

D CT�1kV.t/�kL1
T L1

x
C CkV.t/@3

x�kL1
T L1

x

� CT�1.kV.t/�kL1
T L2

x
CkxV.t/�kL1

T L2
x
/C C.kV.t/@3

x�kL1
T L2

x
CkxV.t/@3

x�kL1
T L2

x
/.

Because xV.t/D V.t/J.�t/where J.t/D x � 3it@2
x and V.t/ is unitary in L2, we obtain (13). �

3. Nonlinear estimates

Proof of Theorem 1.1
Hereafter, we assume 0< T < 1. Firstly, we estimate u. The first equation in (6) is rewritten as

u.t/D V.t/u0 �

Z t

0
V.t� �/.Qu@x QvC Qv@x Qu/.�/d� ,

where fV.t/gt2R is the free Airy group. By a simple calculation, we see that

@5
x.Qu@x QvC Qv@x Qu/D Qu@

6
x QvC Qv@

6
x QuC R1,

where R1 is some quadratic function with respect to .@ j
x Qu/

5
jD0 and .@ j

x Qv/
5
jD1. By Hölder’s and Sobolev’s inequalities, we easily see that

k@xR1kL1
T L2

x
� CTkQukL1T H6,0

x
kQvkL1T H6,0

x
.

Applying (8) and (10) for u0 and R1, and (9) and (11) for u@6
x QvC Qv@

6
x u, we obtain

k@6
x ukL1T L2

x
Ck@7

x ukL1x L2
T
�Cku0kH6

x
C CkQu@6

x QvkL1
x L2

T
C CkQv@6

x QukL1
x L2

T
C Ck@xR1kL1

T L2
x

�Cku0kH6
x
C CkQukL2

x L1T
k@6

x QvkL2
x L2

T
C CkQvkL2

x L1T
k@6

x QukL2
x L2

T

C Ck@xR1kL1
T L2

x

�Cku0kH6
x
C CT1=2kQukL2

x L1T
kQvkL1T H6,0

x
C CT1=2kQvkL2

x L1T
kQukL1T H6,0

x

C CTkQukL1T H6,0
x
kQvkL1T H6,0

x

�Cku0kH6,0
x
C CT1=2jjj.Qu, Qv, Qw/jjj2ZT

. (14)

Using (12), we have

1X
jD0

k@
j
xukL2

x L1T
� Cku0kH2,0

x
C CkQu@x QvC Qv@x QukL1

T H2,0
x

� Cku0kH2,0
x
C CTkQukL1T H2,0

x
kQvkL1T H3,0

x
C CTkQvkL1T H2,0

x
kQukL1T H3,0

x

� Cku0kH2,0
x
C CTjjj.Qu, Qv, Qw/jjj2ZT

. (15)

Because xV.t/D V.t/J.�t/, we see that

x@3
x u.t/D V.t/J.�t/.@3

x u0 �

Z t

0
V.��/@3

x.Qu@x QvC Qv@x Qu/.�/d�/.1
2

8
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Hence,

kx@3
x ukL1T L2

x
�Ckx@3

x u0kL2
x
C CTk@5

x u0kL2
x

C Ckx@3
x.Qu@x QvC Qv@x Qu/kL1

T L2
x
C CTk@5

x.Qu@x QvC Qv@x Qu/kL1
T L2

x

�C.ku0kH5,0
x
Cku0kH3,1

x
/

C CT.kQukL1T H4,0
x
kQvkL1T H1,1

x
CkQvkL1T H4,0

x
kQukL1T H2,1

x
/

C CT2.kQukL1T H5,0
x
kQvkL1T H6,0

x
CkQvkL1T H5,0

x
kQukL1T H6,0

x
/

�C.ku0kH5,0
x
Cku0kH3,1

x
/C CTjjj.Qu, Qv, Qw/jjj2ZT

. (16)

By Lemma 2.3 (13),

kukL1
x L1T
�C.ku0kH5,0

x
Cku0kH3,1

x
/

C C.kQu@x QvC Qv@x QukL1
T H5,0

x
CkQu@x QvC Qv@x QukL1

T H3,1
x
/

�C.ku0kH5,0
x
Cku0kH3,1

x
/C CTjjj.Qu, Qv, Qw/jjj2ZT

. (17)

Next, we estimate v. By a standard energy estimate, we obtain

kvkL1T H6,0
x
�kv0kH6,0

x
C Tk QwkL1T H7,0

x
CkQu@x QukL1

T H6,0
x

C TkvkL1T H6,0
x
kQvkL1T H6,0

x
.

We notice that

@6
x.Qu@x Qu/D Qu@

7
x QuC R2,

where R2 is some quadratic function of .@ j
x Qu/

6
jD0 and

kQu@7
x QukL1

T L2
x
� T1=2kQu@7

x QukL2
T L2

x
D T1=2kQu@7

x QukL2
x L2

T

� T1=2kQukL2
x L1T
k@7

x QukL1x L2
T

,

kR2kL1
T L2

x
� CTkQuk2

L1T H6,0
x

.

Therefore, we have

kvkL1T H6,0
x
� kv0kH6,0

x
C CT1=2.1C jjj.Qu, Qv, Qw/jjjZT C jjj.u, v, w/jjjZT /jjj.Qu, Qv, Qw/jjjZT .

Using the relation

v.t/D v0 �

Z t

0
.@x QwC Qu@x QuC Qv@xv/.�/d� ,

we obtain

kvkL1T H1,1
x
�kv0kH1,1

x
C Tk QwkL1T H2,1

x
C CTkQukL1T H1,1

x
kQukL1T H2,0

x

C CTkQvkL1T H1,1
x
kvkL1T H2,0

x

�kv0kH1,1
x
C CT.1C jjj.Qu, Qv, Qw/jjjZT C jjj.u, v, w/jjjZT /jjj.Qu, Qv, Qw/jjjZT , (18)

kvkL2
x L1T
�kv0kL2

x
C Tk@x QwkL2

x L1T
C TkQu@x QukL2

x L1T
C TkQv@xvkL2

x L1T

�kv0kL2
x
C Tk@x QwkL2

x L1T
C CTkQukL2

x L1T
k@x QukL1x L1T

C CTkQvkL2
x L1T
k@xvkL1x L1T

�kv0kL2
x
C CT.1C jjj.Qu, Qv, Qw/jjjZT C jjj.u, v, w/jjjZT /jjj.Qu, Qv, Qw/jjjZT . (19)
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Finally, we estimate w. From the third equation in (6), we have

@7
x w.t/D V.t/@7

x w0 �

Z t

0
V.t� �/@7

x.Qu@x QuC Qw@x Qw/.�/d� .

Because

@6
x.Qu@x Qu/D Qu@

7
x QuC 7@x Qu@

6
x QuC R3,

@7
x. Qw@x Qw/D Qw@

8
x QwC R4,

where R3 and R4 satisfy

k@xR3kL1
T L2

x
� CTkQuk2

L1T H6,0
x

,

kR4kL1
T L2

x
� CTk Qwk2

L1T H7,0
x

,

applying (8) and (10) for @7
x w0, @xR3, and @7

x. Qw@x Qw/ and (9) and (11) for Qu@7
x Qu and @x Qu@6

x Qu, we obtain

k@7
x wkL1T L2

x
Ck@8

x wkL1x L2
T
�Ck@7

x w0kL2
x
C CkQu@7

x QukL1
x L2

T
C Ck@x Qu@

6
x QukL1

x L2
T

C Ck Qw@8
x QwkL1

T L2
x
C Ck@xR3kL1

T L2
x
C CkR4kL1

T L2
x

�Ckw0kH7,0
x
C CkQukL1

x L1T
k@7

x QukL1x L2
T
C CT1=2k@x QukL2

x L1T
kQukL1T H6,0

x

C CT1=2k QwkL2
x L1T
k@8

x QwkL1x L2
T
C CTkQuk2

L1T H6,0
x
C CTk Qwk2

L1T H7,0
x

�Ckw0kH7,0
x
C Cjjj.Qu, Qv, Qw/jjj2ZT

. (20)

As in (15), we see

1X
jD0

k@
j
xwkL2

x L1T
�Ckw0kH2,0

x
C CTkQukL1T H2,0

x
kQukL1T H3,0

x

C CTk QwkL1T H2,0
x
k QwkL1T H3,0

x

�Ckw0kH2,0
x
C CTjjj.Qu, Qv, Qw/jjj2ZT

. (21)

As in (16), we have

kwkL1T H2,1
x
� C.kw0kH4,0

x
Ckw0kH2,1

x
/

C CT.kQukL1T H1,1
x
kQukL1T H3,0

x
CkQuk2

L1T H5,0
x
/

C CT.k QwkL1T H1,1
x
k QwkL1T H3,0

x
Ck Qwk2

L1T H5,0
x
/

� C.kw0kH5,0
x
Ckw0kH2,1

x
/C CTjjj.Qu, Qv, Qw/jjj2ZT

. (22)

Collecting (14)–(22), we have that if .u0, v0, w0/ 2 Za
T , then

jjj.u, v, w/jjjZT � C�0C Ca.1C aC jjj.u, v, w/jjjZT /.

Therefore, if we choose �0, a, and T so small, then the map ˆ : Za
T ! Za

T is well defined. Similarly, we can prove that the map ˆ is a
contraction on Za

T . This completes the proof of the main theorem. �

4. Generalization

In this section, we consider the hyperbolic-dispersive system
8̂
ˆ̂̂<
ˆ̂̂̂
:

@tUC @3
x UC N1.U, @xU, V , @xV , W , @xW/D 0,

@tV C @xW C N2.U, @xU, W , @xW/CM.U, V , W , @xW/@xV D 0,

@tW C @3
x W C N3.U, @xU, W , @xW/D 0,

U.0, x/D U0.x/, V.0, x/D V0.x/, W.0, x/DW0.x/,

(23)

1
3

0
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where U D t.u1, � � � , ul/, V D t.v1, � � � , vm/ and W D t.w1, � � � , wm/ are unknown vector-valued functions, N1 : R2lC4m ! Rl , N2 :
R2lC2m ! Rm, N3 : R2lC2m ! Rm are polynomials having no constant or linear terms, and M is a m � m symmetric matrix whose
components are polynomials in .U, V , W , @xW/ without constant. By the similar way to the argument in Section 3, we can prove the
time local well-posedness for (23) in .H7,0

x \ H4,1
x /� .H7,0

x \ H3,1
x /� .H8,0

x \ H4,1
x /.

Theorem 4.1
There exists � > 0 such that for any .U0, V0, W0/ 2 .H

7,0
x \ H4,1

x / � .H7,0
x \ H3,1

x / � .H8,0
x \ H4,1

x / and kU0kH7,0
x
C kU0kH4,1

x
C kV0kH7,0

x
C

kV0kH3,1
x
C kW0kH8,0

x
C kW0kH4,1

x
< � the initial value problem (23) has a unique solution .U.�/, V.�/, W.�// defined in the interval Œ0, T�,

T D T.kU0kH7,0 , kV0kH7,0
x

, kW0kH8,0
x
/ satisfying

.U, V , W/ 2 C.Œ0, T�; H7,0
x \ H4,1

x /� C.Œ0, T�; H7,0
x \ H3,1

x /� C.Œ0, T�; H8,0
x \ H4,1

x /� YT .

Moreover, for any T 0 2 .0, T/ there exists ı > 0 such that the map . QU0, QV0, QW0/! . QU.t/, QV.t/, QW.t// from f. QU0, QV0, QW0/jk QU0 � U0kH7,0
x
C

kQV0 � V0kH7,0
x
Ck QW0 �W0kH8,0

x
< ıg into YT0 is Lipschitz continuous.

We only give the outline of proof for Theorem 4.1.
For .U0, V0, W0/we denote by .U, V , W/Dˆ. QU, QV , QW/ the solution to the linearized problem

8̂
ˆ̂̂<
ˆ̂̂̂
:

@tUC @3
x UC N1. QU, @x QU, QV , @x QV , QW , @x QW/D 0,

@tV C @x QW C N2. QU, @x QU, QW , @x QW/CM. QU, QV , QW , @x QW/@xV D 0,

@tW C @3
x W C N3. QU, @x QU, QW , @x QW/D 0,

U.0, x/D U0.x/, V.0, x/D V0.x/, W.0, x/DW0.x/,

and let

Za
T � f.U, V , W/j jjj.U, V , W/jjjZT � ag,

where

jjj.U, V , W/jjjZT �kUkL1T H7,0
x
CkUkL1T H4,1

x
Ck@8

x UkL1x L2
T
C

1X
jD0

k@
j
xUkL1

x L1T
C

1X
jD0

k@
j
xUkL2

x L1T

CkVkL1T H7,0
x
CkVkL1T H3,1

x
C

1X
jD0

k@
j
xVkL2

x L1T

CkWkL1T H8,0
x
CkWkL1T H4,1

x
Ck@9

x WkL1x L2
T

1X
jD0

k@
j
xWkL1

x L1T
C

2X
jD0

k@
j
x WkL2

x L1T
.

As in the preceding sections, we shall prove that for some a and T ,ˆ. QU, QV , QW/ is a contraction map from Za
T into itself.

The first component U satisfies the integral equation

U.t/D e�t@3
x U0 �

Z t

0
e�.t��/@

3
x N1.�/d� ,

and

@6
x N1 D

Pl
jD1

@N1

@.@x QUj/
@7

x
QUj C

Pm
jD1

@N1

@.@x QVj/
@7

x
QVj C R5,

where R5 depends on .@ j
x
QU/6jD0, .@ j

x
QV/6jD0 and .@ j

x
QW/7jD1. Therefore, by Lemmas 2.1 and 2.2, we obtain

k@7
x UkL1T L2

x
Ck@8

x UkL1x L2
T
�CkU0kH7

x
C C

lX
jD1

k
@N1

@.@x QUj/
@7

x
QUjkL1

x L2
T

C C
mX

jD1

k
@N1

@.@x QVj/
@7

x
QVjkL1

x L2
T
Ck@xR5kL1

T L2
x

. (24)

The second term in the right hand side of (24) is evaluated as

lX
jD1

k
@N1

@.@x QUj/
@7

x
QUjkL1

x L2
T
�

lX
jD1

k
@N1

@.@x QUj/
kL2

x L1T
k@7

x
QUjkL2

x L2
T

� T1=2
lX

jD1

k
@N1

@.@x QUj/
kL2

x L1T
k@7

x
QUjkL1T L2

x
.
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By Hölder’s and Sobolev’s inequalities, we see that k @N1

@.@x QUj/
kL2

x L1T
is evaluated in terms of k QUkL1T H2

x
, k QVkL1T H2

x
, k QWkL1T H2

x
, k@k

x
QUkL2

x L1T
,

k@k
x
QVkL2

x L1T
, and k@k

x
QWkL2

x L1T
(k D 0, 1). The third term in the right hand side of (24) is evaluated by the similar way. We can estimate R5

by the Hölder and Sobolev inequalities. Because the estimates for the other norms of U in ZT are obtained as (15)–(17) in the Section 3,
we omit the detail.

Next, we estimate the second component V . The standard energy method yields

kVkL1T H7,0
x
�kV0kH7,0

x
C Tk QWkL1T H8,0

x
CkN2kL1

T H7,0
x

C T.1CkQUkL1T H7,0
x
CkQVkL1T H7,0

x
Ck QWkL1T H8,0

x
/NkVkL1T H7,0

x

for some non-negative integer N. By a simple calculation we have

@7
x N2 D

lX
jD1

@N1

@.@x QUj/
@8

x
QUj C R6. QU, � � � , @7

x
QU, QW , � � � , @8 QW/,

and

k

lX
jD1

@N2

@.@x QUj/
@8

x
QUjkL1

T L2
x
� T1=2

lX
jD1

k
@N2

@.@x QUj/
@8

x
QUjkL2

T L2
x

D T1=2
lX

jD1

k
@N2

@.@x QUj/
@8

x
QUjkL2

x L2
T

� T1=2
lX

jD1

k
@N2

@.@x QUj/
kL2

x L1T
k@8

x
QUjkL1x L2

T

k @N2

@.@x QUj/
kL2

x L1T
is evaluated in terms of k QUkL1T H2

x
, k QWkL1T H2

x
, k@k

x
QUkL2

x L1T
, and k@k

x
QWkL2

x L1T
(k D 0, 1). Finally, we mention the estimation

for the first component W . Because

@8
x W.t/D e�t@3

x @8
x W0 �

Z t

0
e�.t��/@

3
x @8

x N3.�/d� ,

@8
x N3 D

mX
jD1

@N3

@.@x QWj/
@9

x
QWj

C @x

8<
:

lX
jD1

@N3

@.@x QUj/
@8

x
QUj C 7

lX
jD1

lX
kD1

@2N3

@ QUj@.@x QUk/
@x QUj@

7
x
QUk

C 7
lX

jD1

lX
kD1

@2N3

@.@x QUj/@.@x QUk/
@2

x
QUk@

7
x
QUk C 7

lX
jD1

mX
kD1

@2N3

@.@x QUj/@ QWk
@7

x
QUj@x QWk

C 7
lX

jD1

mX
kD1

@2N3

@.@x QUj/@.@x QWk/
@7

x
QUj@

2
x
QWk

9=
;

C @xR7. QU, � � � , @6
x
QU, QW , � � � , @7 QW/

�N3,1C @xN3,2C @xR7.

Applying (8) and (10) for W0, N3,1, and @xR7, and (9) and (11) for N3,2, we obtain

k@8
x WkL1T L2

x
Ck@9

x WkL1x L2
T
� CkW0kH8

x
CkN3,1kL1

T L2
x
CkN3,2kL1

x L2
T
Ck@x R7kL1

T L2
x

.

By the Hölder inequality,

kN3,1kL1
T L2

x
� T1=2

mX
jD1

k
@N3

@.@x QWj/
kL2

x L1T
k@9

x
QWjkL1x L2

T
.

Because k @N3

@.@x QWj/
kL2

x L1T
is evaluated in terms of k QUkL1T H2

x
, k QWkL1T H2

x
, k@k

x
QUkL2

x L1T
, and k@k

x
QWkL2

x L1T
(kD 0, 1), kN3,1kL1

T L2
x

is bounded by ZT

norm of . QU, QV , QW/.
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The first term of N3,2 is evaluated as

lX
jD1

k
@N3

@.@x QUj/
@8

x
QUjkL1

x L2
T
�

lX
jD1

k
@N3

@.@x QUj/
kL1

x L1T
k@8

x
QUjkL1x L2

T
.

We easily see that k @N3

@.@x QUj/
kL1

x L1T
is evaluated in terms of k QUkL1T H2

x
, k QWkL1T H2

x
, k@k

x
QUkL1

x L1T
, and k@k

x
QWkL1

x L1T
(k D 0, 1). By similar way, we

can estimate the other norms of N3,2. Therefore, kN3,2kL1
x L2

T
is bounded by ZT norm of . QU, QV , QW/. The estimates for R7 follows only using

the Hölder and Sobolev inequalities.
The estimates for the other norms of W in ZT follow from the similar argument as (21)–(22) in Section 3. Combination of above

estimates and the contraction mapping principle guarantees the well-posedness of (23). This completes the proof of Theorem 4.1.
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