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The initial value problem for some
hyperbolic-dispersive system

Shuichi Kawashima?, Chi-Kun Lin® and Jun-ichi Segata“**

Communicated by S. Jiang

We consider the initial value problem for some nonlinear hyperbolic-dispersive systems in one space dimension. Com-
bining the classical energy method and the smoothing estimates for the Airy equation, we guarantee the time local
well-posedness for this system. We also discuss the extension of our results to more general hyperbolic-dispersive system.
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1. Introduction

We consider local well-posedness for the initial value problem of the hyperbolic-dispersive system

el + 8)3(u + udyV + voyxu =0, t,x €R,
0tV + 0xW + udyu + vixv = 0, t,x €R, 0
0w + 8)3(W+u8Xu+W8XW=O, t,x €R,

u(0,x) = up(x), v(0,x) =vo(x), w(0,x)=wp(x), xe<R,

where u, v, and w are real valued unknown functions. The notion of well-posedness used here includes the existence and uniqueness
of a solution, and its continuous dependence upon the initial data.
System (1) is the modified version of the following system proposed by Lin-Wong [1]:

iU + ia)z(u + udyv + voyu =0, t,xeR,
1
0tV + Oxw + 53X|u|2+v8,(v:0, t,x eR,
()
1
8,w+8§w+ 58X|u|2+waxw:0, t,x€R,

u(0,x) = up(x), v(0,x) =vo(x), w(0,x)=wp(x), x€R,

where u is the complex valued function, and v and w are the real valued functions. They derived (2) to study the zero-dispersion limit
of the water wave equations that arise in modeling surface waves in the presence of both gravity and capillary modes. We replaced the
second derivative id2u in the first equation of (2) by the third derivative d3u. We briefly explain why we make the above modification.
Letting u1 = Nu, uz = Ju be the real and imaginary parts of u and u3 = v in (2), we obtain the following system:

dtUn 0 —3)2( 0 uq us 0 u Ox U1 0
deuy | + 3)2( 0 0 uy |+ 0 uz3 u oxus | = 0 ,
dtus 0 0 0 us up ux u3 OxU3 —0xW
0w + 8,3}W + Uy 0xU7 + Uz0xUs + Woxw = 0. (3)
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There are several results on the solvability for the system of hyperbolic and dispersive equations. In [2], they study the time local well-
posedness of the interaction equation between short and long waves by applying Bourgain’s Fourier restriction norm method. In [3-5],
they study the local and global solvability for Benney type system by successfully using the energy method. We notice that the equa-
tions treated in those papers do not contain the linear coupled derivative term. As will be discussed in detail below, the coupled term
—dxw in (2) prevents us from using the classical energy method of the quasi-linear hyperbolic system or the contraction principle via
the integral equation. Therefore, it seems that it is extremely difficult to prove the well-posedness of (2). In this note, modifying the
system (2) into (1) and employing the theory of dispersive equation, we prove the well-posedness for (1). This is an intermediate step
of the study of the zero-dispersion limit of the water-wave equation. In addition to proving the well-posedness of (1), we consider the
well-posedness of more general hyperbolic-dispersive systems including the linear coupled derivative term.

The notable difference between the hyperbolic equations and the dispersive equations is the gain of the regularity of their solutions.
More precisely, Kenig-Ponce-Vega [6] derived the following smoothing property of a solution to the linear dispersive equations: Let
{Vm(t)}ter be a unitary group generated by i(—idx)™. Then we have

10" 2V (Ol 012 = Cligl 2. )

t
107" [ Vit~ DF (D)l e = Pl )

Those estimates tell us that for large m, the operator {Vp,(t)}:er induces the strong smoothing effect. Thanks to the smoothing prop-
erty of solutions to the Airy equation d;u + d3u = 0 (Lemma 2.2 below), we can control the worse term —dyw and guarantee the local
well-posedness of (1).

Before stating main theorem, we introduce several notations and function spaces. We denote the Fourier and its inverse transforms
by Fand F~':

FIAE) = " fodx,  FAG0) = % /R e EF(E) .

1
— | e
21 /R
Let (x)" = (14 |x|?)"/2. The operators D" and (D)™ are given by DT = F~'|¢|™ F and (Dy)™ = F~'(£)™ F. Let HI"" be the weighted
Sobolev space: Hy"" = {u||[ul| ynn = [|(x)"(Dx)ull 2 < 00}.For 1 < p,q < oo, let 213 =19(0, T; L (R)) and 5L = LR(R; L{ (0, T)). The
main result in this note is the following:

Theorem 1.1

There exists ¢ > 0 such that for any (ug, vo, wo) € (H)6('o n Hi'l) X (H,6('° n H}('l) X (H,7('° n H,z('l) and HUOHHS"’ + ””0”H§” + ”VOHHE'O +
[voll i1 + lwoll, 70 + Iwoll,21 < € the initial value problem (1) has a unique solution (u(-), v(:), w(-)) defined in the interval [0, T],
T =T(lluollneo, Vol yso, Iwoll 70) satisfying

(u,v,w) € C([0, T HE® N H3M) x C([0, T); HEC N HIYY x C([0, T; HZP N HZY) = X7

Moreover, forany T’ € (0, T) there exists § > 0 such that the map (lo, Vo, Wo) — (G(t), ¥(t), w(t)) from {(lo, Vo, Wo)|||Tio — Uo [l oo + Vo —
X
volls0 + [[Wo — woll 70 < 8} into X7 is Lipschitz continuous.

Remark 1.2

In Theorem 1.1, we assumed the smallness condition on the initial data. The reason is as follows: We establish Theorem 1.1 by applying
the Banach fixed point theorem to the corresponding integral equation. In this proof, to close the estimate, we need to regard the
coupling term —dxw as a perturbation and evaluate it by making use of the smoothing effect of the dispersive term. In this step, we
have to impose the smallness condition not only on the time interval T but also on the initial data. The large data well-posedness of (1)
is an issue in the future.

Remark 1.3

It is natural to arise the following question: Does (1) have a unique local solution for smooth large data? If the system has some sym-
metry and the coupling term has special structure such as the Benney type system, then the answer is affirmative. However, we do not
know whether the general hyperbolic-dispersive system including (1) has a large smooth solution or not.

We give the outline of the proof of Theorem 1.1. As we explained in the introduction, the difficulty comes from the coupling term
—dxw in the second equation on (1).

The second equation includes the linear term dxw and quadratic term udyu. Therefore, the reader might think that we need to assume
(u,w) e L$°H§+1’° X L?"Hf(*']'o to control the L$°H° norm of v. Indeed, we need to assume w € L$°Hf(+1'o to guarantee that LY°H* norm
of v is bounded because of the linear term dyw. However, thanks to the quadratic structure, the smoothing effect of the Airy group, and
the inclusion L2L3° - L2°L2 C L2313, it suffices to assume u € L2°H;P to guarantee v € L H3C.

On the other hand, the third equation includes the derivative term udyu. Therefore, we meet the loss of the second order derivatives
to evaluate w € L$°Hf(+1'0. Thanks to the smoothing effect for the Airy group of the inhomogeneous type that gains the “two" deriva-
tives (see (5) with m = 3), we can estimate this term using only the fact up € Hf(o. We note that the weak smoothing property of the free
|
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Schrodinger group does not overcome the loss of two derivatives. Therefore, we replaced the second derivatives in the first equation
of (2) by the third derivatives. In the nonlinear estimate, the inclusion L](L?o . L,?"L% C L}L% appears. Therefore, we need to estimate the
maximal function (L}L?o—type estimate, see Lemma 2.3 below). Because the quantity || - ”L)](L?o is not expected to be small even when

T | 0, we need the smallness assumption on the initial datum. We note that the estimate of the maximal function gives the regularity
and weight conditions on the initial datum.

We rewrite the first and third equations in (1) into the integral equations to apply the smoothing property of the Airy group, and we
employ the standard energy method to the second equation in (1). Therefore, we introduce the following linearization that is not the
standard linearization. As we explained in the introduction, the coupling term dxw prevents us from using the standard linearization.

For (uo, vo, wp), we denote by (u, v, w) = ®(4, v, w) the solution to the linearized problem

BeU + D3u + U0,V 4 Vil = 0, t,xeR,
0tV + 0xW + U0yl + Vv = 0, t,x €R, ©
Btw+8,3(w+ﬁaxﬂ+|7vaxﬁ/=0, t,x €R,
u(0,x) = up(x), v(0,x) =vo(x), w(0,x)=wp(x), x€<R.
Define
7= v.wllluv,wlz <a,
where

1
— 7 J
Il v.w)lizy = llull go o + Iull eopzr + I10xullop2 + llullyg o0 + > 1xull 2,00
j=0
+ Vllgo 0 + Vg1 + IVl 2,00
1
8 J
+ ||W||L$OH;D + ||W||L?0H)2(.1 + ”axW”L;X?L% + Z ||axW||L)2(L$°-
j=0
It will be established that for appropriate a and T if (i, v, w) € Z, then the solution (u, v, w) = ®(u, v, w) to (6) belongs to Z7 and ® is a
contraction on Z{.
In the next section, we list some linear estimates including the estimate for the smoothing effect and the maximal function for the
Airy group. In the third section, we show the crucial nonlinear estimate and prove Theorem 1.1.
We can extend Theorem 1.1 to more general hyperbolic-dispersive system. We shall discuss the generalization of our result in
Section 4.

2. Linear estimates

In this section, we consider the properties of a solution to the Airy equation. Let

V(t)p = 1 / e ETIE §(£) g, (7)
A/ 27 —00
Lemma 2.1 (Strichartz estimates)
IVOlsoiz < Cliplz. ®)
t
Jox [ V= @)l 0,3 = ClFl ©
0
Proof of Lemma 2.1
The inequality (8) follows from the standard energy method. For the proof of (9) see [6, Theorem 3.5 (ii)]. |
Lemma 2.2 (Local smoothing effects)
1<V (¢ 012 = Cllg 2 (10)
t
19 /0 V(t—0)F(r)del gosz < CIFl - (an
Proof of Lemma 2.2
For the proof of (10) and (11), see [6, Theorem 3.5 (i)] and [6, Theorem 3.5 (iii)], respectively. O

. ______________________________________________________________________________________________________|
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Lemma 2.3 (Estimates for the maximal functions)
VOl 200 = €O+ DDl 10, (12)

VO[30 = CO+T2IDll 50 + 1l 0). (13)
Proof of Lemma 2.3

For the proof of (12), see [7, Corollary 2.9]. To prove (13), we employ the method due to [8, Proposition 3.7]. By Sobolev’s inequality with
respect to t variable, we see

VOl 300 = CTHIVODN 31 + CIIV OBl
= T VOl + VOBl
e VOBl + IXVOF]12) + C(||V(t)8)3(¢||UTL§ + ||XV(t)3>3(¢||L1TLE).

Because xV(t) = V(t)J(—t) where J(t) = x — 3itd2 and V(t) is unitary in L2, we obtain (13). |

3. Nonlinear estimates

Proof of Theorem 1.1
Hereafter, we assume 0 < T < 1. Firstly, we estimate u. The first equation in (6) is rewritten as

u(t)y = V(tyug — /Or V(t — 1) (UdxV + voxt)(z)dz,
where {V(t)}:cr is the free Airy group. By a simple calculation, we see that
83 (U V + Vdyl) = G35V + vaS + Ry,
where Ry is some quadratic function with respect to (8,{[1)]-5=0 and (8,{9)/5=1. By Holder’s and Sobolev’s inequalities, we easily see that
1Rtz = Tl 00 17120 0-
Applying (8) and (10) for ug and Ry, and (9) and (11) for ud®v + vdSu, we obtain
185ull 0002 + 19%ull 00,2 < Clluollyg + CIEIZVI 1,2 + CUPALE 12 + ClIdxR 12
< Clluollys + Cllal 2,00 193711202 + ClIVIl 2,00 19500 2,2
+ C”axR1 “UTL%
< Clluolye +CT"2 @l 2 0017l cops0 + CT 17l 2 00 1] 00 0
+ CT il gopo |7l o0
<Clluoll 0 + TN @, % W) 12, (14)

Using (12), we have

1
> ||a;u||L§L$o < Clluollgo + CllEQY + Vil 1,20
j=0

= CHUOHH)Z('O + CT”a”L_Io_oH%O ||‘7”L7C->°H,3(’0 + CT||‘7||L70_0H)2(/0 ||a||L-,°—°H)3(’0

< Clluoll,po + CTII@, 7, W)IZ,- (15)

Because xV(t) = V(t)J(—t), we see that

xd3u(t) = V(E)J(—t)(@3ug — / t V(—1)33(UdxV + Vi) (z)d7).
0

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 125-133
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[x83ull ;00,2 < ClIxd3uoll,2 + CT |35 uoll
xHlipeer2 = x40l 2 x40l 2
3ma s s~ Sima = o~
=+ C||x0y (udxv + vaxu)n% + CT|| 93 (uoxv + v8xu)||L1TL§
<
< Cluoll, g0 + luoll,21)
+ Tl gopge0 17l 2o + 17,2000 181 00,20)
2 ~ ~ ~ ~
+ CT (||u||L§?°H§‘°”V||L$°HS'O + ||V||L?<,H§,o ||u||L?oH§,o)
S =2
<
= Clluolls0 + lluoll 1) + CTII(G, v, W)z,
By Lemma 2.3 (13),
lullgie < Cllluollso + uoll)
+ C([|a0xV + Vx| ;1,50 + [|UxV + VOxUl 1,31)
THXx TMXx
NP
= Clluollyso + lluoll 1) + CTIIG, v, W)z,
Next, we estimate v. By a standard energy estimate, we obtain
“V”L?OH)?O = ||V()||H)6(,0 + T||W”L$OH)7('° + ||':’3x':l||L1Tng0
+ TVl op0 171 sop0-
We notice that
38(Udxl) = GdLT + Ry,
where R; is some quadratic function of (8{;0)]10 and
~a7~ /2117975 /217977
oz < T2 2, = T2 8050 2,2
/27 7~
< T2l 3,00 1187l 00,2,
~n2
||R2||L1TL§ = CT||U||L$°HE'°'
Therefore, we have
1/2 ~ s ~ s
IVl gopso = llvoll g0 + €T PO+ 1@ W)z + 1w v, Wz @7, @)l zr-
Using the relation
t
v(t) =vo — / (0xW + UdxU + Vaxv)(1)dT,
0
we obtain
||V||L7C_>C>/.I)1('1 S ”VO”/.[J('l + T”VT/”L%?O[.I)Z(1 + CT”a”L_IC?O[./}(1 ||a||L7c_>oH)2(0
+ CT”V”L?OH;'] ”V”L]?OH%O

<llvollyp1 + CTQ + (@ v, W)llz + Ml (w, v, Wz @, V. W)l zr,

”V”L)Z(L]O,O = ||VO||L)2( + THBXWHL)Z(L?O + T”aaxaanLgo + T||\~/3XV||L§L$0
< Ivollz + Tloxwll 2,00 + CTIIGl 2 20 19Tl g0 20
+ CT”V“L}(L?O ||axV||L§(’°L$°

< lIvollz + €T+ 1I(@ v, W)l zr + [l (u, v, W)z ) (@, v, W)l z;

(16)

(17)

(18)

(19)

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 125-133
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Finally, we estimate w. From the third equation in (6), we have
t
Aw(t) = V(t)dlwo — / V(t — 7)d](Gdxb 4+ W, w)(r)dz.
0

Because
8 (Udxl) = QLT + 70,U9%0 + Rs,
3] (WdxW) = WdSW + Rq,
where R3 and Ry satisfy
19xR3lliyiz = CTI oo 000
IRelliyiz = CTIW1eo 70
applying (8) and (10) for 3] wo, dxR3, and 87 (wdxw) and (9) and (11) for Gd, i and 9,04, we obtain
83wl 02 + 185wl oy < Clldzwoll 2 + CllE7a 2 + ClI9xT85TN 3,2

+ C||V~V3§V~V||L1TL§ + C”axR3||L1T 2 + C”R4”L1TL§

= 75 /219 & =
= Clwollzo + Cliull 00 19Ul o 2 + CT / 195l 200 16ll 200

1/2) 7 8 ~ ~02 =00
+ CT Wl 2p00 195 Wll o 2 + CTIIUIIL%QHg,o + CT||W||L$OH;,0

< Cllwoll,z0 + Cll(@ 7, W IZ,- (20)

Asin (15), we see

1
S lofwlzize = Cliwollygo + CTlal g0z 1l 0 20
j=0

+ CT 1] o0 W 20
< Clwoll 20 + CTII(@, v, w1z, 21
Asin (16), we have
Wlsepar < ClIwollgo + Iwollen)
o Tl 10,30 + 11 0)
o Tl 170,50 + 1712 50)
< C(lwoll o + lIwoll,21) + CTII(@, v, W) I1Z,- (22)
Collecting (14)-(22), we have that if (ug, vo, wo) € Z%, then
i, v, wW)llzr = Ceo + Ca(l + a+ [I(u, v, w)llz;).

Therefore, if we choose €, a, and T so small, then the map @ : Z§ — Z{ is well defined. Similarly, we can prove that the map ® is a
contraction on Z£. This completes the proof of the main theorem. O

4, Generalization

In this section, we consider the hyperbolic-dispersive system

U+ 93U + Ny (U, 0xU, V, dxV, W, 3y W) =0,

0tV + O W + N (U, 0xU, W, 0xW) + M(U, V, W, 3xW)dxV = 0,

W + W + N3(U, 05U, W, 0,W) = 0,

U0,x) = Up(x), V(0,x) =Vo(x), W(0,x)= Wp(x),
. ______________________________________________________________________________________________________|
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where U = t(uy,--+,up),V = '(v1,-+- ,vm) and W = t(wy, -+ ,wp) are unknown vector-valued functions, N; : RZ4m — R/, N, :
RZ+2m _, RM, N3 : R¥T2M . R™ are polynomials having no constant or linear terms, and M is a m x m symmetric matrix whose
components are polynomials in (U, V, W, dxW) without constant. By the similar way to the argument in Section 3, we can prove the
time local well-posedness for (23) in (H)Z'0 N Hﬁ'l) X (H)Z'0 N H,3('1) X (Hf?'0 N H§'1).

Theorem 4.1

There exists € > 0 such that for any (Ug, Vo, Wp) € (H,Z'0 N Hﬁ'l) X (HZ('O n H,3('1) X (Hff'o N Hy) and ||Uo||H7,o + ||U0||H4,1 + ||V0||H7,o +
[Voll g1 + [[Woll o + [[Woll a1 < € the initial value problem (23) has a unique solution (U(-), V(-), W(-)) defined in the interval [0, T],
T =T(Uollwro, [Vollgo, IWoll o) satisfying

UV, W) e C(0,TEHPC NHEYY x (0, T HZP N H3Y) x ([0, T; HO N HP) = vr.
Moreover, for any 7' € (0, T) there exists § > 0 such that the map (Uo, Vo, Wo) — (U(1), V(1), W(t)) from {(Uo, Vo, Wo)|[|Uo — Uoll;70 +
Vo = Voll 720 + |Wo — Wol| g0 < 8} into Y7 is Lipschitz continuous.

We only give the outline of proof for Theorem 4.1.
For (Uo, Vo, Wo) we denote by (U, V, W) = ®(U, V, W) the solution to the linearized problem

3eU + 33U + N1 (U, 0,0, V, 05V, W, 3, W) = 0,
AV + W W + No(U, 8,0, W, 9 W) + MU, V, W, 3 W)d,V = 0,
W + 3W + N3 (U, 9,0, W, 9, W) = 0,
U@,x) =Uo(x), V(0,x) =Vo(x), W(O,x)=Wo(x),
and let
={U V.MU, V. W)z = a},

where

1 1
IV, W)lizy = 1Vl g0 20 + 1Vl g0 0 + 133 Ullgerz + D 135Ul i + D 10Ul 2100
j=0 j=0
1 .
+ IVilorgo + IVl gopzr + D 10xVl 210
j=0

2
W lgopgo + IWiligopsr + 10Wligor2 3 10 Wiligie + 3 10 Wllizize-

As in the preceding sections, we shall prove that for some a and T, ®(U, V, W) is a contraction map from Z%into itself.
The first component U satisfies the integral equation

t
Ut) = e Uy — / e~ IR, (1)de,
0

and

6 / IN IN
8XN1 :Zj=1 3(32}) X I+Zj 1 (0 :/) X I+R5’

where Rs depends on (8’U)J o (8){\7)?=0 and (E),{I/NV)?:1 . Therefore, by Lemmas 2.1 and 2.2, we obtain

N,

Ul 00,2 + 108U 00,2 < C||Uo|l,7 + C
|| ”L L2 ” ”L LZ ” 0||H7 Z” 3(3XUJ) x J”LXLZ

m

N,
+C CIAY + ||0xR . (24)
Z”a(axv,) il + 19xRsll12

The second term in the right hand side of (24) is evaluated as

Zu 3(8XU) 83 Ullyy2 < Zu G, U)nLXLoona Uillizi2

T'/2 oo 87U oo
ZIIB(BXU)IILXL 1830l 002-

Copyright © 2011 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2012, 35 125-133
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By Hélder’s and Sobolev’s inequalities, we see that || 2% 190 is evaluated in terms of ||U||L?0H3, ||\7||L?0H3, ||W||L$OH§, ||8§U||L§L$o,

a(a u) iz
||8§V||L§L$°' and ||8’;W||L§L?o (k = 0, 1). The third term in the right hand side of (24) is evaluated by the similar way. We can estimate Rs
by the Holder and Sobolev inequalities. Because the estimates for the other norms of U in Z7 are obtained as (15)-(17) in the Section 3,

we omit the detail.
Next, we estimate the second component V. The standard energy method yields
”V”L?OHZ’O =< ”VO”HZ(’O + T”W”L?OHEIO + ”NZ“L;—HZ’O
y Y 7 N
+ T+ 10ll0,0 + 17500 + Wl oy80) VIVl op0

for some non-negative integer N. By a simple calculation we have

I
N, ~ ~ o ~
N> = — 08U+ Re(U, -+, LU, W,---,3®W),
o= ) sy 0+ el B )
j=1 g
and
! N>
I Bl <TV2Y 2380l 2,2
Za(axul (AAvES Z B(Z)XU,) 22
oN -
1/2 2 .
=T Z”a(axuj xU/”L}(L%
T2 oo 1980 | 00
Zn o U)IILXL 185Ul o 2
| =52~ 3(3 U) ||L2Loo is evaluated in terms of ||U||Loon, ”W”Loon, ||3kU||LzLoo, and ||3kW||LzLoo (k = 0, 1). Finally, we mention the estimation

for the first component W. Because

t
BW(t) =e % B, — / e~ (D% 8N; (1) dr,
0

a%:i ONs_ o7,
X 4 13(3XWj) x "

i

i
dN3 80 82N3 S
+733 5, 00l0
< 3(0:0)) U+ e IVETCNT R

i I m
32N3 ~ ~ 82N3 -
9B 200+ 7 _ 0 e
ZZ < 900D ZZ AT <k

m
92N N
Z Z — 2 3702 W,
j=1k=1 (axU/)a(aka)
+ xRy (U, -+, 0O, W,--- 07 W)
= N31 + 0xN32 + 0xR7.
Applying (8) and (10) for Wo, N3,1, and dxR7, and (9) and (11) for N3 3, we obtain
||8§W||L?OL§ + |I33WIIL;>0L; = ClWollys + [IN3,1ll2.2 + N3 20l 1.2 + 10xR7 1l 1,2-

By the Holder inequality,

1/2 97
IN3,1llz <7V Zu 200183 Will o 2-

8(8XW)

Because || 2~ 190 is evaluated in terms of ||U||L$OH§, ||M~/||L$0H3, ||3§U||L§L$o, and ||3§V~V||L§L$o (k=0,1), IN31 ||L|TL3 is bounded by Z7

a(a W) iz
norm of (U, V, W).
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The first term of N3 7 is evaluated as

8~
“axUj”L}(X’L%-

Zn a(axu) 33 0lly2 < Zn 8(8XU)”LXLT

We easily see that || Il 190 is evaluated in terms of ”U”LooHZ, ||W||Loon, |\8kU||L Y and ||8kW||L Loo (k =0, 1). By similar way, we

3(8 U)
can estimate the other norms of N3 . Therefore, |[N3 > ||L;L% is bounded by Z7 norm of (U, V, W). The estimates for Ry follows only using

the Holder and Sobolev inequalities.
The estimates for the other norms of W in Zr follow from the similar argument as (21)-(22) in Section 3. Combination of above
estimates and the contraction mapping principle guarantees the well-posedness of (23). This completes the proof of Theorem 4.1.
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