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Abstract-Several previous works have confirmed that a joint
design that combines channel estimation, channel coding and
space-time transmission can improve the system performance
over that of a separate design. These conclusions are however in
general based on unstructured solutions obtained using computer
search. The coding gain of these joint designs is therefore
limited by both the computer-searchable "short" code length and
the compromise between "suboptimal" performance and "high"
complexity of their optimal decoding.

At this background, we propose a systematic space-time code
construction for joint channel estimation and error correction for
a two-transmit-antenna and half-rate system. Also proposed is its
maximum-likelihood decoder that follows a priority-first search
principle. Our systematic code construction, together with a fairly
low-complexity optimal decoder, then allows one to work with
longer codes with no sacrifice in performance. For codes of short
block length, our simulations illustrate that the codes we propose
have comparable performance to the best computer-searched
codes. For codes of long block lengths that are almost beyond
the searchable range of existing computer systems, our codes
are still better than some reference designs based on separate
channel estimation and error correction components.

1. INTRODUCTION

Coding and transmission schemes for noncoherent receivers
used in multiple-input multiple-output (MIMO) flat-fading
channels can be roughly classified into two categories.1

Schemes in the first category devise the space-time constella­
tions for a given noncoherent receiver structure using computer
search [1], [3], [10], while schemes in the second category
couple the well-known space-time block codes with blind
detection [11], [12], [15]. A brief summary of these schemes
is as follows.

1There are some notable papers that deal with similar problems, but cannot
be classified into the two categories. For example, both [5] and [6] consider
the so-called training codes that incorporate training symbols into their
codewords. As anticipated, the receiver estimates the channel coefficients via
training symbols. Such designs are very different from ours, which combines
channel estimation and error correction by adopting joint maximum-likelihood
decoding at the receiver. In [4], a noncoherent code is constructed through a
mapping from coherent code. The code structure however only allows for a
suboptimal efficient decoder.

In [1], Beko et al. propose a two-phase code design ap­
proach, where the first phase produces a rough space-time
code constellation that is subsequently refined in the second
phase through a search-based geodesic descent optimization
algorithm (GDA). In [3], Borran et al. uses the Kullback­
Leibler distance as a design criterion to partition the signal
space into several subsets, resulting in a reduction of number
of parameters to be computer-searched. The authors in [10]
construct unitary space-time signals by random search upon a
Fourier-based structure, which only requires optimizing L-1
parameters instead of L (L - 1)/2 in the correlation matrix,
where L is the number of space-time signals.

On the other hand, [11], [12] and [15] incorporate blind
detection to existing space-time block codes. Based on the
semidefinite relaxation (SDR) approach, an efficient subopti­
mal blind detection scheme is also suggested by Ma et al.
in [11]. Later in [12], Ma further addresses the necessary
properties for the family of orthogonal space-time block codes
that can well co-work with blind detection.

Two main problems of designing codes or signal constel­
lations based on unconstrained computer-search are that the
design complexity is in general high, especially for codes of
long block length, and the codes often need to be redesigned
when design assumptions change. Moreover, their decoding
depends mostly on operationally intensive exhaustive search,
which further prevents their practical use in the case of long
block lengths. Obviously, these problems can be solved by
realizing a systematic code construction and its respective low­
complexity decoder. Such an approach designed under two­
transmit-antenna and half-rate condition is presented in this
paper.

Furthermore, one main difference between our work and the
existing works on combining known space-time block codes
with blind detection, is that we aim at achieving a coding
gain in contrast to targeting only improved diversity gains at
maximum rate.

The paper is organized in the following fashion. Section II
introduces the system model. Section III presents our code
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design scheme that is devised based on the unitary and full­
rank properties. Section IV derives the maximum-likelihood
metric that can be used by priority-first search decoding.
Simulations are summarized and discussed in Section V.

In this work, superscripts "H" and "T" are specifically
reserved for the matrix operations of Hermitian transpose and
transpose, respectively.

II. SYSTEM MODEL

We consider an MIMO system with AT transmit antennas
and A R receive antennas. The N x AR complex received
matrix Y == [Yl Y2 ... YAR] is then given by

Y == JBIHI + N,

where JB == [b1 b2 ... bAT] is the N x AT transmitted code
matrix, and N == [nl n2 ... nAR] is an N x AR zero-mean
complex Gaussian matrix with independent and identically
distributed elements and covariance matrix

1 0 0
0 1 0

E[ninf] == 0-
2

0 0 1 NxN

Also, b, == [b1,i b2 ,i ... bN,i]T is the bipolar codeword
transmitted by antenna i with each i;n E {±1/ VAT}.
Likewise, Yj == [Yl,j Y2,j ... YN,j]T is the received vector at
the jth receive antenna.

Because IHI is assumed an unknown constant matrix, the
Gaussian assumption on the additive noise matrix N im­
mediately gives that the maximum-likelihood (ML) decision
about the transmitted codeword should be made based on the
generalized likelihood ratio test (GLRT) as

i == arg min min I/Y - JBIHII/2
JB IHI

== arg min I/Y - JBrHrl/ 2
JB

== arg min 1/ (JIN - TIDB )YI/2, (1)
JB

where rHr ~ (JBTJB)-lJBTy is the least-square estimate of IHI
with respect to codeword JB and received matrix Y, and

TIDB ~ JB(JBTJB)-lJBT

is a function of the codeword JB. Here, JIN denotes an N x N
identity matrix.

III. CODE DESIGN

A. Criteria for Good Codes

Several criteria for good codes have been proposed in the
literature [1], [7], [8], [16]. We will in particular center on two
of them: unitary and pairwise full-rank.

Firstly, it has been derived in [16] that unitary codewords,
i.e., JBTJB == (N/AT) . JIAT , can maximize the average signal­
to-noise ratio (SNR) regardless of the statistics on IHI. It has
also been shown that when IHI is zero-mean complex Gaussian
distributed, a unitary signal maximizes the capacity [14] and
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minimizes the union bound of word error rate (WER) [2] at
high SNR. These results suggest that a good code can perhaps
be constructed by collecting unitary codewords.

Secondly, it is better to have full-rank codeword pairs, where
a pair of codewords, JB(i) and JB(j), is said to be pair-wisely
full-rank if

rank ([JB(i) JB(j) J) == 2AT ,

subject to N 2: 2AT . This is because at fairly high SNR, the
average error probability is well approximated by the sum of
pair-wise word error rates, namely, the union bound [1]. Also
at fairly high SNR, the pair-wise word error is in tum well
approximated by

Pr ( B= JE(j) IJE(i) transmitted)

~ Q (~lllHIIIJAmin(JLij)) (2)

where

and Amin (ILi j ) is the smallest eigenvalue of ILi j . Here, "@" in­

dicates the Kronecker product, and Q(x) ~ k Jxoo e-t 2
/

2 dt
is the area under the tail of a standard Gaussian probability
density function. Hence, if [JB(i) JB(j)] do not achieve full
column rank, we can obtain by [8] that

det IJB(i)T (JIN - TIDB(j») JB(i) I == o.

This subsequently implies that Amin (ILi j ) == 0, and (2) will be
close to 1/2 at fairly high SNR, which is a situation that a
good code should avoid.

Therefore, a code that satisfies both the above criteria should
guarantee a good pairwise-error-based union bound (which in
tum hints to have a good performance). This viewpoint will
be confirmed by the subsequent simulations.

B. The Proposed Code Design

Denote the information sequence by k == [k1 k2 ... kK ]T ,

where k, E {± 1}. The corresponding codeword is then
proposed to be

JB __1_ [k k8 s]
-VAT -k8s k

where "8" denotes the Hadamard product, and

[
l K- rK/ 21] , if k 1 == -1
-lrK/21

s==

[
l K- rK/ 21] 8 d, otherwise.
-lrK/21

In the above equation, lk represents a k x 1 all-one vector,
and d ~ [(-1)0 (-1) 1 ... (-1 )K -1 ]T .

It can be easily examined that the unitary criterion is
satisfied, i.e., JBTJB == (N/ AT) . JIAT . It remains to show that
the code just introduced satisfies pair-wise full-rank criterion.
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Case 1: 8 i == 8 j == 8.

In this case,

IV. PRIORITY-FIRST SEARCH DECODING

and

where W ~ Re{(ATIN) 2:::1 Yjyf}, and tr(·) is the trace
matrix operation. By letting

In this section, we will derive the recursive decoding metric
that can be used by the priority-first search algorithm [9]. Since
the metric proposed is nondecreasing along every path in the
code tree, the optimality of the decoding result is certified
[16].

Continuing the derivation in (1) by noting that II JIDB 11
2

AT, we obtain

(3)

Now, let (k i , 8 i ) and (k j , 8 j ) be respectively the vector
pairs that define codewords 1ffi (i) and 1ffi(j). Denote for conve­
nience Cj,i == k j 88i. We then prove that Al i- (NIAT)2 and
A2 i- (NIAT )2 by differentiating the following two cases.

I

1 AT I
(3) {=} det JIA T ~ (N/A

T
)2 t;>'kUkUf -=I- 0

{=} det I~ (1 ~ (N~T)2) ukufl-=l- O.

for 1 <i, j ::; 2K with i i- j. By denoting respectively the kth
eigenvalue and kth eigenvector of Ai,jA[j by Ak and Uk, the
validity of (3) can be verified by showing that Ak i- (NIAT)2
for every k because

Let Ai,j ~ 1ffi(i)T1ffi(j). Then for the validity of the pair-wise
full-rank criterion, it suffices to prove that

det !JIA T ~ (N/~T)2Ai,jALI-=I- 0,

Then,

A..A!. == [(k Tk j )2 0]
~,J ~,J 0 (kTkj)2

So, Al == A2 == (kTk j)2 < (NIAT )2.

we have

AT [T]'" b.b! == _1_ M l M 2
L.J ~ ~ A MM'
i=l T 2 1

This reduces the decoding criterion to

Case 2: 8i i- 8j.

In this case,

which gives

k == arg min {-tr (MlIIJ)) - tr (M2JE)} ,
k

where IIJ) ~ Wl,l + W2,2, JE ~ Wl,2 - Wf2' and Wl,l, Wl,2
and W2,2 are the corresponding submatrices of

W == [Will Wl,2].
Wl,2 W2,2

Since the decision criterion is intact by adding a constant
independent of the codewords,

T [c 0]
Ai,jAi,j == 0 c '

where c ~ (IIAT)2(lkT(k j + kj 8 d) 1
2 + IkT(Cj,j - Cj,i) 1

2
) .

Accordingly, Al == A2 == C < (NIAT )2.
We end this section by commenting that our design can

be viewed as a high-dimensional variation of Alamouti codes.
Hence, the unitary property is satisfied simply by the Alam­
outi code structure. By properly introducing the additional
Hadamard product, our code can further fulfill the pairwise
full-rank property.

where
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Fig. 1. Comparison of word error rates (WERs) between the codes
constructed in Section III-B (Proposed-N) and the codes obtained from
simulated annealing search (SA-N). The codeword lengths arc taken to be
equal to N = 4,6,8, 10, 12 and 14.
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Figure I shows that the best (structureless) computer­
searched codes only have about 0.4 dB advantage over the
constructed codes for N = 4, 6, . .. , 12.

We also compare our code with a multiple-antenna system
that uses the (17,12, 3) nonlinear channel code/ in combina­
tion with the Alamouti code and a 7-bit training sequence.
In particular, the code bits are mapped to the two transmit
antennas using the Alamouti code before its transmission, and
the rece iver will estimate IHI in terms of a least square estimator
based on the 7 training bits. The result in Figure 2 illustrates
that this communication system perform s 0.7 dB worse than
the constructed code. In a technically infeasible situation that
assumes the receiver can achieve a perfect estimate of IHI
with merely 7 training bits, the typical communication system
outperform s the constructed code by only 0.5 dB.

We would like to emphasize that to search the best code
by computers for codeword length greater than 14 is very
operational intensive even if there are only two transmit
antennas. For example, it took about three weeks to cool
down the simulated-ann ealing search when N = 14 and
AT = 2. It can be anticipated that the search time will grow
exponentially with the code word length. Thus, the systematic
code construction that we propose may be a good alternative
as far as long code is concerned.

Figure 3 shows the decoding compl exity of the priority-first
search decoder for constructed code of length 24. The com­
plexity is defined as the average number of node expansions
per information bit. Since the number of node expansions is
half of the number of tree branch metrics computed (i.e., two
recursions of j-function values), the equivalent complexity of
exhaustive decoding is correspondingly (2K +1 - 1) . AT / K.
In the case of (24, 12) code with two transm it antennas, this
number is equal to 1365.17. It is then clear from the figure

j
A AR
;:. L Re{Ym,j Y~ ,j + Ym+K,jY~+K,J ,

dm n = J=1
, for 1 ::::: m , n ::::: N

0, otherwise

j
A AR
;:. LRe{Ym,jY~+K,j - Ym+K,jY~ ,j } '

em n = J=1
, for 1 ::::: m , n ::::: N

0, otherwise

Finally, the decoding metric j inside the parenthesis of (4)
can be computed recursively as

j(k(£)) = g( k(£)) - -y(k(£)) ,

where kef ) = [k1 k2 ••• k£V ,

g( k( H l) ) = g(k (£)) - (3( k( H1) ),

and dm,n and em,n are respectively the elements in matrices
]JJ) and JE and can be expressed as

K m

-y(k (£)) = - L L ( Idm,n ll{ sm = sn }
m=£+1n=£+1

+ lem,nl l{sm -1= sn })

~ K IAR {I
+ N T m~1 ~ R e ~ Ym+tK,r

X to to(- 1)" 1" . ul]<k(e)) }

p = It + (-I )t(i + j) / 2J, q = t + Ii - j l(_ 1)t, and

(r) (k ) _ (r) (k) 1 k i *
U i ,j (HI) - Ui ,j (£) +~ H l SHI YHl+j K,r '

In the above equation, I{-} denotes the set indicator function.

V. S IMULATION RE SULTS

In this section , we compare the performance of the code
constructed in Section III with the codes obtained by computer
search. The criterion used in the simulated annealing code
search algorithm follows that in [2] (also, [7] and [8]). We
take AR = 1 in our simulations, and assum e that IHI is zero­
mean compl ex Gaussian with E [IHIIHI II ] = (1/ AT ) ][AT ' The
average SNR is then give by

2
a 2 '

2The (17, 12,3) code we adopt here is formed by taking out some code
words from the (17,12 · log2(20/ 16), 3) code in [13].
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Fig. 2. Comparison of WERs among the codes constructed in Section III-B
(Proposed-24) and the system using a (17,12) nonl inear code in combination
with the Alamouti code and a 7-bit tra ining sequence. The codeword length
is equal to N = 24.
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that the priority-first search decoder significantly improve the
decoding complexity when it is compared with the exhaustive
decoder.
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