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Abstract— We propose a new technique for common-
acoustic-poles and zeros (CAPZ) modeling. In 3-D sound
processing, head-related transfer functions (HRTF’s)
record channels’ characteristics from different locations to
both ears. Compared to conventional pole/zero models, it is
more efficient to model HRTF’s by using CAPZ modeling.
Based on balanced model truncation (BMT), jointly BMT
is proposed to effectively model a group of HRTF’s using
common-poles IIR filters. The simulation result shows the
proposed method is superior to the previous Prony and
Shanks methods.
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I. INTRODUCTION

Head-related transfer functions (HRTF’s) contain
sound transmission behavior from different loca-
tions to both ears. Such an enormous data set makes
real-time implementation for 3 dimensional (3D)
sound processing difficult, therefore, approximation
of FIR by IIR digital filters is a more efficient way
to describe HRTF’s. To further save processing time
and the memory size, a group of HRTF’s can share
a set of poles but use their individual zeros, which
is called common-acoustic-poles and zeros (CAPZ)
modeling. For CAPZ modeling, Prony, Shanks and
the iterative prefiltering approaches have been pro-
posed in previous works[3][4]. Based on balanced
model truncation (BMT)[1], we propose a new
method, jointly balanced model truncation (jointly
BMT). BMT is promising in low-order modeling
of HRTF’s, but it can only determine IIR filter’s
parameters for individual HRTF’s. We extend BMT
to jointly BMT so that a group of HRTF’s can be
simultaneously modeled as IIR filters whose poles
are identical.
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II. BALANCED MODEL TRUNCATION

The details for BMT can be found in [2]. Only
a brief outline is given here. We start with an FIR
filter F'(z) with order n written as:

F(z)=co+ciz7 '+ +cpz™™

In the state-space model, F'(z) can be expressed as
a set of difference equations:

z(k+1) = Axz(k)+ Bu(k)
y(k) = Cz(k)+ Du(k)

where
00 00
10 00
A= .
0 0 - 10
1
0
B=| .
0
C=ler, e ... ¢,
and
D:CO.

The transfer function F'(z) is related to the state-
space model by the formulation

F(z)=C(zI — A)™'B+D.

F(2) can be approximated by the kth order
reduced balanced system (A®) B®C®) D) using
BMT. A low-order approximated IIR filter F'*)(2)
is related to (A*) B®)C*) D) by
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F®(2) = CW (2l — AM)1B® + D (1)

where
A® =T AV, B® = VIB,c® = CV,, D = .
@)

To determine V},, we can define a Hankel matrix as
follows:

Ci Co ... Cp
cg cg ... 0

gl © 3)
Cn, o ... 0

Because H is a symmetric matrix, it can be factor-
ized as:

H=VAVT. 4)

Vi is an n X k matrix obtained from the following
partition:
V =[Vi Vool

III. JOINTLY BALANCED MODEL
TRUNCATION

BMT can only be used to decide the approxi-
mated IIR filter for individual HRTF’s. In order to
design IIR filters for a set of HRTFs which are close
spatially, it is not efficient to design different IIR
for different HRTF. Based on BMT, jointly BMT
is proposed to approximate a group of HRTF’s by
using common-poles IIR filters.

From (1), we know that the poles of an approx-
imated IIR filter are determined by A*). From (2),
we know that A®) is determined by V. There-
fore, we know that a group of HRTF’s can be
approximated by one set of common poles and
individual sets of zeros if those Hankel matrices
corresponding to different HRTF’s share a set of
truncated eigenvectors V. In the following, we try
to find V' which can be shared by a group of Hankel
matrices because V, is given by (5). In finding
eigenvectors of H , we try to find x; that satisfies:

)

max ||H - x;||?
[lx1]l=1

where x; is the dominant eigenvector corresponding
to the largest eigenvalue of H. In turn, we can find
Xg, ..., Xn Which are orthogonal eigenvectors of H.

978-1-4244-5950-6/09/$26.00 ©2009 IEEE

Now that we are faced with a group of Han-
kel matrices, H,, H,, ..., Hy, the above eigenvalue
problem that seeks the dominant eigenpair of one
single Hankel matrix needs to be reformulated. Here
we need to find a virtual eigenvector x; which can
satisfy the following maximum criteria simultane-
ously:

max ||H; - xq||%,
llx1]l=1

max ||Hj - x1||2,
[|x1][=1

max ||Hy - x|

llx1 (=1
This attempt is not likely to work out successfully
unless H,, H,, ..., Hy have a common set of eigen-
vectors. As a compromise, we can integrate the
above multiple eigenvalue criteria into one single
criterion. A jointly BMT model is thus formulated
by solving x; from the following linearly combined
eigenvalue problem:
max (||Hy-xa1||* + ||Hz - xa]|* + ... + || Hy - x1|[?)

lIx1]|=1

2

H,
H,
= max - X1
[[x1]|=1
Hy

It means that x; is the dominant eigenvector corre-
sponding to the largest eigenvalue of H”H, which is
the correlation matrix of the cascaded joint Hankel
matrices H, denoted as

H,
: ©)
Hy

In Common-Acoustic-Pole-Zero(CAPZ) model-
ing, there are a group of N HRTF’s denoted as
Fi(2), F5(2), ..., Fn(2). Each HRTF is measured
from different locations to the ear. For each HRTF,
we can define a Hankel matrix H; in (3). In order
to find a set of eigenvectors shared by all Hankel

matrices, we can build a joint Hankel matrix H
by cascading Hi, H,,..., Hy as given in (6). We
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assume H is an m X n matrix (m > n) whose SVD
decomposition can be written as

H=UxVT (7)

V' contains the eigenvectors of H”H. Finally, each
F;(z) can be approximated by the kth order reduced
system (A®B®C® D,) where

AW = VT AV,
B®) — VIB,
CM = CVi, D; = cio 8)

t=1,2,..., N and V} is given by (5). The choice
of order k£ depends on the distribution of the singular
values along the diagonal elements of X’s. The
substantially smaller part of ¥’s diagonal elements
can be viewed as redundancy which has negligible
effect on the system response.

Now we summarize the complete jointly BMT
design procedure as follows.

1) given a group of FIR filters
Fi(2), F5(2), ..., Fn(2),
2) build Hankel matrices Hq, Hs, ..., Hy in (3)

3) form a joint Hankel matrix H in (6)

4) singular value decomposition of H in (7)

5) display the diagonal elements of ¥ and decide
the order k of reduced system

6) calculate the (A® B®WC® D) in (8)

7) convert the kth order reduced system
A®WB®CH D,y into the transfer function
using

FP(2) = P (2] — AW)71B® 4 D,

where E(k)(z) is the approximated IIR filter
of Fi(2),i=1,2,...,N

IV. SIMULATION RESULTS

The HRTF’s we use here are measured by MIT
media lab[5]. We choose 14 HRTF’s for the left
ear as a group with the azimuth=0 degree and
elevations ranging from -40 degree to 90 degree by
10-degree increase. Before simulation, the HRTF’s
measured by MIT are prefiltered. Initial time delays
are removed and the tails of HRTF’s with longer
data length are discarded so that all HRTF’s are of
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Fig. 1. Comparison of group error indices for four CAPZ models
(pole number=zero number)

the same data length. For performance comparison,
we define a group error index as:

2 2 2
”Fl — Ff’”” + HF2 - FQ(’“)H 4o+ ”FN - F,(\{“)H
IE))? + | Foll” + .. + | Ewll?

where F; is the actual impulse response and Fi(k) is
the approximated HRTF via different IIR models.
In our simulation, we compare group error index
performances of 4 different CAPZ models, includ-
ing Prony, Shanks, the iterative prefiltering, and our
proposed jointly BMT methods. For each method
, we plot the curve by changing the pole numbers
(which is also the zero number). The result in Figure
1 shows that the proposed jointly BMT model is
superior to both Prony and Shanks methods, and it
is comparable with the iterative prefiltering method.

V. CONCLUSION

In real-time applications, processing time is cru-
cial. The proposed method can efficiently model a
set of HRTF’s. The simulation result shows that the
proposed model outperforms the conventional Prony
and Shanks methods.
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