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Soft-margin support vector machine (SVM) is one of the most powerful techniques 

for supervised classification. However, the performances of SVMs are based on choosing 
the proper kernel functions or proper parameters of a kernel function. It is extremely time 
consuming by applying the k-fold cross-validation (CV) to choose the almost best pa-
rameter. Nevertheless, the searching range and fineness of the grid method should be de-
termined in advance. In this paper, an automatic method for selecting the parameter of 
the normalized kernel function is proposed. In the experimental results, it costs very little 
time than k-fold cross-validation for selecting the parameter by our proposed method. 
Moreover, the corresponding soft-margin SVMs can obtain more accurate or at least equal 
performance than the soft-margin SVMs by applying k-fold cross-validation to determine 
the parameters. 
 
Keywords: soft-margin support vector machine, SVM, kernel method, optimal kernel, 
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1. INTRODUCTION 
 

In the recent years, soft-margin support vector machines (SVMs) are widely and 
successfully used in several remote sensing studies. In many studies, they performed 
more accurately than other classifiers or performed at least equally well [1-6], since soft- 
margin SVMs have three properties [3]: 

 
1. They can handle large input spaces efficiently. 
2. They are robust for dealing with noisy samples. 
3. They can produce sparse solutions. 
 
Received January 24, 2011; revised August 18, 2011; accepted August 30, 2011.  
Communicated by Irwin King. 
* The study was supported and funded by the National Science Council of Taiwan under Grants No. NSC 100- 

2628-E-142-001-MY3 and 99-2221-E-142-002. 
+ Corresponding author. 



C. H. LI, H. H. HO, Y. L. LIU, C. T. LIN, B. C. KUO AND J. S. TAUR 

 

2 

 

However, the performances of soft-margin SVMs are based on choosing the proper 
kernel functions. For a given kernel function with some parameters, one can adjust the 
parameters to find different feature mappings which map samples from original space to 
a kernel induced feature spaces. Hence, the parameters play an important role by apply-
ing the soft-margin SVM or in the kernel method. How to determine the proper parame-
ters of a kernel function is an import issue. Recently, some studies use a data-dependent 
kernel based on some basic kernel [16], e.g., the Radial Basis Function (RBF) kernel, 
and use the optimization procedure to find the combination coefficients. However, it still 
needs to determine the basic kernel parameters, e.g., the width in RBF kernel or the de-
gree of the polynomial kernel. In generally, a “grid-search” on parameters, the parame-
ters of kernel functions and the penalty parameter C which controls the magnitudes of 
the slack variables, of soft-margin SVMs with the k-fold cross-validation (CV) is used 
for choosing the parameters and prevents the over fitting problem [6, 7]. Nevertheless, it 
is time consuming. Furthermore, before doing a grid-search, a better region and fineness 
on the grid should be pre-determined. 

In this paper, we will propose an automatic method for selecting the parameters of 
the normalized kernel function such as the RBF kernel function. The experimental results 
indicate that the searching efficiency is much improved and the corresponding perform-
ance is almost as good as the soft-margin SVM with the k-fold cross-validation. 

The rest of the paper is organized as follows. The reviews of kernel method and 
SVM are introduced in section 2. The proposed search method will be introduced in sec-
tion 3. The experiments on hyperspectral image data sets and UCI data sets are designed 
to evaluate the performances of the proposed method in section 4 and the experimental 
results are also reported in this section. Section 5 contains comments and conclusions. 

2. REVIEWS OF KERNEL METHOD AND SOFT-MARGIN SUPPORT 
VECTOR MACHINES 

2.1 Kernel Method 
 

It is easier for classification if pixels are more sparsely distributed. Generally speak-
ing, samples with high dimensionality, the number of spectral bands, potentially have 
better class separability. The strategy of kernel method is to embed the data from original 
space Rd into a feature space H, a Hilbert space with higher dimensionality, where more 
effective hyperplanes for classification are expected to exist in this space than in the 
original space. From this, we can compute the inner product of samples in the feature 
space directly from the original data items using a kernel function. This is based on the 
fact that any kernel function κ : Rd × Rd → R satisfying the characterization of kernels [1], 
can be stated formally in the following theorem: 
 
Theorem 1  Characterization of kernels. A function κ: Rd × Rd → R which is either 
continuous or has a finite domain, can be decomposed 
 

κ(x, z) = <φ(x), φ(z)>, where x, z ∈ Rd, 
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into a feature map φ into a Hilbert space H applied to both its arguments followed by the 
evaluation of the inner product in H if and only if it is a symmetric function for which 
the matrices K = [κ(xi, xj)]1≤i,j≤N formed by restriction to any finite subset {x1, …, xN} of 
the space Rd are positive semi-definite, i.e., having no negative eigenvalues. 

The following are some popular kernels. 
 
• Linear kernel: 
 

κ(x, z) = <x, z>,  (1) 
 

• Polynomial kernel: 
 

κ(x, z, r) = (<x, z> + 1)r, r ∈ Z+, (2) 
 

• Gaussian Radial Basis Function kernel (RBF kernel): 

     

2

2( , , ) exp , (0, ),
2

x z
x zκ σ σ

σ

⎛ ⎞−
⎜ ⎟= − ∈ ∞
⎜ ⎟
⎝ ⎠

 (3) 

where x and z are the samples in Rd. Moreover, r and σ are the parameters which should 
be pre-determined of polynomial kernel and RBF kernel, respectively. 

It is worth stressing here that the size of the kernel matrix is N × N and contains in 
each position Kij the information of distance among all possible pixel pairs (xi and xj) 
measured with a suitable kernel function κ fulfilling the characterization of kernels and if 
we use the linear kernel, then the feature mapping φ is an identity map, that is, φ is linear. 
Otherwise, the feature mapping can be nonlinear. One important idea for using kernel 
method is without knowing the nonlinear mapping explicitly [15]. 
 
2.2 Normalized Kernel Function Kernel 
 

In this paper, a normalized kernel function [1] is used. Given a based kernel func-
tion κ, e.g., the RBF kernel or the polynomial kernel, with a parameter β, the corre-
sponding normalized kernel is defined as 

( , , )( , , ) .
( , , ) ( , , )

x zx z
x x z z
κ βκ β

κ β κ β
=  (4) 

One can observe that RBF kernel is a good example of a normalized kernel with a 
parameter β which is equal to σ, the width in the RBF kernel. Moreover, the norms of 
samples in the feature space are all one, since ( , , ) 1x xκ β =  for all x ∈ Rd. This means 
that the samples in the feature space are on the surface of a hypersphere. Therefore, the 
magnitudes of distances of samples in H are of the same order of magnitudes of the an-
gles of samples in H, and the similarity, the cosine values of angles between samples can 
be determined by the normalized kernel function value. Furthermore, different value of 
the parameter β indicates that different corresponding mapping φ, and, hence, the corre-
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sponding feature space H is also adopted. Based on this property, we propose an auto-
matic method for determining which value of the parameter β is the best for discrimina-
tion. 
 
2.3 Soft-Margin Support Vector Machines 
 

Soft-margin SVM is to find a hyperplane in the feature space, a Hilbert space H, in 
the middle of the most separated margins between two classes, and this hyperplane can 
be applied for classifying the new testing samples [1-7]. Let {xi}N

i=1 and {yi}N
i=1 be a set 

of training samples and the corresponding label set, respectively. The soft-margin SVM 
algorithm is performed by the following constrained minimization optimal problem: 

  

, 1

1min ,
2i

N
T

iw i
w w C

ξ
ξ

=
+ ∑  (5) 

subject to yi(wTφ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, 2, …, N 
 
where w is a vector normal to the hyperplane in H, b is a constant such that b/||w|| repre-
sents the distance of hyperplane from the origin, ξi’s are slack variables to control the 
training errors, and C ∈ R+ − {0} is a penalty parameter that permits to tune the gener-
alization capability. 

In general, an equivalent dual representation by using the Lagrange optimization is 
used to find the optimizer. The corresponding dual Lagrange function is defined as: 

1 1 1

1max ( , ),
2i

N N N

i i j i j i j
i i j

y y x x
α

α α α κ
= = =

−∑ ∑∑  (6) 

subject to 
1

0,
N

i i
i

yα
=

=∑  0 ≤ αi ≤ C, i = 1, 2, …, N. 
 

Once αi are determined, any new test pattern z ∈ Rd is associated with a forecasting 
label yz, 
 

 

1
= sgn( ( , ) + )

N

z i i i
i

y y x z bα κ
=
∑   (7) 

where b is chosen so that 

1
( , ) 1,

N

j i i i j
i

y y x x bα κ
−

⎛ ⎞
+ =⎜ ⎟

⎝ ⎠
∑  (8) 

for any xj with 0 < αj < C. 
There are two parameters, β and C, for soft-margin SVMs with the normalized ker-

nel function. Which are the best for a given problem is unknown beforehand. To identify 
good β and C so that the classifier can accurately predict unknown samples is the main 
goal. A “grid-search” on β and C of soft-margin SVMs with the k-fold cross-validation 
(CV) is often used and prevents the overfitting problem [6, 7]. However, this approach is 
extremely time-consuming, especially for the large training data set situation or the high- 
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dimensional dataset situation. Moreover, the range and fineness of the grid could also 
affect the quality of the selected parameter value. Hence, in the next section, an auto- 
matic way for determining the value of β is proposed for solving this parameter selection 
problem. 

3. PROPOSED METHOD: AUTOMATIC PARAMETER SELECTION 
METHOD 

Suppose Ωi is the set of training samples in class i, i = 1, 2, …, L. There are two 
important properties of the normalized kernel function: (1) ( , , ) 1,i ix xκ β =  ∀i = 1, …, n, 
i.e., the norm of every sample in the feature space is 1, and (2) − 1 ≤ ( , , ) 1i jx xκ β ≤ , ∀i, j 
= 1, …, n, i.e., the cosine value of two training samples xi and xj in the feature space can 
be computed by ( , , )i jx xκ β  and it determines the similarity between these two samples. 

Based on the above two observations and the concepts, two properties are desired 
and described as follows: (1) The samples in the same class should be mapped into the 
same area in the feature space and (2) the samples in the different classes should be 
mapped into the different areas. We want to find a proper parameter β such that 

 
(1) ( , , )x zκ β  ≈ 1, if x, z ∈ Ωi, i = 1, …, L and  
(2) ( , , )x zκ β  ≈ − 1, if x ∈ Ωi, z = Ωj, i ≠ j. 

 
We use RBF kernel to illustrate these properties. If the parameter σ is close to 0, 

then the corresponding kernel function values are all close to 0, the lower bound of the 
RBF kernel function. This means that all samples in a feature space are all approximately 
mutually perpendicular. When σ increases, the values of the RBF kernel function with 
respect to the samples which are closer by applying the Euclidean distance in the original 
space increase fast. As σ is close to infinity, the corresponding kernel function values are 
all close to 1. So the samples in the feature space are close to a fixed point. Fig. 1 shows 
the image of the ideal distribution in the ideal feature space. 

 
Fig. 1. The ideal distribution in the desirous feature space. 

In this paper, two criteria are proposed for measuring these properties. First one is 
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the mean of values applied by the normal kernel function on the samples in the same 
class: 

2
11

1( ) ( , , ),
i i

L

L
i x zii

x zω β κ β
= ∈Ω ∈Ω=

=
Ω

∑ ∑ ∑
∑

 (9) 

where |Ωi| is the number of training samples in class i. The parameter β should be deter-
mined such that ω(β) closes to 1. Second one is the mean of values applied by the nor-
malized kernel function on the samples in the different classes: 

 1 111

1( ) ( , , ).
| | | | i j

L L

L L
i j x zj i ji j ij i

b x zβ κ β
= = ∈Ω ∈Ω== ≠≠

=
Ω Ω

∑∑ ∑ ∑
∑ ∑

 (10) 

So β should be determined also such that b(β) closes to − 1. Hence, the optimal β * can be 
obtained by solving the following optimization problem: 

min ( ) (1 ( )) (1 ( )) 2 ( ) ( ).J b b
β

β ω β β ω β β≡ − + + = − +  (11) 

The time complexity for computing J(β) is O(N 2d) which depends on the number of 
training samples N and the dimensionality d. 

Note that if ( , , )x zκ β  is differentiable, e.g., the based kernel is RBF kernel func-
tion, with respect to β, the gradient descent method [10], 

       1  = ( ), > 0, 1, 2,n n n n nJ nβ β γ β γ+ − ∇ = …  (12) 

is used to solve the proposed optimization problem, where 

  ( ) ( ) ( ),n n nJ bβ β ω β
β β
∂ ∂

∇ = −
∂ ∂

 (13) 

and γn is the step size at the nth iteration. 
Otherwise, if the parameter β is discrete, e.g., the based kernel is polynomial kernel, 

then we can find the best β * such that 

    
*   = arg min{ ( ) = 1, 2, , }J s

β
β β β …  (14) 

where s is an integer and should be pre-determined. 
The general steps of the proposed method to the soft-margin SVM can be listed as 

follows. 
 
Step 1: Find the best parameter β * such that 

        min ( ) (1 ( )) (1 ( )) 2 ( ) ( ).J b b
β

β ω β β ω β β≡ − + + = − +  (15) 



AUTOMATIC METHOD FOR SELECTING NORMALIZED KERNEL PARAMETER 

 

7 

 

Step 2: Use the k-fold cross-validation (CV) to find the proper parameter C of the soft- 
margin SVM by applying the normalized kernel function ( , , )x xκ β  with β*. 

4. EXPERIMENTS 

In this section, the experiments in order to investigate the multiclass classification 
performances of the soft-margin SVMs with the normalized kernel function by applying 
our proposed method (OP) and the selected parameters the 5-fold cross-validation (CV) 
in experiments 1 and 2. Both the parameters C by applying OP and CV to the soft-margin 
SVMs should still be selected via 5-fold cross-validation. The polynomial kernel func-
tion and the RBF kernel function are used for as the based kernels. This study employs 
two measures of classification accuracy to investigate classifier performance: (1) overall 
classification accuracy (the percentage of the correctly classified samples for all classes) 
and (2) overall kappa coefficient (the percentage of the kappa coefficient for all classes). 

 
4.1 Experiment 1 
 

Two real data sets are applied to compare the performances in the experiment 1. 
They are the Indian Pine Site image, a mixed forest/agricultural site in Indiana, and the 
Washington, DC Mall hyperspectral image [11] as an urban site. The first one of these 
data sets was gathered by a sensor known as the Airborne Visible/Infrared Imaging Spec-
trometer (AVIRIS). The Indian Pine Site image, mounted from an aircraft flown at 65000 
ft altitude and operated by the NASA/Jet Propulsion Laboratory, with the size of 145 × 
145 pixels has 220 spectral bands measuring approximately 20 m across on the ground. 
Since the size of samples in some classes are too small to retain enough disjoint samples 
for training and testing, only eight classes, Cornmin, Corn-notill, Soybean-clean, Grass/ 
Pasture, Soybeans-min, Hay-windrowed, Soybeans-notill, and Woods, were selected for 
the experiments. 

The other dataset, Washington, DC Mall from an urban area, is a Hyperspectral 
Digital Imagery Collection Experiment airborne hyperspectral data flight line over the 
Washington, DC Mall. Two hundred and ten bands were collected in the 0.4-2.4 m re-
gion of the visible and infrared spectrum. Some water-absorption channels are discarded, 
resulting in 191 channels [11]. There are seven information classes, roofs, roads, trails, 
grass, trees, water, and shadows, in the data set. 

In this experiment, for investigating the influences of training sample sizes to the 
dimension, three distinct cases, |Ωi| = 20 < n < d (case 1), |Ωi| = 40 < d < n (case 2), and d 
< |Ωi| = 300 < n (case 3), will be discussed. The case 1 is a so called ill-posed classifica-
tion situation, which means data dimensionality exceeds the total number of independent 
training samples in every class. Moreover, the case 2 is a so called poorly-posed classi-
fication situation, which means data dimensionality is greater than or comparable to the 
number of (independent) per-class representative training samples, but smaller than the 
total number of representative samples. In case 3, there are enough independent training 
samples. The MultiSpec [11] was used to select training and testing samples. In the In-
dian Pine Site dataset, all samples in the image are used as the testing samples to compute 
the validation measures, overall accuracies and overall kappa accuracies. In the Wash-
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ington, DC Mall dataset, 100 testing samples per class, in our experiments which is the 
same method in [11-13]. 

If the RBF kernel is the based kernel, then the best β by applying CV is found in the 
given sets {27, 28, …, 216} and {215, 216, …, 224} in Indian Pine Site and Washington, DC 
Mall data sets, respectively. The parameters C by applying OP and CV in these two data 
sets should be selected on the set {20, 21, …, 215}. If polynomial kernel is the based ker-
nel, then the best β by applying CV is found in the given set {1, 2, …, 32}. 

The shape of the function J(β) by using the Indian Pine Site dataset and the RBF 
kernel as the based kernel in case 1 is shown in Fig. 2. The horizontal and vertical axes 
are the values of the parameter β and the corresponding J(β), respectively. This graph 
indicates that J(β) has only one minimum value which is the desired selected value of σ 
in the proposed method. Fig. 3 shows the accuracies and kappa accuracies of testing 
samples and all samples in the Indian Pine Site Image at different β by applying soft- 
margin SVMs with a fixed C in case 1. 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

β

J(
β)

β vs. J(β)

 
Fig. 2. The optimizer locates in the range [3500, 4000]. 

 
 β                                          β 

 
                   β                                          β 
Fig. 3. There are accuracies and kappa accuracies of testing samples and all samples in the Indian

Pine Site Image at different β by applying soft-margin SVMs with a fixed C in the case 1. 
The near optimal performances occur in the rage [3500, 4500]. 
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One can note that the minimum of J(β) in Fig. 2 locates in the range [3500, 4000] 
and the near optimal overall and kappa accuracies of testing samples and all samples in 
the Indian Pine Site Image by applying SVMs with a fixed C occur in the rage [3500, 
4500]. These two figures show that the proposed method obtains a proper parameter 
which the overall classification accuracy and kappa accuracy are near the best. 

Moreover, Fig. 4 shows the 5-fold accuracies of training samples in three cases. The 
more are training samples, the smoother are the surfaces. Moreover, Fig. 5 shows the “β 
versus J(β)” in three cases. The optimizers (also in the range [3500, 4000]) are similar 
among three cases. However, the optimizers obtained from k-fold cross-validation (Fig. 4) 
are very different among three cases, since it depends on the random partitions. Hence, 
the proposed method could find a more suitable parameter than k-fold cross-validation, 
especially in the small sample size. From Fig. 4, we observe that the tendency near the 
optimizer is similar in every case. Therefore, it is reasonable to seek the optimal parame-
ter β and then seek the parameter C which is following [16]. 

15

20

25

6
8

10
12

14
16

0.2

0.4

0.6

0.8

1

log2(C)
log2(β)

5-
fo

ld
 A

cc
ur

ac
y

15

20

25

6
8

10
12

14
16

0.2

0.4

0.6

0.8

1

log2(C)
log2(β)

5-
fo

ld
 A

cc
ur

ac
y

15

20

25

6
8

10
12

14
16

0.65

0.7

0.75

0.8

0.85

0.9

0.95

log2(C)
log2(β)

5-
fo

ld
 A

cc
ur

ac
y

 
(a)                        (b)                        (c) 

Fig. 4. (a), (b), and (c) are the 5-fold accuracies of training samples in cases 1, 2, and 3, respectively. 
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Fig. 5. (a), (b), and (c) are the “β versus J(β)” in cases 1, 2, and 3, respectively. 

Tables 1 and 2 are the overall and kappa accuracies in Indian Pine Site dataset and 
Washington, DC dataset by applying RBF kernel as the based kernel function, respec-
tively. Tables 3 and 4 are the overall and kappa accuracies in Indian Pine Site dataset and 
Washington, DC dataset by applying polynomial kernel as the based kernel function, re-
spectively. One can find that the cost of time for proposed method is much less than the 
5-fold cross-validation on both two datasets. Moreover, the classification results show 
that the soft-margin SVMs by using OP to find the parameter can obtain more accurate in 
the small sample size. By the way, the optimal values by OP in three cases are similar. So 
we can use small number of samples to approximate the optimal value. 
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Table 1. Overall and kappa accuracies in the Indian Pine Site dataset (the based kernel 
is the RBF kernel). 

Ni Method CPU Time (sec) β Overall Accuracy Overall Kappa Accuracy 
CV 197.50 8192 0.749 0.712 20 OP 21.22 3622.80 0.768 0.733 
CV 531.25 8192 0.811 0.781 40 OP 58.78 3615.36 0.831 0.804 
CV 22859.95 4096 0.928 0.915 300 OP 2416.61 3795.66 0.928 0.916 

 
Table 2. Overall and kappa accuracies in the Washington, DC Mall dataset (the based 

kernel is the RBF kernel). 
Ni  Method CPU Time (sec) β Overall Accuracy Overall Kappa Accuracy 

CV 91.56 524288 0.826 0.80 20 OP 9.91 178600.96 0.844 0.82 
CV 249.64 131072 0.886 0.87 40 OP 27.91 177898.80 0.881 0.86 
CV 14191.69 2097152 0.961 0.96 300 OP 1474.45 182370.06 0.951 0.94  

 
Table 3. Overall and kappa accuracies in the Indian Pine Site dataset (the based kernel 

is the polynomial kernel). 
Ni Method CPU Time (sec) β Overall Accuracy Overall Kappa Accuracy 

CV 1020.14 31 0.753 0.716 20 OP 42.20 32 0.754 0.717 
CV 4138.03 32 0.806 0.777 40 OP 170.66 32 0.806 0.777 
CV 295986.27 32 0.918 0.904 300 OP 12159.09 32 0.918 0.904 

 
Table 4. Overall and kappa accuracies in the Washington, DC Mall dataset (the based 

kernel is the polynomial kernel). 
Ni Method CPU Time (sec) β Overall Accuracy Overall Kappa Accuracy 

CV 1619.03 16 0.850 0.825 20 OP 50.844 4 0.857 0.833 
CV 4848.56 2 0.874 0.853 40 OP 148.906 3 0.879 0.858 
CV 433692.27 2 0.956 0.948 300 OP 14291.23 3 0.950 0.941 

 
After comparing Tables 1-4, we can find that, in some case, the performance by us-

ing the polynomial kernel as the based kernel is better than by using the RBF kernel as 
the based kernel. For example, in Table 4, the overall accuracy of the Washington, DC 
Mall dataset with OP in case 1 is 0.857. But the overall accuracy of the Washington, DC 
Mall dataset with OP in case 1 in Table 2 is 0.844. Hence, in upcoming research, we can 
extend our proposed method based on the composite kernel, i.e., a combination of the 



AUTOMATIC METHOD FOR SELECTING NORMALIZED KERNEL PARAMETER 

 

11 

 

RBF kernels and the polynomial kernels, to combine the advantages of these two basic 
kernel functions for classification. 
 
4.2 Experiment 2 
 

The four real data sets, “Ionosphere,” “Monk1,” “Pima,” and “Iris” are described in 
Table 5. These data sets are available from the FTP server of the UCI [23] data reposi-
tory. Similar to the experiment 1, the RBF kernel and the polynomial kernel are used as 
the based kernels. The grid-search ranges by applying CV method are also showed in 
Table 5. The columns β = σ and β = γ indicate the based kernel functions are the RBF 
kernel and the polynomial kernel, respectively. Again, the parameters C by applying OP 
and CV in these data sets should be selected on the sets which show in the last column of 
Table 5.  

Table 5. Descriptions of three real data sets and the corresponding sets for CV (# of FEs 
means the number of features). 

Dataset Classes # of Samples # of FEs β = σ β = γ C 
Ionosphere 2 351 34 {2−5, 2−4, …, 214} {1, 2, …, 7} {2−30, 2−29, …, 230} 

Monk1 2 432 6 {2−3, 2−2, …, 25} {1, 2, …, 30} {20, 21, …, 210} 
Pima 2 768 8 {2−8, 2−7, …, 28} {1, 2, …, 26} {20, 21, …, 210} 
Iris 3 150 4 {2−8, 2−7, …, 210} {1, 2, …, 100} {20, 21, …, 220} 

Table 6. Overall and kappa accuracies in UCI data sets (the based kernel is the RBF 
kernel). 

Dataset Method CPU Time (sec) β Overall Accuracy Overall Kappa Accuracy 
CV 32.22 2 0.980  0.931 Ionosphere 
OP 2.53  1.94 0.980  0.931 
CV 11.81 1 0.884  0.769 Monk1 
OP 1.48 1.66 0.894  0.787 
CV 318.88  128 0.755  0.489 Pima 
OP 25.02  73.83 0.786  0.557 
CV 34.80  0.5 0.973  0.960 Iris 
OP 2.48  1.45 0.987  0.980 

 
Table 7. Overall and kappa accuracies in UCI data sets (the based kernel is the polyno-

mial kernel). 
Dataset Method CPU Time (sec) β Overall Accuracy Overall Kappa Accuracy 

CV 95.83 7 0.960 0.869 Ionosphere 
OP 13.46 3 0.980 0.931 
CV 60.56 22 0.857 0.713 Monk1 
OP 1.90 11 0.887 0.773 
CV 2159.78 2 0.734 0.454 Pima 
OP 65.86 5 0.729 0.439 
CV 556.02 11 0.987 0.980 Iris 
OP 5.69 51 0.987 0.980 
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From Tables 6 and 7, the proposed method OP spends much less time than CV. 
Moreover, the accuracies by applying OP are higher than or similar to the accuracies by 
applying CV. 

5. CONCLUSION  

In this paper, an automatic method for selecting the parameter of the normalized 
kernel was proposed, and we have compared it and the k-fold cross-validation experi-
mentally. The experiments of two hyperspectral images and four UCI data sets show that 
the time cost of the proposed method is much less than the k-fold cross-validation. How-
ever, the classification performance by applying the soft-margin SVM with our proposed 
method is higher than or similar to that with the k-fold cross-validation. Furthermore, we 
will try to develop the framework to other kernel functions and apply the proposed 
method to kernel-based feature extraction methods, e.g., generalized discriminant analy-
sis [14] and kernel nonparametric weighted feature extraction [15]. 
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