Computer Standards & Interfaces 34 (2012) 171-188

journal homepage: www.elsevier.com/locate/csi

Contents lists available at SciVerse ScienceDirect

Computer Standards & Interfaces

(AL

s

TR

User-configurable semantic home automation

Yung-Wei Kao **, Shyan-Ming Yuan *"

2 Department of Computer Science, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan

b College of Computing & Informatics, Providence University, Taiwan

ARTICLE INFO ABSTRACT

Article history:

Received 24 March 2011

Received in revised form 5 August 2011
Accepted 11 August 2011

Available online 8 September 2011

Keywords:

Smart home
Semantic home
Home automation
Web service

OWL

The ideas of smart home and home automation have been proposed for many years. However, when discussing
homes of the future, related studies have usually focused on deploying various smart appliances (or devices)
within a home environment and employing those appliances automatically by pre-defined procedures. The dif-
ficulties of supporting user-configurable automation are due to the complexity of various dynamic home envi-
ronments. Moreover, within their home domains, users usually think semantically; for example, “I want to
turn off all the lights on the second floor”. This paper proposes a semantic home automation system, USHAS
(User-configurable Semantic Home Automation System), which adopts Web Service and WSBPEL for executing
automated process; OWL and OWL-S for defining home environments and service ontology; and a self-defined
markup language, SHPL (Semantic Home Process Language), for describing semantic processes.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Previous studies have focused on providing solutions for smart
homes [1-4], home automation [5-7], and ubiquitous homes [8-10].
Numerous of these studies [11-13] concentrate not only on control-
ling devices, but also on combining additional factors before doing
so. For example, facial recognition can be performed for opening a
door, and hand gesture recognition can be utilized to change the
channel of a TV. However, regardless of whether these home appli-
ances are controlled manually by users or indirectly and automatical-
ly by computers, most systems provide only pre-defined control of
appliances. For example, hand gestures indicating numbers for
changing channels on a TV cannot be used as an input for changing
the temperature of air conditioner, unless users modify the programs
by themselves. Such modification requirement limits the flexibility
and scalability of numerous home control and automation systems.

Controlling appliances without pre-defined procedures is difficult,
as several requirements must be fulfilled. First, all devices, including
home appliances, sensors, and remote controls, should be designed
separately with standard interfaces provided. This criterion is reason-
able, because users usually purchase devices manufactured by different
companies. Second, how automation processes receive information
from sensors and control devices should be standardized. Finally,
these processes should be designed by users in an easy and understand-
able manner.

* Corresponding author.
E-mail addresses: ywkao@cs.nctu.edu.tw (Y.-W. Kao), smyuan@cis.nctu.edu.tw
(S.-M. Yuan).

0920-5489/% - see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.csi.2011.08.002

To provide interconnectivity between different parties, various
Service-Oriented Architecture (SOA) [14] technologies have been
designed. In general, numerous home systems adopted the Open Ser-
vices Gateway Initiative (OSGi) architecture [15] for smart home im-
plementation. However, the OSGi platform does not provide a
complete process management and execution solution; therefore,
pre-defined procedures for executing processes are usually designed
for the OSGi. By contrast, Web Service [16] focuses on providing inter-
connectivity between parties. Moreover, the OASIS Web Services
Business Process Execution Language (WSBPEL or BPEL4AWS) [17]
has been defined for process management and execution of Web Ser-
vices. Therefore, this paper adopted the Web Service standard for de-
fining operations of devices and the WSBPEL standard for defining
automation processes.

Although WSBPEL provides an effective process definition stan-
dard, a gap remains between what users actually want and what
they must define in processes. This is because users usually think se-
mantically; for example, “I want to turn off all the lights on the second
floor”. In this instance, the WSBPEL process cannot be defined, be-
cause the home system does not know about the lights located on
the second floor. To solve this problem, this paper adopted the Web
Ontology Language (OWL) [18] to create a knowledge base in a se-
mantic home, and the OWL-S [19] technology to describe the Web
Services of the devices.

Although the OWL-S standard provides the functionality of pro-
cess definition, the difference between the OWL-S process and the
WSBPEL process is quite small. Only the input and output variables
are mapped to the OWL ontology, and users must specify many bind-
ing details. To achieve the goal of semantic home automation, this
paper adopts OWL-S only for semantic service description and

http://dx.doi.org/10.1016/j.csi.2011.08.002
mailto:ywkao@cs.nctu.edu.tw
mailto:smyuan@cis.nctu.edu.tw
http://dx.doi.org/10.1016/j.csi.2011.08.002
http://www.sciencedirect.com/science/journal/09205489

172 Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

discovery, but not for semantic process definition and execution. Be-
cause no appropriate candidate is available for defining semantic
home processes, this paper designed a markup language, SHPL (Se-
mantic Home Process Language), to describe semantic processes. In
addition, the SHPL execution runtime is developed, which dynamical-
ly generates a WSBPEL process for each semantic process based on
the current home environment defined in the knowledge base.

This paper proposes a semantic home automation system, USHAS
(User-configurable Semantic Home Automation System), which
adopts Web Service and WSDL to execute automation processes;
OWL and OWL-S to describe home environments and service ontolo-
gy; and SHPL to define semantic processes. To prove that the pro-
posed system can satisfy user needs adequately, this paper designed
nine demonstration scenarios: the living room, long vacation, home
gym, morning rush, dinner time, good student, sweet dreams, bath
time, and party night. Furthermore, this paper designed and analyzed
a questionnaire to determine which scenarios were more appealing
to users. Finally, the usability of USHAS was evaluated.

The research contains seven sections. In Section 2, the back-
grounds and related works of the proposed system are introduced.
Section 3 discusses the design issues of USHAS. The USHAS ontology
and SHPL are described in Sections 4 and 5 respectively. We present
the system architecture and detailed system design of USHAS in Sec-
tion 6. System demonstrations and evaluations of scenarios are pre-
sented in Section 7. Finally, we end up with a conclusion and
discuss the future works of proposed system in Section 8.

2. Backgrounds and related works
2.1. Smart home and home automation

Smart homes and home automation are popular topics, referring
to devices and appliances in the home environment that can be con-
trolled automatically in an intelligent manner. Thus far, numerous
studies have proposed system designs and even smart home products
[1-4]. In smart home systems, devices and appliances are usually con-
trolled to facilitate the duties of daily life. Home automation systems
generally contain an internal network, as well as intelligent rules and
devices in the home network for convenient or special purposes. De-
vices and appliances can be controlled automatically by, or provide
environmental information to, these home automation systems. In
addition, changing the state of a device may also change the state of
another device, or trigger actions in other devices within the smart
home environment [6].

2.2. SOA and 0SGi-based smart home

Before defining a high level of logic for automation processes, the
most crucial challenge is to facilitate the interconnectivity between
different devices. Due to highly varied standards for home devices,
such as X10 [20], INSTEON [21], UPnP [22], and Jini [23], communica-
tion between different devices is difficult to establish using dissimilar
interfaces under various standards. For such heterogeneous network
integration, the Service-Oriented Architecture (SOA) [14] design
principle provides interoperability between various loosely coupled
services. Open Services Gateway initiative (OSGi) [15] is one of the
technologies that implement the SOA paradigm, and numerous re-
searchers have implemented smart home systems based on OSGi. Li
et al. [24] designed a home network system, providing a Web inter-
face for users to control appliances directly on the OSGi platform. Ishi-
kawa et al. [25] proposed SENCHA, a smart appliance integration
middleware framework based on OSGi. They indicated several limita-
tions of OSGi in implementing smart home automation, such as the
lack of multiple views of abstraction levels. In other words, the capa-
bility of multilevel abstraction of OSGi is not enough. Wu et al. [1]
combined the OSGi platform with mobile agents [26] in their design,

which involves multiple mobile agents responsible for different tasks,
distributed among multiple OSGi platforms. Liao et al. [8] adopted the
Message-Oriented Middleware (MOM) [27] paradigm for event han-
dling in their context-aware smart home system. Rui et al. [9] pre-
sented a physical structure model and a multi-agent [28] based
software architecture based on OSGi; this architecture encapsulated
the device sensing as well as control operations into the AmI-Adaptor,
and encapsulated the computation logic into the AmlI-Box.

The primary problem of OSGi is that only bundles installed on the
same OSGi container can inter-communicate. Therefore, technologies
such as mobile agents in [1] must be designed to establish communi-
cation between different containers. Another problem of OSGi is that
no standard process definition is provided. Hence, in the OSGi based
systems, high level device control decisions are usually made by
multi-agents and pre-defined by programmers. As a result, automa-
tion processes are fixed and not allowed to be configured by users. Al-
though the system designed in [9] provides the capability of user
configuration to Aml systems, the configuration level is at the Aml-
Adaptor and AmI-Box levels, not at the process level; users must se-
lect and configure which AmI-Adaptor or AmI-Box to communicate.

2.3. Web Service, WSBPEL, and Web Service Based Home Automation

Web Service [16] is another technology that implements the con-
cept of SOA, consisting of three main standards: Web Services De-
scription Language (WSDL) [29], Simple Object Access Protocol
(SOAP) [30], and Universal Description, Discovery and Integration
(UDDI) [31]. Similar to OSGi, Web Service provides interoperability
between different services; therefore, it is also a candidate for smart
home platforms. Uribarren et al. [32] proposed a middleware system
based on Web Service for controlling devices with different protocols.
Unlike OSGi, a process execution standard, Web Services Business
Process Execution Language (WSBPEL) [17], is designed to support
process definition for executing Web Services. Because devices are
usually provided by different manufacturers, the concept of device
functionalities can be mapped to services provided by enterprises;
and the concept of process execution using different devices can be
mapped to cross-business process execution, including different en-
terprises. Anke et al. [33] revealed the drawback of OSGi: OSGi bun-
dles are not directly accessible from clients outside of the OSGi
container. To solve this problem, Anke et al. designed a system that
exposes OSGi bundles using Web Service interfaces, and then exe-
cutes these bundles using processes defined in WSBPEL. However,
using both OSGi and Web Service involves a duplicate design, because
both of them follow the SOA paradigm. Systems supporting WSBPEL
process definition and execution can adopt device drivers directly
implemented by Web Service, instead of by OSGi bundles, to reduce
system overhead.

2.4. Semantic Web, Context-Aware Home, OWL-S, and Semantic Home
Automation

Although WSBPEL is already a higher layer of both Web Service
and OSGi, it is still difficult for users to write a WSBPEL document di-
rectly by themselves; many details of static binding, such as port-
Types or URLs of services, must still be provided. To enable
communication based on semantic ontology between different pro-
grams across the boundaries of different organizations, Semantic
Web [34] technology is designed on the basis of Resource Description
Framework (RDF) [35] and Web Ontology Language (OWL) [18]. In
general, Semantic Web technology is usually used for context-aware
home automation systems. Wang et al. [36] designed the CONON on-
tology for context reasoning in pervasive computing environments,
including home environments. Moreover, several reasoning engines,
such as OWL-QL [37], have been developed for understanding seman-
tic meanings of OWL, and can be highly useful in semantic home

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188 173

systems. For example, if Light L is located in the living room, and the
living room is located on the first floor, then the query “all the lights
on the first floor” can identify Light L. Furthermore, OWL-S [19] ex-
tends the capability of OWL to describe the operations of Web Service
and semantic process execution of these operations. Mokhtar et al.
[38] developed a QoS-aware dynamic service composition mecha-
nism in ambient intelligence environments, using OWL-S for service
description and process definition.

Although OWL-S is based on Semantic Web, it is still not abstract
enough for users to express high-level concepts of processes, such
as “I want to turn off all the lights on the second floor”. Necessary se-
mantic processes should still be defined explicitly by OWL-S. Given a
dynamic home environment, for example, after installing a new light
on the second floor, the OWL-S process should be modified to meet
the requirements of using that light. Ha et al. [10] proposed an infra-
structure for a ubiquitous home network service, adopting numerous
technologies such as Web Service, WSBPEL, and OWL-S. Moreover,
they designed a high level semantic process definition. Processes
based on this definition are interpreted to WSBPEL processes dynam-
ically according to the current home environment. However, the pro-
posed semantic process definition language is too simplified, and not
user-configurable.

Based on Semantic Web, situation-driven approaches [39-41] pro-
vide a higher level of semantic process automation abstraction. The
concepts of situation, user goals, and broker goals are proposed so
that Web Services can be controlled to fulfill brokers' goals, which
further fulfill user goals based on particular situations. Users or ex-
perts can control process actions by providing various situational pa-
rameters. In the smart home domain, the concept of situations can be
mapped to the home environment, such as the lighting, current time,
and status of appliances. Although users can control the processes by
adjusting the situations, the process definitions, or the user goals,
should also be pre-defined. In other words, users cannot create their
own customized automation processes.

2.5. User-configurable smart home

Rodden et al. [42] used the idea of Jigsaw to compose abstract pro-
cesses for smart home automation. For example, a doorbell piece fit-
ting a webcam piece, which then fits a mobile phone piece, implies
that when the doorbell rings, the webcam takes a picture and sends
this image to the user's mobile phone. This is a compelling idea be-
cause it seems highly simple and user friendly. However, this simple
representation causes many ambiguity problems. First, the item defi-
nitions are ambiguous; if ten lamps are in a house, there must be a
manner to distinguish them. Identifying each piece merely using the
Jigsaw interface is difficult. Determining how users can define and
reconfigure their home automation systems in an understandable
manner is crucial. In addition, several abstract concepts, such as “no
one is home”, are not easily represented; all possible abstract con-
cepts must be defined as pieces before using them. Second, the pro-
cess definition is ambiguous; the manner in which operations
should be executed is not defined. If every item is treated as the
same type of piece, three pieces of webcams concatenated one-by-
one is possible; however, the meaning of this process is not under-
standable. Finally, arguments of operations cannot be defined. For ex-
ample, “turn on the air conditioner if the temperature is higher than
30 °C” cannot be defined because the number 30 cannot be assigned.
Moreover, only one precondition piece is allowed to be defined in a
process in this system. A trade-off exists between usability and unam-
biguity; a user interface design that is too simplified is not always un-
derstandable to users.

Drey et al. [43] proposed a taxonomy-driven approach to visually
prototyping pervasive computing applications, including those of
smart homes. This system allows users to create their own semantic
automation processes, or rules, based on the sensor-controller-

actuator development paradigm. Furthermore, they support the con-
cept of “all” when defining rules using the symbol “*” after entity class
names. However, the meaning of “*” differs between the sensor and
actuator sides; using “*” on the sensor side implies “any one instance
of this category”, but implies “all of the instances of this category” on
the actuator side. The ambiguous design of “*” may confuse users
when designing processes. Moreover, this system supports the con-
cept of clock time only, and concepts of repeated time, such as
every day or every weekend, are not supported.

2.6. Conclusion of related works

As previously discussed, although OSGi is usually adopted as the
basis of smart home systems, two major problems persist: (1) OSGi
bundles cannot be directly accessed from clients outside of the OSGi
container; and (2) no standard for automation process definition
and execution is designed for OSGi. Therefore, the Web Service and
WSBPEL standards are used to solve this interconnectivity problem.
Moreover, numerous studies adopted the OWL and OWL-S standards
to build context-aware smart home systems. Although OWL-S pro-
vides the capability of semantic processes, it is not adequately seman-
tic because many details must still be specified by users. Moreover,
neither the OWL-S nor situational approaches are user configurable.
Therefore, a new language, SHPL, and its execution runtime are de-
fined and developed for describing and executing semantic customiz-
able automation processes. Finally, the user interfaces of current
semantic home automation systems contain several ambiguous con-
cepts and symbols; the proposed system must provide an under-
standable and user-friendly interface.

3. Design issues

From our observation, numerous home appliances are easy to be
operated, even by old people, but others are not. The difference be-
tween these operations is that several operations are quite common
even over different appliances. For example, almost all appliances
have power buttons to switch them on or off. It is quite easy to turn
an appliance on by pressing the power button even it is a new kind
of appliance that you never see it before. Another example is that it
is easy to change the volume of TV by pressing the volume up and vol-
ume down buttons on the remote control. If you know how to change
volume of TV, it is quite easy to learn how to change volume of an am-
plifier or any voice-related appliance providing volume up and vol-
ume down buttons. Many people, especially old people, feel
frustrated if the operations of new devices are totally different with
the old ones which they already familiar with. Computer is an exam-
ple of device providing uncommon operations. Except the power on
operation, nothing is similar to traditional controls of appliances;
therefore many old people are afraid of using computers.

On the basis of our observation, we attempt to identify certain
common operations between different appliances, or within the
same category of appliance. We believe that common operations
not only provide an understandable interface to users, but also pro-
vide a high level of abstraction of control. For example, a command
“turn off all devices at the second floor” can be created for power sav-
ing if all devices support the operation of “turn off”. However, not all
devices are the same; several devices, such as multi-purpose washing
machines, are valuable because they provide multiple, usually un-
common operations. Another issue is that operations which are not
common may become common in the future; therefore, the definition
of common operations must be extendable.

Furthermore, this paper used the idea of common operations to
design the definition of automation process. Since no common pro-
cess definition exists for home automation until now, we attempt to
identify the pattern of common requirements in smart home environ-
ment. A trade-off also exists between simplicity and capability of

174 Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

process definition; if too many factors are included, the system may
frustrate users, but if too little factors are included, some scenarios
may not able to be expressed. Finally, the issues of semantic, unam-
biguous, and user-controllable process definition which are already
discussed in Section 2 are also crucial to be addressed.

3.1. System assumptions

On the basis of the scope of this paper and the analysis of design
issues, several assumptions for USHAS are defined as follows:

a. All the devices to be controlled have been deployed to users' home
environments. For example, lights have been connected to X.10
modules for USHAS to control.

b. Manufactures or third-party driver providers can provide device
drivers which are implemented as Web Services and follow the
driver standard of USHAS.

c. Operations are more understandable if they are common
operations.

d. Automation processes are more understandable if semantic con-
cepts are included.

e. Automation processes are more understandable if they are defined
under a common process pattern.

3.2. System overview

As discussed in Sections 1 and 2, USHAS adopts the Web Service
technology for exposing services provided by drivers, WSBPEL tech-
nology for execution level process definition, Semantic Web technol-
ogy for knowledge base construction, and a semantic process
definition language, SHPL, for semantic process definition. The con-
ceptual stack of USHAS is shown in Fig. 1.

Traditionally, devices can be controlled by two kinds of execution
paradigms of smart home: user-controlled execution and event-driven
execution. In the proposed system, user-controlled device execution is
easily achieved simply by invoking the services provided by device
drivers; therefore, this paper focused on event-driven execution. Layers
of conceptual stack are introduced as follows:

a. Device layer
Two categories of device are designed: sensor and actuator. Sensors
collect environment information, and actuators enforce executions
based on commands coming from users or automation systems. In
USHAS, both sensor and actuator style devices are encapsulated by
device drivers following the Web Service standard.

b. Notification layer
Traditionally, some kinds of agent are designed for receiving sens-
ing data generated by sensors. For example, images captured by
cameras are analyzed, and then a face-detected event is generated

Management Layer

Service Query Layer

Semantic Process Layer

Semantic Service Query Layer
Semantic Service Layer I

Service Layer

Semantic Notification Layer

Device Layer

Fig. 1. Conceptual stack of USHAS.

if someone appears in front of the camera. USHAS adopts the Pub-
lish/Subscribe [44] paradigm for publishing events and notifying
subscribers based on pre-defined topics, since that Pub/Sub sys-
tems are usually employed for event management [45-46].

c. Service query layer and process layer
Since USHAS follows the Web Service standard for service descrip-
tion, it adopts UDDI for service query. Also, USHAS uses the
WSBPEL as the execution level process definition language, and a
WSBPEL runtime for process execution.

d. Semantic notification layer
Some semantic events such as NoOneAtHomeEvent are defined in
this layer. Except explicitly defined events, we found that the con-
cept of semantic event handling is quite similar to the concept of
semantic process execution; semantic events can be mapped to
pre-conditions of semantic process, and semantic event handling
can be mapped to what must be executed in the body of semantic
process. Therefore, the semantic notification layer not only han-
dles explicitly defined events, but also includes pre-condition
checking before semantic process execution.

e. Semantic service query and semantic process layer
Although OWL-S is not abstract enough for semantic process def-
inition, it is mature for describing and querying services of Web
Services. Since USHAS uses OWL as the ontology for knowledge
base construction, the OWL-S is adopted for semantic service
query. Moreover, semantic process is defined in SHPL, which is de-
scribed in the next section.

f. Management layer
One of the main goals of USHAS is user-configurable semantic pro-
cess design; therefore, a management layer for users to create se-
mantic processes must be provided. Also, since home environment
differs from user to user, there must be an interface provided for
users to define the ontology of their home environments.

4. USHAS ontology

To describe the status of home, ontology is needed to be defined
for home domain; thus, high level information can be maintained,
queried, and reasoned. Since a lot of controls and automation process-
es are usually executed based on the descriptions of user's home,
home ontology is usually defined as the skeleton of knowledge base
in smart environment systems. The OWL technology is usually used
for illustrating home ontology, since it provides a well-defined con-
cept representation model for describing semantic concepts. Wang
et al. [36] proposed the CONON ontology, which includes four main
classes: CompEntity, Location, Person, and Activity. However, the
concept of time is not included. Also, Chen et al. [47] proposed
the SOUPA ontology, which includes nine classes in the SOUPA core:
Person, Agent, Policy, BDI, Event, Action, Space, Time, and Geo-M.
However, since they only focus on meeting rooms, some environment
concepts such as Humidity are not included. On the basis of the re-
quirements of USHAS, the USHAS ontology is defined, which is
shown in Fig. 2.

Six first-level classes are defined in the USHAS ontology: Person,
Device, Time, Environment, Event, and Location. In the Person class,
different in-home roles are defined, such as adult member, child
member, or even a thief. In the Device class, all the sensor or actuator
devices are classified based on the well-known appliance names, such
as TV, or their purposes. The Time class includes the definitions of
specific time, a range of time, or periodically repeated time (e.g. “Ev-
eryday”). Some invisible environmental information, such as bright-
ness or humidity, is classified into the Environment class. Also, some
semantic event classes are defined under the Event class. Finally,
the Location class maintains the names of spaces, such as living
room or first floor in the home domain. Details of some first-level
classes are described further as follows.

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

FamilyMember PeriodicallyRepeatTime
B

- s
FunctionalCategory TimeRange

~a

USHAS Ontology
Wl

A A

Brightness - DeviceStatusChangeEvent

EnvironmentChangeEvent

i
i

/ e

1

T

B
>

Backdoor

PersonLocationEvent

FloorTypeLocation

Loudness

i
i

RoomTypeLocation

Smoke

it

I

@
2]
5

Temperature

Outdoor

® OWL Class —— rdfs:subClassOf

Fig. 2. The high level structure of USHAS ontology.

Q OWLClass —p rdfsisubClassOf ----# owlDatatypeProperty ----3> owlObjectypeProperty

Fig. 3. The low level structure of the Person class.

image of Fig.�2
image of Fig.�3

176 Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188
OnOffStatus
Frrea= R Genscat ,’ TurnsOn
@D <. S e >
TUes TumsOff T T
ElEvicel . - - - - - - - - - - — = > service:Service
IsLocatedAt
= i GetOnOffStatus

—_— -

/}‘_— -
Q"‘i"'ﬁ)"‘" /'

e T
FunctionalCategory

v

P —— -
ControlStyleDevice SensorStyleDevice
A 4 S
BrightnessSensing

—

Device

BrightnassControl
— StvleDavica
Humidil_vCon;;l

~ NumberControl ™

— _SylDevies

—

GasSensingDevica

HumiditySensing

4

RemoteControl ™, LoudnessSansing
— StylaDavica — Device
m&ﬁ-\ SmokeSansing

e SylDais [T
VolumeControl
- StylaDavice

Davica

TemparaturaSansing
ice

i

ApplianceCategory

A

P
Ll

T
@ FirsAlarm /Rgfrigeutor
CDPlaver e Sprinkler

CoffeaMaker

I

Dehumidifier

e

Dishwasher Heater @
B Erniiis @
— P

—

Cadai-

]

Q OWLClass — rdfsisubClassOf ----9 owlDatatypeProperty ----3> owl:ObjectypeProperty

Fig. 4. The low level struc

4.1. Person class

Fig. 3 shows the low level structure of the Person class. The Person
class has two data type properties, FirstName and LastName, to re-
cord everyone's name. In addition, this class has an object type prop-
erty for maintaining the location of this person. The FamilyMember
class has five sub-classes: ElderlyMember, AdultMember, ChildMem-
ber, BabyMember, and PetMember. Many applications are developed
based on the age of residents. For example, fall detection usually in-
volves elderly members, and adult members are usually used to en-
sure that particularly dangerous activities, such as cooking, are
safely executed.

4.2. Device class

Fig. 4 shows the low level structure of the Device class. Similar to
the Person class, the Device class has an object type property “IsLoca-
tedAt” for indicating the location of this device. The Device class also
has a “Generates” property, which maintains an event log for all
events generated by this device. Although events are usually generat-
ed by sensor devices, generating events is not limited to sensor-style
devices; for example, the TV is not a sensor device, but it is allowed to
publish a “DeviceStatusChangeEvent” if someone changes the chan-
nel. More details of event are described in the Event class section.

Three basic service pointers, “TurnsOn”, “TurnsOff”, and “GetO-
nOffStatus”, are maintained by this class. In OWL-S, each operation
of a Web Service is encapsulated as an OWL-S service (service: Service)
for invocation. In other words, each Web Service of device must sup-
port at least three operations for turning it on, turning it off, and que-
rying its current on-off status. The reason for this requirement is that

ture of the Device class.

the on-off status is the most basic and fundamental information of a
device. For some simple devices, such as a lamp, provide only the on-
off functionality for users to control; for other complex appliances,
such asa TV or air conditioner, users also have to turn them on before
using them. Controlling the on-off status is the most common and
vital functionality shared by all devices at home. With these three
definitions, USHAS can turn on devices, turn off devices, or query
the on-off status of devices to maintain the “OnOffStatus” property
in a batch process.

Two sub-classes, FunctionalCategory and ApplianceCategory, are
defined under the Device class. The FunctionalCategory is further
sub-divided into the ControlStyleDevice and SensorStyleDevice. The
SensorStyleDevice is designed for sensor devices. Other appliances
and devices can be classified by the common product name or the cat-
egory of their functionalities. By defining the category or product
name, similar products can be controlled in a batch process; for ex-
ample, we can turn on all air conditioners in the home, even the
brand names are different. Conversely, by defining the category of
functionality, various types of products with shared functionalities
can be controlled in a batch process; for example, we can set the
audio volume of all appliances at zero after midnight. Although two
different manners of classification are available, one device can be-
long to both of them simultaneously. For example, a TV belongs to
the Television class under ApplianceCategory, and also the Number-
ControlStyleDevice under FunctionalCategory.

4.3. Event

In general, events are generated by agents after analyzing the
measurements of sensors. For example, BrightnessSensingDevice

image of Fig.�4

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188 177

IsGeneratedBy S
A A~y
! HappensAt T T
TN......-i- SN N Time)
\-h__‘_‘___'_'___/
: HappensAt e
e e AN S
]
Mr_i_—_‘—ml\
: — < DeviceStatusChangeEvent > —_
: - './,J—,;_B_;gh_tnesschmgaEvmt »
|
] T e e e
| — < EnvironnentChangeEvent O g—1a— < HumidityChangsEvent)
i B b i s ko e
]
]
]
: -
P e S

e T T T T e ey R

R
NS o, ...

_ @ AllPaoplaAtl ocationEvent

_—

. -d_,———’__-——u
- Peolsctionbret D «—| L NoAtuHombvem

G e b e A e riaE e D

et T e T e

L & NoOnsAtHomeEvent
’,'—"'_—'_4__—‘_—‘——“—‘&_
— MaliciousInvasionEvent

C::D OWLClass —» 1dfs:isubClassOf ----# owlDatatypeProperty ----3> owl:ObjectypeProperty

Fig. 5. The low level structure of the Event class.

generates BrightnessChangeEvent. Moreover, semantic events are
also defined under the event class. For instance, the NoAdultAtHome
event is generated, based on the presence of each person and the def-
inition of the Person class at home (Fig. 5).

5. Semantic Home Process Language (SHPL)

Since the semantic process definition of OWL-S is not abstract
enough, and no higher level process description based on it exists
until now, we decide to define a new process description language,
Semantic Home Process Language (SHPL), to support semantic pro-
cess definition without static service binding.

From our observation, four vital factors are usually included in
home automation processes: pre-conditions, variables, execution
time, and flow of invocations. For example, given a command “if the
temperature is higher than 30 °C at 6:00 PM, turn on the air condi-
tioner”, the value 30 is a variable; “if the temperature is higher than
30 °C” is a pre-condition, 6:00 PM is an execution time, and “turn
on the air conditioner” is an invocation. Although post-condition is
usually defined by the generic process description, in home automation
situations, users usually know what the post condition is after executing
each invocation; therefore, we can eliminate this definition to decrease
the complexity of SHPL. The high level XSD of SHPL is shown in Fig. 6.

5.1. Variables

The design of variables provides users a manner to express infor-
mation that can be input by users when defining pre-conditions and

invocations. For example, we can define a variable with type integer
and value 10, and then let it be the input of the “set_channel” invoca-
tion of the TV. The formal expression of the “variables” element is
shown in Fig. 7.

Only one “variables” element is in each process, which can contain
several “variable” elements. Each variable element has three attri-
butes: name, type, and value. In SHPL, only four basic variable types
are supported: Boolean, integer, double, and character string. The rea-
son why only these types are supported is because they are the most
understandable types for people to input. In general, home appliances
do not require complex input, because inputting information is diffi-
cult if it is complex. Many operations, such as switching TV channels,

<?xml version="1.0" encoding="utf-8"7?>
<xsd:schema elementFormDefault="qualified"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"™>
<xsd:element name="SProcess">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="variables"/>
<xsd:element name="time set"/>
<xsd:element name="preconditions"/>
<xsd:element name="flow"/>
</x%sd:sequence>
<xsd:attribute name="name" type="xsd:string"/>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Fig. 6. The high level XSD of SHPL.

image of Fig.�6
image of Fig.�5

178 Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

Element_variables:=<variables> Element_variable* </variables>
Element_variable:= <variable Attribute_name Attributes_type_value/>
Attribute_name:= name= “XSD_string”
Attributes_type _value:= (type = “xsd:boolean” value = “true | false”) |
(type = “xsd:int” value = “XSD_in”) |
(type = “xsd:double” value = “XSD_double”) |
(type = “xsd:string” value = “XSD_string”)

Fig. 7. Formal expression of the variables element.

Element_time_set:=<time_set> Element_time * </time_set>
Element_time:= <time> time_name </time>

Fig. 8. Formal expression of the time_set element.

receive numbers as inputs; most operations, such as turning on
lamps, require no input from users. Although string-type input is
rarely supported by home appliances, it is understandable for users
to input string-type with particular devices in the future home envi-
ronment. For example, users may be able to key-in the name of a
movie on a mobile phone, and the DVD player would then start dis-
playing the movie in the living room. Therefore, the type string is
also supported for a higher flexibility under the concern of usability.

5.2. time_set

The “time_set” element maintains all time instances, which are de-
fined under the Time class of the USHAS ontology, and are execution
time of processes. The relationship between time instances is con-
junction; in other words, only when all time elements are satisfied
will the process be triggered. Although the conjunction relationship
limits the capability of expression, it simplifies the logic of time_set;
when both conjunction and disjunction relationships are permitted,
it is too complex for users to define and comprehend. If users wish
to define a process using the disjunction relationship of time in-
stances, they can define multiple processes using different execution
time instances instead. The formal expression of the time_set element
is shown in Fig. 8.

5.3. Preconditions

Each “preconditions” element is allowed to contain several “condi-
tion” elements. Similar to “time_set”, the relationship between differ-
ent “condition” elements is also conjunction; thus, only when all
conditions are satisfied will the process be triggered. Similar to the
reason for using only conjunction in time_set, users may be confused

if both the conjunction and disjunction are supported in precondi-
tions. For example, given the process “if the room temperature is
lower than 20 degrees and Mary is in the living room or the baby is at
home, then, switch on the heating”, the conditions can be explained in
two different ways: “if the room temperature is lower than 20 degrees
and Mary is in the living room” or “the baby is at home” and “if the
room temperature is lower than 20 degrees” and “Mary is in the living
room or the baby is at home”. As a result, users may create unfavorable
processes due to the complex logic combination. When only conjunc-
tion is allowed, users can still create multiple processes such as “if the
room temperature is lower than 20 degrees and Mary is in the living
room, then, switch on the heating” and “if the baby is at home, then,
switch on the heating” for achieving the same goal. The formal expres-
sion of the “preconditions” element is shown in Fig. 9.

The description of each condition contains three main parts:
domain, property, and range. In other words, if particular subjects
have properties with values, the condition is satisfied. Moreover, the
domain can be further described by the “domain_quantifier” and
“domain_type”. The “domain_type” can be a category or an individual.
For example, we can specify a person or the Person class as a domain.
The “domain_quantifier” is the quantifier of a domain; it is specified
only when the “domain_type” is a category. For example, we can specify
“all people in the FamilyMember class” or “at least one instance of the
OnFireEvent exists” as the subject. The property attribute can be any
supported property of a specified domain; if the “domain_type” is a cat-
egory, only the shared property of this category is allowed to be defined.
Moreover, four kinds of range_type: category, individual, variable, and
range, are defined. The “individual” and “variable” are the two most
basic types; the “individual” type is used for values of object properties,
and the “variable” type is used for values of data properties. The range
type is used when specifying a range of value. For example, we can spec-
ify arange of temperature value in the range_type. Finally, if the catego-
ry type is specified as range_type, all instances belonging to this
category are examined. For example, the pre-condition “all family
members are in the bedrooms” is satisfied even when family members
are located in different bedrooms.

5.4. Flow

Each flow element is allowed to contain several invoke elements,
which enable users to specify which operations of which devices are
controlled. In most home automation scenarios, only actuators are
controlled; therefore, we mainly focus on invoking devices. If the
home automation system providers intend to provide some special
agents to be invoked, such as MMS sender, they can implement
these agents as special devices following the general device interface
(Fig. 10).

Similar to pre-conditions, users can also specify whether all de-
vices are, or only one device of the device category is controlled. We

Element_ preconditions := <preconditions> Element_ condition * </preconditions>
Element_condition := <condition domain_modifier

domain = “domain_options”

property = “property_options”

range_type = “range_type_options”

range_value = “range_value_options”></condition

domain_modifier := (domain_quantifier = “null” domain_type = “individual”) |
(domain_quantifier = “domain_quantifier_options”
domain_type = “category”)
domain_guantifier_options = none | all | exist
range_type _options := category | individual | variable | range

Fig. 9. Formal expression of the preconditions element.

image of Fig.�8

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188 179

Element_ flow := <flow> Element_invoke * </flow>

Element _invoke := <invoke domain_quantifier= “domain_guantifier options’
category = “category_options’
device_name= “device_name_options’
location_type = “location_type_options”
location= “location _options”’
operation= “operation _options’
variable = “variable _options’></invoke >

domain_quantifier options:= all | one

location_type _options := category | individual

Fig. 10. Formal expression of the flow element.

observe that devices are usually specified associated with their loca-
tions with their categories, such as “the lights in the living room”.
Therefore, the location and category of controlled device are also in-
cluded. Finally, the operation supported by the specified device is
also included into the invoke element with input variable defined in
the variables element.

5.5. SHPL example

Fig. 11 shows an SHPL example of the scenario “if anyone is in the
dining room, and there is no one on the second floor at dinner time,
then turns off all lights on the second floor, and turns on the TV in
the living room”. The variable “input1” is a simple variable with a
true value for confirming the operation execution. The time “Dinner-
Time” must be defined as a part of the home environment before cre-
ating this process. Two preconditions are specified in this process: the
first has the Person category domain and the SecondFloor category
range, and the second has the Person domain and the MyDiningRoom
individual range. Two operations are executed when these two pre-
conditions are satisfied; the first is the TurnsOff for all Light categories
on the SecondFloor, and the second is the TurnsOn for MyTV in the
LivingRoom.

<?xml version="1.0" encoding="utf-8"?2>

6. System architecture and detailed system design
6.1. System architecture

The system architecture of USHAS is shown in Fig. 12. For each de-
vice to be controlled, a Web Service driver must be implemented
based on the protocol and functionalities of this device by device
manufacture or third-party developers, such as TV-WS, Light-WS,
and so on. Also, detail binding configurations such as house code
and key code, must be able to be configured by users via these drivers.
For WSBPEL automation, a BPEL runtime is included, which is able to
control device drivers based on the BPEL process descriptions. Simi-
larly, for semantic process automation, a semantic process runtime
is included, which is able to generate BPEL process dynamically
based on current home environment.

To maintain all the home knowledge and status of home environ-
ment, a knowledge base following the OWL-S standard is included to-
gether with the manager of it. Within the knowledge base, semantic
Web Service information, location definition, people definition, time
definition, and device definition are maintained. Although semantic
Web Service information and device definition are both related to de-
vices, the device definition is a higher level of representation, such as
device category, which is user understandable, while the semantic
Web Service information is a lower level of representation, such as
binding information, which is not user understandable, and is not
managed by user directly.

The execution of semantic automation process depends on the de-
cision of the Semantic Process Manager. The Semantic Process Man-
ager constantly checks whether the current time is satisfied with
any time instance defined in the semantic processes. Moreover, the
Semantic Process Manager checks whether all the pre-conditions
are satisfied in each semantic process once the Home Ontology
has been updated. Also, for each semantic process, an execution
flag is set to indicate whether this process has been executed.
Only when all the pre-conditions and time instances are satisfied
when the process has not been executed, the process will be

<SProcess name="turn off lights on 2nd floor and turn on twv"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
%xsi:noNamespaceSchemaLocation="SHPL Schema.xsd">

<variables>

<variable name="inputl" type="xsd:boolean" wvalue="true"/>

</variables>

<time_set><time>DinnerTime</time></time_set>

<preconditions>

<condition domain quantifier="none" domain type="category"
domain="Person" property="IsLocatedaAt"
range_type="category" range_value="SecondFloor"></condition>
<condition domain_quantifier="exist"™ domain_type="category"
domain="Person" property="IsLocatedAt"
range_type="individual" range_ value="MyDiningRoom"></condition>

</preconditions>

<flow>

<invoke domain_guantifier="all" category="Light" device name="null"

location_type="category" locat

n="SecondFloor"

operation="TurnsOff" variable="inputl">

</invoke>

<invoke domain_quantifier="one" category="Television" device_name="MyTV"
location_type="category" location="LivingRoom"
operation="TurnsOn"™ variable="inputl">

</invoke>
</flow>
</SProcess>

Fig. 11. An example of using SHPL.

180

] . -
Web App Dvios Controlls Semantic Process Semantic
S SOREEEEE Designer Environment Editor
—
Web service
e ————i
Appliance Semantic <= Semantic Knowledge Base Manager
D Sl Process Manager
Mobile App 1 1 A
¥ BPEL runtime ¥ P
BPEL BPEL
rtaiea Process Service Home Ontology
S - Semantic Web Service
-Location Definition
Pllmd VWS pum— -People Definition
-Time Definition
- -Device Definition
Light-WS) .
<
: > : - —>
. < > . » UDDI

=3

DeviceController

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

USHAS

Pub/Sub Event Broker

Event Handler

Fig. 12. System architecture.

SemanticEnvironmentEditor

DeviceDriver

icProcessM.

-SemanticPracesses : Object
+check_all_preconditions_and_execute() : void
+execute_semantic_proces() : Boolean
+update_semantic_processes() : Boolean

1

-on_off_status : Boolean

BPELProcessService

174

<<interface>>
Devicelnterface

+get_on_off_status() : Boolean
+turn_on() : Boolean
+turm_off() : Boolean

DeviceManager

-DeviceDrivers : Object

+add_device() : int
+delete_device() : Boolean

KnowledgeBaseManager

-KnowledgeBase : Object

+is_condition_satisfied() : Boolean
+is_time_satisfied() : Boolean

+find_services_under_conditions() :

+update_ontology() : Boolean

Object

EventHandler

Pub/SubEventBroker

-event_queue : Object

+publish_event() : Boolean
+subscribe_event() : Boolean
+unsubscribe_event() : Boolean

+process_brightness_change_event() : Boolean
+process_humidity_change_event() : Boolean
+process_temperature_change_event() : Boolean
+process_user_change_location_event() : Boolean
+process_all_people_at_location_event() : Boolean
+process_no_adult_at_home_event() : Boolean
+process_no_familiy_member_at_home_event() : Boolean
+process_no_one_at_home_event() : Boolean
+process_malicious_invasion_event() : Boolean
+process_on_fire_event() : Boolean

UserAgent

LocationManager

-Loation : Object

+get_user_location() : String

+update_user_location() : Boolean

Fig. 13. System model.

image of Fig.�12
image of Fig.�13

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188 181

executed. The design of this execution flag is important, since users
may want to change the result of execution when the pre-conditions
and time instances are still satisfied. For example, if no execution flag
is set when executing the process “If there is anyone in the living
room from 7:00 PM to 9:00 PM, turn on the TV and set the channel to
20", the TV channel will always be 20 during 7:00 PM to 9:00 PM
even users intend to change it. In this manner, this is an annoying
process. Therefore, only when the execution flag is set as “not has
been executed”, the process can be executed. After the process is ex-
ecuted, this flag will be set as “has been executed”, and, it will be set
as “not has been executed” again if any of the time instance or pre-
condition is not satisfied. After the Semantic Process Manager de-
cides to execute a semantic process, it translates the flow of this pro-
cess into a WSBPEL process based on the current home environment,
and then invokes the BPEL process service for WSBPEL process
execution.

For event handling, firstly, both kind of explicitly defined basic
events and explicitly defined semantic events must be published to
the Pub/Sub Event Broker. Developers can create their own services
to handle events by subscribing to the Pub/Sub Event Broker, other-
wise, all the pre-defined events are sent to the Event Handler which
invokes the BPEL runtime directly for basic events, and invokes the
semantic process runtime for explicitly defined semantic events.
Also, a user agent is designed to send location information and update
users' real-time locations.

Finally, three user interfaces are provided via HTTP. The Semantic
Environment Editor facilitates users to define information of home
environment, such as room definition, family member definition,
and time definition. Also, users can deploy bundles of devices drivers
via this editor. For defining semantic processes, the Semantic Process
Designer is included, which contains variable definition, pre-condition
definition, invocation definition, and so on. Options provided in the
Semantic Process Designer are basically provided depend on the def-
inition of current home environment, which is based on the input
coming from the Semantic Environment Editor and real-time events.

As to user interface, several home automation systems also in-
clude the maps of the homes. However, the problem of providing a
map is that the structures of users' houses are usually different;
users must construct their own maps before using them; it is not an
easy task for users. Actually, from our observation, users do not
need maps of their house for specifying and understanding the loca-
tions within their houses; people usually use semantic properties of
locations for doing so, such as “the living room” or “the bath room
on the second floor”. Therefore, we decide not to include the map in-
terface into the proposed system.

6.2. System model

The system model is shown in Fig. 13. All the device drivers must
implement the three methods (get_on_off status, turn_on, and
turn_off) defined in the Devicelnterface interface. For each category
of appliance, an interface is also defined for different functionalities
of that category, such as the “set_channel” method defined in the
TVInterface interface. To simplify this figure, numerous detailed defi-
nitions of these categories and functionalities are not included.

A LocationManager class is designed for translating physical loca-
tion information into semantic information. This class can be imple-
mented differently based on different location detection systems.
For example, if an RFID tag is deployed in each room to transmit the
ID of the room, and a table is designed to store the mapping between
this ID and the semantic name of this room, then the LocationMana-
ger can be implemented as the manager of this table. For another ex-
ample, if someone is recognized by a face recognition system from a
camera, and this camera is located at the living room, then this person
can be realized to be in the living room too.

Fig. 14. The living room of UAHAS prototype.

Finally, the DeviceManager is the installer and uninstaller of de-
vice drivers; this class manages all the physical files and metadata
of all the installed drivers. Also, an OWL-S service is automatically gen-
erated by DeviceManager during each operation of driver installation.

6.3. Limitation analysis

Because almost all system modules are designed as Web Services,
external systems or third-party designed modules must be able to in-
teract with these modules easily. However, currently, we only design
the functionalities for USHAS modules, not for other systems. There-
fore, it is possible that several functionalities required in other sys-
tems are not provided in USHAS. For example, a facial recognition
system integrating facial training and recognition operations into
the USHAS for family members is difficult to design because no facial
database exists in the USHAS.

In addition to the aforementioned difficulties, process conflicts
may exist in the current design. For example, if a process “if Light A
is on, turn off Light B” is defined with another process “if Light A is
on, turn on Light B”, then the status of Light B depends on which pro-
cess is defined later. In this scenario, because a semantic conflict ex-
ists between these two processes, the execution result may not be
the same as the needs of the user. Several models, such as Petri Nets
[48] and Colored Petri Nets (CPN) [49], can be used as verification

Fig. 15. The bed room of UAHAS prototype.

image of Fig.�14

182

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

Semantic Environment Editor

Location

Location Name Class RoomIsLocatedAtFloor

Fl TFloorTypeLocation + _modiy | [delete |
F2 FloorTypelocation modiy | [delete |
"!\E-Be.d-.iiuum Bedroom + 2 - modify [ﬂ]
MylLivingRoom LivingRoom - F - modiy | [delete |
NothtHomePlace Outdoor -

<-- select one -->

-

<-selectone —>

WorkingDayWakeUpTime Specific Time « Clock time: +:0 v:0 «

Person
Full Name Class hasFirstName hasLastName PersonIsLocatedAtLocation
John Smith AduvltMember « John Smith MyLivingRoom
<--selectone --> <--selectone >
Time
Time Name Category Start Time End Time Repeat Style

Bresbontoi ~

Date time: Avgost » 1

w 2011 + Date time: Auvgust « 1

Movielim Limo Bange T Clocktime: 19 v : 0 - :0 « C]ockﬁme:’mivzﬂiiv:vﬁgl T] (cmoity] o)
<-mlectone -> «-selectone > «
Device
Device Name Class OnOffStatus DeviceIsLocatedAtLocation
MyDVDPlayer DVDPlayer off MyLivingRoom [tomon |[tomott | [modidy | [delete | | coniz |
LivingRoomFan Fan off MyLivingRoom v [(tomon |[tomoft | [modiy | [delete | [contig |
LivingRoomLight Light off MyLivingRoom v [tomon |[tomott | [modidy | [delete | | conig |
BedRoomLight2 Light off MyBedRoom [(tomon | [tumoff | [moddy | [delet | [config |
BedRoomLightl Light off MyBedRoom [(tomon | [tmoft | [modity | [delet | [config |
LivingRoomWebcam Webcam off MylLivingRoom [tomon || tmoif | [modiy | [delete | | contiz |
BedRoomWebcam Webcam off MyBedRoom - [tum on H tuen off H modify ” delets H config i
add device: add device

Fig. 16. Semantic Environment Editor.

tools to solve this problem. However, in the current design of USHAS,
we simply assume that users are careful enough to avoid conflict in
semantic processes.

Another limitation of USHAS is the security concern. Security is ab-
solutely essential in the home environment. Various levels of security
concerns are related to different types of security threats. The lowest se-
curity level is device level security: devices being controlled by no one

other than the trusted home server or people must be guaranteed.
Guaranteeing the security of the entire system is extremely difficult,
unless devices are uniformly designed with security functionalities,
such as providing a trust engine based on the framework designed
by Seigneur et al. [50]. The second level is home network security.
Network components such as firewalls and proxies must be config-
ured properly so that devices and servers can communicate with

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188 183

Process 1

Process name: Home Theater

modify | [disable

Variables:
Name Type Value
inputl trueffalse true - [mndifyj delete]
<-- stlectong >
Preconditions:
exists one of w» Person w . which is a(n) category w , has(have) dify

property IsLocated At ~ , with a(n) instance

~ of value MyLivingRoom « ,and delete

MyDVDPlayer

v . which is a(n) instance

~ . has(have) property

OnOffStatus

~ . with a(n) variable

~ inputl - ,and delete

Subject type: «-selectone-->
(Example: In precondition "all of Person, which is a(n) category, has(have) property d
PersonlsLocatedAtLocation, with a(n) instance of value F1", the subject type is "category")

Gt

Fxecution Time:

Time Name

MovieTime

- modify delete

<-- select one --»

- =)

Subject type: | «- sslectone -->

Execution Flow:
~ for al v ofthe Light _ ~ . which is(are) located at the
instance ~ MyLivingRoom + ,execute(s) operation TumsOff » with =
variable mputl -
for one - of the Fan + (LivmgRoomFan +), which is(are)
located at the category + LivingRoom ~ , execute(s) operation T
TumsOn ~ with variable mputl -

w | ; Location type:
(Example: In the invokation "for all of the Light, which is(are) located at the category LivingRoom,
execute(s) operation Device urn off Service with variable inputl”, the subject type is "Light", and the
location type is "category”)

<= selectone -->

delete process

Fig. 17. A semantic process of the USHAS prototype in Semantic Process Designer.

each other within a proper and safe environment. For example, Fitz-
gerald et al. [51] proposed their system architecture to perform network-
based access control between semantic Web services by configuring fire-
wall rules. The third security level is home server security: home servers
should be well protected to be controlled only by trusted users. Some
host-based mechanisms, such as TrustVisor [52], can be adopted to ensure
that only trusted software can be executed under the control of hypervi-
sor. The forth security level is personal privacy protection. Because web-
cams may be deployed throughout the home environment for facial
recognition and person identification, privacy must be guaranteed for ac-
tivities such as changing clothes in the bedroom. A possible solution in-
volves installing an application onto a PC or IP camera that negotiates a
secret key with a home server and encrypts each frame before transmis-
sion. The final security level is user authentication and access control. Peo-
ple do not usually want their home appliances to be controlled by those
whom they do not trust, but they may be willing to share some control

with relatives or close friends. For example, a user's friend allowed to
change the channel on the TV can do so using a mobile phone. To inte-
grate semantic Web service and security, several recent studies [53, 54|
have defined certain semantic security ontologies and performed rule-
based access control based on these ontologies. These matters are quite
complex and out of the scope of the proposed system; therefore, solutions
for solving these security concerns have not been included into USHAS
currently.

7. System prototype and evaluation
7.1. System prototype
In the system prototype of USHAS, almost all the core modules,

such as the Knowledge Base Manager, Semantic Process Manager,
and Pub/Sub Event Broker, are implemented as Web Services running

image of Fig.�17

184

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

<?xml version="1.0" encoding="utf-8"?>
<SProcess name="Home Theater"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xs51i:noNamespaceSchemalocation="SHPL Schema.xsd">
<variables> N
<variable name="inputl"™ type="xsd:boolean" value="true"/>
</wariables>

<time_set><time>MovieTime</time></time_set>

<preconditions>
<condition domain gquantifier="exist" domain type="category"
domain="Person" property="IsLocatedAt"
range type="individual"™ range value="MyLiwvingRoom"></condition>
<condition domain quantifier="null" domain type="individual"®
domain::MyDVDPlayer" property:"oﬁoffstatus"
range_type:“variable" range_value:"input1"></condition>
</preconditions>

<flow>
<invoke domain quantifier="all" category="Light" device_ name="null"
location_type="category" locaticn="MyLivingRoom"
operation="Turnsoff" variable="inputl">
</invoke>

<invoke domain quantifier="one" category="Fan" device name="LivingRoomFan"
location_type="individual™ location="LivingRoom"

operation="TurnsOn" variable="inputl">

</invoke>
</flow>
</SProcess>

Fig. 18. An example of using SHPL in the prototype.

on a Apache Tomcat Web server of version 5.5.27, so that functional-
ities of these modules can be shared easily to other modules or even
external systems. Among the existing mature BPEL runtime systems,
this paper used the open source ActiveBPEL [55] system. The Semantic
Process Designer, Semantic Environment Editor, and Device Controller
user interfaces are implemented in JSP; they are also deployed on the
Tomcat server.

Constructing a complete smart home environment requires a lot
of space and smart devices. Initially, the prototype of USHAS only con-
tains two pseudo rooms with some controllable devices for demon-
stration. The first floor living room of USHAS prototype, a fan
controlled by X10 module, an UPnP media player, an INSTEON light,
and an USB webcam are deployed; in the second floor bedroom,
two X10 lights and a webcam are included. Moreover, to simplify
the user location detection, only one person is defined in this proto-
type, and the presence of this person is detected by the webcams
based on moving detection (Figs. 14 and 15).

Two semantic processes are deployed in the USHAS prototype.
First, if there is someone in the living room, and the media player in
the living room is turned on, then turn off all the lights and turn on
the fan in the living room. Second, if there is no one in the bedroom
at noon, then turn off all the lights in the bedroom. As a result,
these two processes work perfectly in the USHAS prototype. The def-
initions of the home environment and the first process are shown in
Figs. 16 and 17.

The Web user interfaces of Semantic Environment Editor and Se-
mantic Process Designer are shown in Figs. 16 and 17. By using the
Environment Editor, users can create instances of locations, people,
time, and devices according to the actual home environments. More-
over, users can install device drivers, configure the detailed binding
information, and control the on/off status of devices. Next, users can
create their own processes based on these instances in the Semantic
Process Designer. To avoid the ambiguous meanings of pictures, we
use English sentences with some replaceable words for defining se-
mantic processes. Each sentence provides all the information that

SHPL needs, so that we can easily translate theses sentences into
SHPL documents. Moreover, we believe that users prefer selecting op-
tions than filling blanks; therefore, we list all the legal options for
each replaceable word. Whenever each replaceable word is modified,
all the other dependent words are checked again; if any illegal result
exists during modification, the dependent words are set to null for
users to choose again. In this manner, we can ensure that all the sen-
tences are correct. Finally, an example of using the SHPL in the proto-
type is shown in Fig. 18.

Table 1
Examples of different scenarios and corresponding semantic automation processes.

Scenario Semantic automation process

Long During the period of vacation time (from Aug. 1st to Aug. 10th), turn
vacation on all the lights in the house at 7:00 PM, and turn them off at 11:00
PM every day.
Home If there is anyone in the gym room, then turn on the light and TV in the
gym gym room.
Morning From Monday to Friday every week, at 7:00 AM, turn on all the lights
rush of bedrooms and bath rooms, and the coffee maker starts to make
coffee.

The living If the temperature in the living room is higher than 30.0 °C, then turn
room on air conditioner in the living room and set the temperature of air
conditioner as 26.0 °C.

Dinner If any family member is in the dining room at dinner time, then turn
time on the TV in the living room, and set the channel of TV as 20.

Good If there is someone in the reading room during 9:00 PM to 11:00 PM
student every day, set the volume of all the volume style devices at home as 0.

Sweet If all the family members are located in bed rooms during 0:00 AM to

dreams 7:00 AM every day, turn off all the lights in living room, gym room,
kitchen, reading room, and bath room.
Bath time If there is a gas event published by the gas sensor in the bath room,
then turn on the gas alarm.
Party At 10:00 PM on Sep. 12th, 2010, turn on the party light and the DVD
night player in the living room.

image of Fig.�18

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188 185

7.2. System scenarios

To analyze the user satisfaction and user usability of USHAS, we
create some examples of automation processes for different scenari-
os; these examples also can be defined through the USHAS Web inter-
face. Since the capability of device control has been shown in the
USHAS prototype, we only focus on the expression of SHPL and us-
ability of USHAS with some simulated devices when designing these
scenarios and processes. The variety of scenarios guarantees that
USHAS and SHPL are able to support a large enough amount of
cases which users may need. These scenarios and corresponding pro-
cesses are listed in Table 1.

7.3. User satisfaction evaluation

The user satisfaction analysis is shown in Table 2. We conducted a
survey over 136 people in Taiwan who are randomly chosen on the
Internet. Each one of them can select more than one scenario which
they are interested in. The result shows that almost all the people
are satisfied with at least one scenario and the corresponding exam-
ple; the ratio is 98.53%. Even for the scenario which gets the lowest
ratio, Home GYM, 48 people are interested in it. The reason why
this scenario gets the lowest count maybe is that people in Taiwan
usually do not have the habit of home exercise.

7.4. Usability evaluation

To analyze the usability of USHAS, we conduct a preliminary sur-
vey based on the system scenarios defined in 7.2. Twenty of 136 peo-
ple in 7.3 are willing to do the questionnaire of using USHAS. Totally,
7 locations, three people, 8 time definitions, 11 devices, and 10 pro-
cesses (the “Long Vacation” scenario requires two processes) must
be defined by each one of them. The average spent time, average dif-
ficulty (1 for very easy and 10 for very hard), and average accuracy
rate of using the Semantic Environment Editor have been listed in
Table 3. The accuracy rate is defined as the number of correctly creat-
ed instances over the number of all the processes which are required
to be defined. The correctness of each instance is judged based on
whether it makes the scenario work; for example, using different
name of device is not counted as incorrect definition. In general, peo-
ple can define instances within a little time and feel easy to do so with
high accuracy rate.

Similar to the Semantic Environment Editor, the Semantic Process
Designer is also analyzed according to the average spent time, aver-
age difficulty, and average accuracy rate of using it. The accuracy
rate of process creation is defined as the number of correctly specified
inputs over the number of all the inputs required for each process.
Moreover, the type of each process is also listed in Table 4; here the
type indicates the most difficult part of each process. For the nine

Table 2
Analysis of user satisfaction.

Q: Which scenario(s) and the corresponding example(s) you are interested in?

Answer Count Ratio

Long vacation 116 85.29%
Home gym 48 35.29%
Morning rush 96 70.59%
The living room 90 66.18%
Dinner time 54 39.71%
Good student 74 54.41%
Sweet dreams 120 88.24%
Bath time 87 63.97%
Party night 51 37.50%
None 2 1.47%

Table 3
Analysis of usability of Semantic Environment Editor.

Average spent time (per Average difficulty Average

instance) (min) (1-10) accuracy rate

Location 3.25 (0.46) 1.7 100%
definition

Person 2.15 (0.717) 1.7 100%
definition

Time 6.9 (0.8625) 1.7 98%
definition

Device 6.95 (0.63) 15 100%
definition

Average 4.81 (0.66) 1.23 100%

scenarios, most of them are considered easy and created within a
short time with high accuracy rate, while some of them are difficult
with longer time and lower accuracy rate. In general, users feel easy
to specify processes which control the on-off status of devices; this
kind of control is also the most common and intuitive one matching
the daily home control experiences. The second easy type of process
is the controls with variables. We find that some people do not have
the sense of variable, especially for those who do not have science
backgrounds. Supporting multiple type of variable is complex to
some people, although it provides the flexibility for different kind of
operation. Finally, the most difficult kind of process is the event han-
dling type process. Compared with variable, fewer people have the
sense of event, and more people failed to create a correct precondi-
tion with event included. Actually, we provide two ways to make a
correct precondition for the “Bath Time” scenario; they are shown
in Fig. 19. The precondition of “Bath Time” can be specified from either
the device's or event's point of view; however, many people still cannot
make it correct. Even though some of the processes are not easy to
everyone to specify, the result of overall average spent time, difficulty
and accuracy rate are satisfied.

7.5. System comparison

The comparison of USHAS and many related systems mentioned in
Section 2 are shown in Table 5. We compare them in six dimensions:
automated process execution, event handling, semantic process auto-
mation, automation of semantic process which allow the “all” quanti-
fier, user configuration, and repeated time, and check that these

Table 4
Analysis of usability of Semantic Process Designer.
Process type Average spent Average Average
time (min) difficulty (1-10) accuracy rate

Long On-off 3.15 2.1 92.5%
vacation control

Home On-off 3.8 235 99%
GYM control

Morning On-off 32 2.1 97%
rush control

The living Control with ~ 7.95 8.35 76%
room variable

Dinner Control with ~ 7.45 6.35 88.25
time variable

Good On-off 4.55 44 94%
student control

Sweet On-off 3.1 2.1 98.5
dreams control

Bath time Event 8.65 8.9 56%

handling

Party On-off 3.25 235 98.5

night control

Average 5.01 4.32 88.86

186 Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

Answer 1:
MyGrasSensor v . whichis a(n) mstance - . has(have) property
Generates v . with a(n) category ~ of value
GasEvent - . and
Answer 2:
exists one of v GasEvent ~ . whichis a(n) category vl
has(have) property IsGeneratedBy » . with a(n) instance » of value
MyGasSensor ~ .and

Fig. 19. Two ways to specify the precondition of the “Bath Time” scenario.

factors are supported or not. Many OSGi based systems, such as [24],
only allow user to control appliances directly; automation is not sup-
ported. Some researches such as [42] only focus on whether and how
automated processes can be created by users; semantic process de-
scription is not supported. For semantic automation systems such as
[1] and [10], processes are usually fixed; users can not create their
own processes. In the system designed by [43], user configurable se-
mantic automation process is supported with event handling. Although
this system also support the “all” quantifier, this is defined by using an
ambiguous “*” symbol, which implies “exist one of” on the sensor side
but “all of” on the actuator side. As to the concepts of repeated time
such as every day, none of the above systems supports them. Finally,
only USHAS supports all these features.

8. Conclusion and future works
8.1. Conclusion

In conclusion, we propose the USHAS system for providing user-
configurable semantic home automation. Because different automation
processes should be defined to meet the requirements of diverse users
and home environments, the USHAS is designed to be user-configurable
via Web pages. To solve the problem of interconnectivity between
different devices that support distinct communication protocols,
this study adopts Web Service technology, which is one of the imple-
mentations of the SOA paradigm. Web Service is selected, rather than
0SGi, because WS-BPEL has been well defined for automated Web
Service execution.

To improve the usability of the proposed system, this study pro-
vides the semantic automation process definition and execution,
based on the USHAS home ontology. The USHAS ontology contains
six first-level classes: Person, Device, Time, Environment, Event, and Lo-
cation. For semantic process definition, we define the SHPL, which en-
compasses the definitions of variables, execution time, preconditions,
and execution flow. In addition, SHPL supports the capability of

Table 5
System comparison.

expressing the concept of “all” or “none” of something with particular
semantic limitations, such as “all the lights in the bed rooms”. For se-
mantic process automation, the semantic process runtime module is
designed to create WSBPEL processes automatically, based on the cur-
rent home environment.

Having implemented the USHAS prototype, several scenarios are
designed with corresponding examples. Using these scenarios as exam-
ples, user satisfaction and system usability are evaluated and the results
are satisfactory. Finally, USHAS is compared with other related home
automation systems. Among these systems, only USHAS supports all
features of automation process execution, event handling, semantic au-
tomation, the “all” quantifier, user configurable, and repeated time.

8.2. Future works

As described in Section 6, numerous concerns remain. For future
research, we will include an external facial recognition system and at-
tempt to integrate it into USHAS to ensure that the interfaces of
USHAS are adequately extensible. To solve the process conflict prob-
lem, we will model all semantic processes using Colored Petri Nets,
and query the existence of conflict before including each process. If
conflict exists after a process is included, then will forgo incorporat-
ing this process. Furthermore, only a few smart devices are included
in the current USHAS prototype; additional smart appliances, devices,
sensors, and scenarios will be included in the future. Moreover, the
current user location detection is only simulated in the USHAS proto-
type; an RFID-based location detection system, such as the prototype
designed by Ni et al. [56] will be included. In addition, the user inter-
faces of both the Semantic Environment Editor and Semantic Process
Designer will be improved. In the Semantic Environment Editor, a
graphical designer containing a map of the house with drag and
drop items will be included. In the Semantic Process Designer, the
concept of NLP (Neuro-Linguistic Programming) [57] will be included
so that processes can be generated automatically when introducing
processes via sentences and their semantic meanings in the context

Automation process Event Semantic The “all” quantifier supported User Repeated time
execution handling automation configurable supported
System designed by Li et al. [24] No No No No No No
System designed by Wu et al. [1] Yes Yes Yes No No No
System designed by Ha et al. [10] Yes No Yes No No No
System designed by Rodden et al. Yes Yes No No Yes No
[42]
System designed by Drey et al. Yes Yes Yes Yes (by an ambiguous symbol Yes No
[43])
USHAS Yes Yes Yes Yes Yes Yes

image of Fig.�19

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

of the current system. Finally, we will address the security concerns
and improve the security level of USHAS in the future.

References

(1]

2

[3

[4

(5]

[6

(7

[8

[9

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]
[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

Chao-Lin Wu, Chun-Feng Liao, Li-Chen Fu, Service-oriented smart home architecture
based on OSGi and mobile agent technology, IEEE Transactions on Systems, Man,
and Cybernetics - Part C, Special Issue on Networking, Sensing, and Control 37 (2)
(2007).

V.Ricquebourg, D. Menga, D. Durand, et al., The smart home concept: our immediate
future, E-Learning in Industrial Electronics, 2006 1ST IEEE International Conference,
Dec. 2006, pp. 23-28.

C. Cetina, P. Giner, . Fons, et al., Using feature models for developing self-configuring
smart homes, Fifth International Conference on Autonomic and Autonomous
Systems, Apr. 2009, pp. 179-188.

Li Jiang, Da-You Liu, Bo Yang, Smart Home Research, Machine Learning and
Cybernetics, 2004, Proceedings of 2004 International Conference, vol.2, Aug.
2004, pp. 659-663.

J- Ryan, Home automation, Electronics & Communication Engineering Journal 1
(4) (July, 1989) 185-192.

Chun-Yuan Chen, Chi-Huang Chiu, Shyan-Ming Yuan, A MOM-based home
automation platform, Lecture Notes in Computer Science, Vol. 4413, Springer Berlin,
Heidelberg, 2007, pp. 373-384.

Thomas Coopman, Wouter Theetaer, Davy Preuveneers, Yolande Berbers, A
user-oriented and context-aware service orchestration framework for dynamic
home automation systems, International Symposium on Ambient Intelligence
(ISAmI 2010), Portugal, 16-18 June 2010, Ambient Intelligence and Future
Trends, Advances in Intelligent and Soft Computing, volume 72, Springer,
2010, pp. 63-70.

Chun-Feng Liao, Ya-Wen Jong, Li-Chen Fu, Toward a message-oriented application
model and its middleware support in ubiquitous environments, International
Journal of Hybrid Information Technology 1 (3) (July 2008).

Chen Rui, Hou Yi-bin, Huang Zhang-qin, He Jian, Modeling the ambient intelligence
application system: concept, software, data, and network, IEEE Transactions on
Systems, Man, and Cybernetics Part C: Applications and Reviews 39 (3) (May
2009) 299-314.

Young-Guk Ha, Joo-Chan Sohn, Young-Jo Cho, Hyunsoo Yoon, A robotic service
framework supporting automated integration of ubiquitous sensors and de-
vices, Information Sciences: an International Journal 177 (3) (February, 2007)
657-679.

Yung-Wei Kao, Hui-Zhen Gu, Shyan-Ming Yuan, Personal based authentication by
face recognition, Proc. of 4th International Conference on Networked Computing
and Advanced Information Management (NCM 2008), vol. 2, Sep. 2-4, 2008,
pp. 581-585, Gyeongju, South Korea.

Yung-Wei Kao, Hui-Zhen Gu, Shyan-Ming Yuan, Integration of face and hand gesture
recognition, Proc. of 3rd 2008 International Conference on Convergence and hybrid
Information Technology (ICCIT08), Nov. 11-13, 2008, pp. 330-335, Busan, Korea.
William T. Freeman, Craig D. Weissman, Television control by hand gestures, Proc. of

Int'l Workshop on Automatic Face and Gesture Recognition, June 1995, pp. 179-183.

Mike P. Papazoglou, Willem-Jan van den Heuvel, Service-oriented architectures:
approaches, technologies and research issues, VLDB Journal 16 (3) (2007)
389-415.

0OSGi Alliance, OSGi Service Platform Release 3, Amsterdam, 10S Press, The
Netherlands, Dec. 2003.

W3C recommendation: Web services architectureAvailable from:, http://www.
w3c.org/TR/ws-arch/.

Diane Jordan, John Evdemon, et al., Web Services Business Process Execution
Language Version 2.0,” OASIS StandardAvailable at:, http://docs.oasis-open.
org/wsbpel/2.0/April 11 2007.

Guus Schreiber, Mike Dean, OWL Web Ontology Language ReferenceAvailable at:,
http://www.w3.0rg/TR/2004/REC-owl-ref-20040210/2004.

David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew Mc-Dermott, Sheila
Mcllraith, Srini Narayanan, Massimo Paolucci, Bijan Parsia, Terry Payne, Evren
Sirin, Naveen Srinivasan, Katia Sycara, OWL-S: semantic markup for web services,
Available at:, W3C Member Submission, November 2004http://www.w3.org/
Submission/2004/SUBM-OWL-S-20041122/.

X10 Industry StandardAvailable at:, http://www.x10.com/.

INSTEON - Wireless Home Control Solutions for Lighting, Security, HVAC, and A/V
SystemsAvailable at:, http://www.insteon.net/.

UPnP Forum, Available at:, http://www.upnp.org/.

Jini Community, Available at:, http://www.jini.org/.

Xie Li, Wenjun Zhang, The design and implementation of home network system
using OSGi compliant middleware, Consumer Electronics, IEEE Transactions 50
(2) (May 2004) 528-534.

H. Ishikawa, Y. Ogata, K. Adachi, T. Nakajima, Building smart appliance integration
middleware on the OSGi framework, Proc. Seventh IEEE Int. Symp. Object-Oriented
Real-Time Distrib. Comput., Vienna, Austria, May 2004, pp. 139-146.

Danny B. Lange, Mitsuru Oshima, Seven good reasons for mobile agents,
Communications of the ACM 42 (3) (March 1999) 88-89.

Phong Tran, Paul Greenfield, lan Gorton, Behavior and performance of message-
oriented middleware systems, Proceedings of the 2nd International Conference
on Distributed Computing Systems, July 02-05, 2002, pp. 645-654.

Jacques Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1999.

[29]

[30]

[31]
[32]

33]

[34]

[35]

[36]

137]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

187

Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana, Web
Services Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-
wsdl-200103152001.

W3C, Soap version 1.2, w3c working draftAvailable at:, http://www.w3.org/TR/
2001/WD-soap12-part0-20011217/,2001december 17 2001.

UDDI, The UDDI Technical White PaperAvailable at:, http://www.uddi.org/2000.
Aitor Uribarren, Jorge Parra,].P. Uribe, Kepa Makibar, lone Olalde, Nati Herrasti,
Service oriented pervasive applications based on interoperable middleware,
Proceedings of the 1st International Workshop on Requirements and Solutions
for Pervasive Software Infrastructures, Dublin, Ireland, May 2006.

Jirgen Anke, Christian Sell, Jiirgen Anke, Seamless integration of distributed OSGi
bundles into enterprise processes using BPEL, Proc. of Kommunikation in Verteilten
Systemen - 15. ITG/GI-Fachtagung vom 26, in Bern, Schweiz - Universitdt Bern,
February 2, March 2007.

S. Decker, S. Melnik, F. van Harmelen, D. Fensel, M. Klein,]. Broekstra, M. Erdmann, I.
Horrocks, The semantic Web: the roles of XML and RDF, IEEE Internet Computing 4
(September/October, 2000) 63-74.

D. Beckett, "RDF/XML Syntax Specification (Revised)", W3C rdf-syntax-
grammarAvailable at:, http://www.w3.0rg/TR/2004/REC-rdf-syntax-grammar-
20040210/February 2004.

Xiao Hang Wang, Da Qing Zhang, Tao Gu, Hung Keng Pung, Ontology based context
modeling and reasoning using OWL, Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communications Workshops,
March 14-17, 2004, p. 18.

Richard Fikes, Pat Hayes, lan Horrocks, OWL-QL — a language for deductive
query answering on the semantic Web, Journal of Web Semantics, vol. 2, Else-
vier, 2004.

Sonia Ben Mokhtar, Jinshan Liu, Nikolaos Georgantas, Valérie Issarny, QoS-
aware dynamic service composition in ambient intelligence environments,
Proceedings of the 20th IEEE/ACM International Conference on Automated
Software Engineering (ASE’05), Long Beach, California, USA, November
2005.

Stefan Dietze, Alessio Gugliotta, John Domingue, Situation-driven processes for
semantic web services, 3second Annual IEEE International Computer Software
and Applications, COMPSAC’08 (2008), 2008, pp. 987-992.

Minsoo Kim, Minkoo Kim, Handling exceptions in situation-driven agent systems,
International Conference on Networked Computing and Advanced Information
Management, Fifth International Joint Conference on INC, IMS and IDC, , 2009,
pp. 870-875.

A. Garcia-Crespo, B. Ruiz-Mezcua,].L. Lopez-Cuadrado, I. Gonzalez-Carrasco,
Semantic model for knowledge representation in E-business, Knowledge
Based Systems 24 (2) (2011) 282-296.

Tom Rodden, Andy Crabtree, Terry Hemmings, Boriana Koleva, Jan Humble, Karl-
Petter Akesson, Par Hansson, Configuring the ubiquitous home, Proceedings of
the 6th International Conference on Designing Cooperative Systems (Hyéres,
France, May 11-14, 2004, 10S Press, Amsterdam, 2004, pp. 227-241, COOP’'04.

Zoé Drey, Julien Mercadal, Charles Consel, A taxonomy-driven approach to visually
prototyping pervasive computing applications, Proceedings of the IFIP TC 2 Working
Conference on Domain-Specific Languages, Oxford, UK, July 15-17, 2009.

Patrick Th. Eugster, Pascal, A. Felber, Rachid Guerraoui, Anne-Marie Kermarrec,
The many faces of publish/subscribe, ACM Computing Surveys (CSUR) 35 (2)
(2003) 114-131.

Lukasz Opyrchal, Atul Prakash, Secure distribution of events in content-based
publish subscribe systems, Proc. of the 10th conference on USENIX Security
Symposium, August 13-17, 2001, pp. 281-295, Washington, D.C.

Mariano Cilia, Christof Bornhévd, Alejandro P. Buchmann, Event handling for the
universal enterprise, Information Technology and Management 6 (1) (January
2005) 123-148.

Harry Chen, Filip Perich, Tim Finin, Anupam Joshi, SOUPA: standard ontology for
ubiquitous and pervasive applications, First Annual International Conference on
Mobile and Ubiquitous Systems: Networking and Services (MobiQuitous’04),
August 2004, pp. 258-267.

Tadao Murata, Petri nets: properties, analysis and applications, Proceedings of the
IEEE 77 (4) (April 1989) 541-580.

Jensen Kurt, Coloured Petri Nets. Basic concepts, analysis methods and practical
use, EATCS Monographs on Theoretical Computer Science, Spring-Verlag, Basic
Concepts, Vol. 1, 1992.

Jean-Marc Seigneur, Christian Damsgaard Jensen, Stephen Farrell, Elizabeth Gray,
Chen Yong, Towards security auto-configuration for smart appliances, Proceedings
of the Smart Objects Conference 2003, 2003.

W.M. Fitzgerald, S.N. Foley, Aligning semantic web applications with network
access controls, Computer Standards & Interfaces 33 (1) (2011) 24-34 [52]
Jonathan M. McCune, Ning Qu, Yanlin Li.

Anupam Datta, Virgil D. Gligor, Adrian Perrig, TrustVisor: efficient TCB reduction
and attestation, Proceedings of IEEE Symposium on Security and Privacy
(Oakland 2010), 2011.

Angel Garcia-Crespo, Juan Miguel Gomez-Berbis, Ricardo Colomo-Palacios, Giner
Alor-Herndndez, SecurOntology: a semantic web access control framework,
Computer Standards & Interfaces 33 (1) (2011) 42-49.

Carlos Blanco, Joaquin Lasheras, Eduardo Ferndndez-Medina, Rafael Valencia-
Garcia, José Ambrosio Toval Alvarez, Basis for an integrated security ontology
according to a systematic review of existing proposals, Computer Standards
& Interfaces 33 (4) (2011) 372-388.

Yi Qian, Yuming Xu, Zheng Wang, Geguang Pu, Huibiao Zhu, Chao Cai, Tool
support for BPEL verification in ActiveBPEL engine, Proceedings of The 18th
Australian Software Engineering Conference (ASWEC' 07), 2007, pp. 90-100.

http://www.w3c.org/TR/ws-arch/
http://www.w3c.org/TR/ws-arch/
http://docs.oasis-open.org/wsbpel/2.0/
http://docs.oasis-open.org/wsbpel/2.0/
http://www.w3.org/TR/2004/REC-owl-ref-20040210/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/
http://www.x10.com/
http://www.insteon.net/
http://www.upnp.org/
http://www.jini.org/
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/WD-soap12-part0-20011217/,2001
http://www.w3.org/TR/2001/WD-soap12-part0-20011217/,2001
http://www.uddi.org/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/
http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/

188

Y.-W. Kao, S.-M. Yuan / Computer Standards & Interfaces 34 (2012) 171-188

[56] Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, Abhishek P. Patil, LANDMARC: in-

door location sensing using active RFID, Wireless Networks 10 (2004)

[57] Richard Bandler, John Grinder, Reframing: Neuro-Linguistic Programming and

the Transformation of Meaning, Real People Press0-911226-25-7, 1981.

Yung-Wei Kao was born on March 12, 1982 in Taipei, Taiwan,
Republic of China. He received his MBA degree in the
Department of Information Management of National Central
University in 2006. His interests include Web Technologies,
Ubiquitous Computing, Distributed Objects, and Network
Security.

f

Shyan-Ming Yuan was born on July 11, 1959 in Mauli,
Taiwan, Republic of China. He received his BSEE degree from
National Taiwan University in 1981, his MS degree in Comput-
er Science from the University of Maryland, Baltimore County
in 1985, and his PhD degree in Computer Science from the
University of Maryland College Park in 1989. Dr. Yuan joined
the Electronics Research and Service Organization, Industrial
Technology Research Institute as a Research Member in Octo-
ber 1989. Since September 1990, he has been an Associate
Professor at the Department of Computer and Information
Science, National Chiao Tung University, Hsinchu, Taiwan.
He became a professor in June 1995. His current research in-
terests include Distributed Objects, Internet Technologies,

and Software System Integration. Dr. Yuan is a member of ACM and IEEE.

Unlabelled image
Unlabelled image

	User-configurable semantic home automation
	1. Introduction
	2. Backgrounds and related works
	2.1. Smart home and home automation
	2.2. SOA and OSGi-based smart home
	2.3. Web Service, WSBPEL, and Web Service Based Home Automation
	2.4. Semantic Web, Context-Aware Home, OWL-S, and Semantic Home Automation
	2.5. User-configurable smart home
	2.6. Conclusion of related works

	3. Design issues
	3.1. System assumptions
	3.2. System overview

	4. USHAS ontology
	4.1. Person class
	4.2. Device class
	4.3. Event

	5. Semantic Home Process Language (SHPL)
	5.1. Variables
	5.2. time_set
	5.3. Preconditions
	5.4. Flow
	5.5. SHPL example

	6. System architecture and detailed system design
	6.1. System architecture
	6.2. System model
	6.3. Limitation analysis

	7. System prototype and evaluation
	7.1. System prototype
	7.2. System scenarios
	7.3. User satisfaction evaluation
	7.4. Usability evaluation
	7.5. System comparison

	8. Conclusion and future works
	8.1. Conclusion
	8.2. Future works

	References

