
Computer Standards & Interfaces 34 (2012) 212–224

Contents lists available at SciVerse ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i
A Web-based, Offline-able, and Personalized Runtime Environment for executing
applications on mobile devices

Yung-Wei Kao a,⁎, ChiaFeng Lin a, Kuei-An Yang a, Shyan-Ming Yuan a,b

a Department of Computer Science, National Chiao Tung University, 1001 Ta Hsueh Rd., Hsinchu 300, Taiwan
b College of Computing & Informatics, Providence University, 200 Chung Chi Rd., Taichung 43301, Taiwan
⁎ Corresponding author.
E-mail address: ej3muse@gmail.com (Y.-W. Kao).

0920-5489/$ – see front matter © 2011 Elsevier B.V. All
doi:10.1016/j.csi.2011.08.006
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 18 April 2011
Received in revised form 20 June 2011
Accepted 23 August 2011
Available online 8 September 2011

Keywords:
Mobile device
Offline mobile Web application
Mobile content adaptation
An increasing number of people use cell phones daily. Users are not only capable of making phone calls, but
can also install applications on their mobile phones. When creating mobile applications, developers usually
encounter the cross-platform incompatibility problem (for example, iPhone applications cannot be executed
on the Android platform). Moreover, because mobile Web browsers have increasingly supported more and
more Web-related standards, Web applications are more possible to be executed on different platforms
than mobile applications. However, the problem of Web application is that it cannot be executed in offline
mode. This study proposes a Web-based platform for executing applications on mobile devices. This platform
provides several services for developers such as offline service, content adaptation service, and synchroniza-
tion service. With the help of the proposed platform, application developers can develop and publish offline
Web applications easily with simplified external Web content and synchronization capability.
rights reserved.
© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Benefits from the advancements of mobile devices, mobile plat-
form, and wireless network technologies [1,2,3,4,5] in recent years,
the market of mobile devices are growing dramatically: an increasing
number of people are using at least one mobile phone, or even tablet
PC, daily. Unlike traditional cell phones, users are not only capable of
making phone calls or sending and receiving short messages, but can
also install applications from the online markets. Apple iPhone, iPad,
and Google Android [6,7,8] are three major examples of this type of
mobile device platform. Consumers are not only willing to use appli-
cations on mobile devices, but also willing to pay for them. Creating
an interesting application that can be executed on different mobile
devices within a very short time is a significant issue of application
development. However, developers must usually write mobile appli-
cations in a specific programming language for a specific mobile
platform; that is, iPhone applications in Object C, and Android appli-
cations in Java. Since applications written in Object C cannot be ex-
ecuted on the Android platform, developers have to spend twice
the time writing the same application in two different languages.
Moreover, users may have to buy their next mobile devices with
the same platforms as their current ones because other platforms
do not support their favorite applications.

Due to the variety of mobile platforms, developing cross-platform
mobile applications is a challenge [9]. Certain languages (such as Java
ME ([10,11]) cross mobile platforms, but not PC platforms. To provide
an application that allows users to access their data (such as email)
both on their PC and mobile device, a Web server and Web applica-
tion are usually necessary. Users can consequently use the Web
browser on their PC and a mobile application on their mobile device
to access the same data. This would be more straightforward if the
Web application could be executed on the mobile Web browser; in
this manner, users do not have to install one more non-cross-
platform mobile application on their mobile devices.

iGoogle [12] provides a Web application execution platform
where users can select which applications they are interested in and
execute them on their personalized homepages. Moreover, there is
a mobile version of iGoogle for mobile users, so users can execute
these selected Web applications on their mobile phones. However,
the major problem of executing Web applications on mobile devices
is that they cannot be executed without an Internet connection. In
certain situations, such as on an airplane, or in a basement where
the Internet signal is weak or unavailable, mobile applications can
usually be executed, though Web applications cannot. Moreover, if
the user's data plan does not include unlimited data transmission,
the user may be unwilling to execute Web applications on their mo-
bile phones.

To solve the offline Web-browsing problem, the HTML5 [13,14]
standard includes the Web storage andWeb SQL database APIs. How-
ever, most current Web browsers (especially mobile Web browsers)
have not yet adopted HTML5. To achieve the same goal of offline
Web-browsing, a browser plug-in, the Google Gears solution is devel-
oped. The problem of Google Gears is that not all Web pages can be
browsed offline; only the pages that support the server-side Google

http://dx.doi.org/10.1016/j.csi.2011.08.006
mailto:ej3muse@gmail.com
http://dx.doi.org/10.1016/j.csi.2011.08.006
http://www.sciencedirect.com/science/journal/09205489

213Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
Gears library can. In order to solve this problem, the Gears-Monkey
system was developed. However, there are still several drawbacks
of Gears-Monkey requires a high level of script-writing skill, and is
not supported on mobile phones, and does not provide batch proces-
sing for multiple pages.

In our previous works [15,16], we proposed an authoring tool [15]
for mobile content adaptation, and an offline mobile Web-browsing
framework [16] for browsing offline Web pages on mobile devices.
This paper proposes Web-based, Offline-able, and Personalized Run-
time Environment (WOPRE), which includes these previous works
with some modifications and extensions, as two subsystems for solv-
ing the problems previously mentioned. There are four objectives of
WOPRE:

1. With the help of WOPRE, applications should be executable on
different platforms including PCs and mobile devices.

2. An onlinemarket, similar to the Apple App Store andGoogle Android
Market, should allow developers to publish their applications and
users to install desired applications.

3. Full, or at least partial, operations of applications should be executable
in offline mode.

4. A content adaptation mechanism for external Web content should
be provided.

The research contains seven sections. In Section 2, we introduce
some backgrounds and related works of WOPRE. The high level
and detailed system design issues are described in Sections 3 and 4
respectively. In Section 5, we discuss the system implementation
and demonstration. The system evaluation is presented in Section 6.
Finally, we end up with a conclusion and discuss the future works of
WOPRE in Section 7.

2. Backgrounds and related works

2.1. Cross-platform technologies

It is difficult for programmers to write a program only once before
executing it on different mobile devices [9]. The Java language is
designed for cross-platform application execution, and Java ME is a
cross-platform language for developing mobile applications [11].
There are already many tools available for developing Java ME appli-
cations [17]; certain toolkits which include emulators are available for
rapid MIDlet development. However, Java ME only crosses mobile
platforms, not PC platforms; to provide an application that allows a
user to access data on both PC and mobile devices, developers must
usually use Web technologies as intermediaries.

Based on Java ME, Mojax Moblets [18,19] provides an AJAX frame-
work so that developers can write their applications in widgets: a
much easier approach to write applications. Similar to Moblets,
Yahoo! Go [20] is also a widget-based platform for executing applica-
tions on mobile devices. After installing Yahoo! Go, mobile users can
easily access Yahoo! Web-based services, such as Yahoo! News,
Yahoo! E-mail, and Flickr, on their mobile phones. Developers can
also create applications by following the standard of Yahoo! Mobile
Widgets [21], and allowing users to execute these applications on
various mobile and PC platforms.

SinceWeb technologies andwidgets are good solutions for develop-
ing cross-platform applications for mobile users, it is more straightfor-
ward to execute Web applications via mobile Web browsers. In this
manner, users do not have to install one more platform-dependent ap-
plication on their phones. Similar to Yahoo! Go, Yahoo! Mobile [22]
users can install a platform on their phones for executing widgets;
moreover, they can also execute widgets directly on the Yahoo! Mobile
Website via Web browsers. Other widget technologies such as Win-
dows Mobile Widget [23] and Opera Widget [24] are similar to Yahoo
Go! and Yahoo! Mobile; they have to provide local runtime environ-
ments to execute their widgets. Another related system is the Google
iGoogle. Developers can create applications by following the standard
of Google Gadget [25], and upload them onto the iGoogle platform. Fur-
thermore, since Google Gadget integrates several Google APIs such as
Google Maps API [26], Google AJAX Search API [27], Google Calendar
API [28], and Google Translate API [29], it is extremely easy to invoke
other Google services in Google Gadgets. For mobile users, iGoogle
also provides amobile-versionWeb site, so users can execute their gad-
gets on their mobile phones via mobile Web browsers.

2.2. Offline mobile Web browsing

To make offline Web content and applications available on mobile
devices, local databases and storage should be provided [30]. HTML5
is a new Web standard designed to supplant the existing HTML 4.01,
XHTML 1.0 and DOM Level 2 HTML standards. HTML5 aims to reduce
the need for browser plug-in-based Rich Internet Applications (RIAs),
such as applications based on Adobe Flash [31], Microsoft Silverlight
[32], and Sun JavaFX [33]. Web Storage and Web SQL Database are
two new APIs provided in HTML5; they are described as follows:

2.2.1. Web SQL database
The browsers that support HTML5 should include a local SQLite

database. With this database, client-side applications can store infor-
mation such as user data via standard SQL communications.

2.2.2. Web storage
Name–Value-based data storage should be supported for storing

Web content such as HTML, JavaScript, and image files. The stored
data is non-volatile; even though the browser or the phone is turned
off, the data still remains in the storage.

However, HTML5 has most Web browsers and especially mobile
browsers, do not yet support HTML5. Google Gears [34], an open-
source browser extension that supports the offline execution of web
applications, is an alternative solution for implementing the offline
mechanism. It can be replaced by HTML5 in the future when most
mobile browsers support HTML5. Currently, Google Gears is able to
be executed on personal desktops, laptops, and handheld devices. It
can store and provide application resources locally, and run asynchro-
nous JavaScript to improve application responsiveness. There are
three major components of Google Gears:

A. LocalServer caches and serves application resources (HTML,
JavaScript, images, etc.) locally.

B. Database stores record-based data locally in a fully searchable
relational database.

C. WorkerPoolmakesWeb applicationsmore responsive by performing
resource-intensive operations asynchronously.

However, onlyWeb pages that support the server-side Google Gears
library can be browsed offline. Currently, only a few Web sites support
this library, and most of them are Google Web-based services. The
Gears-Monkey [35] system can solve this problem for offline Web-
browsing; its design is based on Google Gears and Greasemonkey
[36]. An extension of the Mozilla Firefox Web browser, Greasemonkey,
is a user script manager that allows users to customize the manner in
which a page is displayed by using JavaScript. Based on Google Gears
andGreasemonkey, the server-sideGoogle Gears library can be inserted
into any downloaded Web page. Thus, users' favorite Web sites can be
captured and browsed offline. However, there are several drawbacks
of Gears-Monkey. First, it is only supported on PCs and cannot be exe-
cuted on mobile devices. Second, it requires users to write scripts by
themselves; users may not have enough skill to write scripts. Finally,
users must download offline data site by site; no batch processing is
provided.

A previous work [16] by these authors proposed an offline mobile
Web-browsing framework to solve the problems of Google Gears and
Gears-Monkey. In this work, there are several drawbacks. First, users

Fig. 1. System overview.

214 Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
must define their interest lists; otherwise, the framework does not
know which Web pages should be downloaded. Second, users must
browse offline Web pages via the Offline Web Page Viewer because
the offline data is republished under a new domain. Finally, the
work only focused on Web page browsing, but not Web application
execution; in other words, it did not provide a synchronization mech-
anism for allowing users to synchronize the data that has been creat-
ed or modified offline.

Rich Internet Applications (RIAs) [37,38] are Web applications
that have many of the characteristics of desktop applications; they
are typically delivered by site-specific browsers, browser plug-ins,
Fig. 2. High level syst
sandboxes, or virtual machines. Adobe Flash [31], Sun JavaFX [33],
and Microsoft Silverlight [32] are currently the three major RIA plat-
forms. Other popular RIA techniques include Adobe AIR [39] and
AJAX [40]. RIAs usually improve the richness of data, business logic,
communication, and presentation of Web pages. Although RIAs can
also be designed for offline Web data management, it is not their
main purpose. Conversely, Google Gears focuses on offline data man-
agement, and provides a better solution for handling offline issues
(e.g., providing a well-established offline data pre-fetch mechanism).
Therefore, the authors chose Google Gears to implement the client-
side offline data management platform.
em architecture.

image of Fig.�2

Fig. 3. The detailed architecture of Application Market.

215Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
2.3. Mobile Web content adaptation

Mobile content adaptation [41,42,43] is a significant issue when
browsing Web sites on mobile devices. In general, Web pages are
designed for PC users with large screens. Therefore, when users
browse these Web pages on small-screen mobile devices, the display
results are usually unsatisfactory. Many mobile content adaptation
technologies were designed to solve this problem. The challenges of
mobile content adaptation include different device profiles and user
preferences. Moreover, since mobile devices do not usually have com-
putation capabilities as powerful as those of PCs, only certain multi-
media formats are supported for multimedia content.
Fig. 4. The detailed architectu
In general, there are three categories of mobile content adaptation
[44] architecture: client-based application adaptation, client–server
application adaptation, and proxy-based application adaptation. In
client-based adaptation, client-side application performs content
transcoding according to the profile of the mobile device. However,
user preferences must be stored locally on devices, and the weak
computing power of the mobile device may decrease efficiency [5].
In server-side adaptation, the server generates or prepares different
versions of content and decides what type of content should be deliv-
ered to clients according to their profiles. The problem is that server-
side programs must be modified to support different types of clients;
adapted content for mobile users is not available if the server does not
re of Offline Subsystem.

image of Fig.�3
image of Fig.�4

216 Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
support them. In proxy-based adaptation, content is transcoded on
the fly during delivery from server to client; this can solve the prob-
lems of client-side and server-side adaptation architectures. Howev-
er, in certain cases, such as SSL-encrypted communications, Web
content can neither be modified nor adapted during transmission be-
tween clients and servers.

One client-based application adaptation technology is Opera's
Small-Screen Rendering™ [45] in Opera's mobile Web browser. This
technology intelligently reformats Web pages to fit the width of
screen on mobile devices, thereby eliminating the need for horizontal
scrolling. Only the layout of page is changed; all the Web content re-
mains. Another example of client-based application adaption is the
Smart-Fit Rendering technology in ACCESS NetFront. Similar to
Opera's Small-Screen Rendering, Smart-Fit Rendering also renders
Web pages to fit the narrow screen width of mobile devices.

The main difference between client–server application adapta-
tion and proxy-based application adaptation is whether the content
provider or third-party service provider is responsible for conduct-
ing the adaptation. Therefore, many adaptation systems can either
be deployed server-side or proxy-side. Chen et al. [46] proposed a
mobile content adaptation system, which can be either a server-
side or a proxy-side architecture. Their system separates a large
page into several regions, and creates a minified image as an index
page; if any region on the index page is selected, the user is redir-
ected to another page that only displays the content of the selected
region.

In our previous work [15], we proposed a mobile content adapta-
tion system that provides an authoring tool and allows users to select
only a part of Web content in a specified Web page for mobile Web-
browsing. This system includes a Web proxy for content filtering so
that only the specified regions of specified Web pages can be dis-
played. Although this work also proposed the VIPS algorithm for au-
tomatic mobile Web page adaptation for unspecified pages based on
the patterns extracted from users' previous selections, users still
must select some paths in at least one Web page to create the first
pattern.

3. High level system design

3.1. System overview

The system overview is shown in Fig. 1. The WOPRE platform pro-
vides some libraries for offline data management and content adapta-
tion so that developers can include these functionalities into their
applications. Also, developers can create their applications based on
the Google Gadget standard so that the existing iGoogle applications
can be executed on our WOPRE platform. Users can select which ap-
plications that they are interested in, and install them onto their mo-
bile devices. During the installation process of application, the
application gadgets, WOPRE runtime, and external Web content (if
they are included within applications), are downloaded to the Google
Gears local database. Therefore, when the mobile device is under the
offline mode, the selected applications can still be executed upon the
local WOPRE runtime.

3.2. System architecture

The high level system architecture is shown in Fig. 2. There are
three main Subsystems in WOPRE: Application Market, Offline Sub-
system, and Content Adaptation Subsystem. The application market
provides an interface for developers to publish their applications
and users to install applications. The Offline Subsystem is mainly re-
sponsible for offline data management such as offline content prepa-
ration and offline data synchronization. If some external Web content
is included into an application, the developer can use the Content Ad-
aptation Subsystem to provide a simplified content representation.
The detailed system architectures of the application market, Offline
Subsystem, and Content Adaptation Subsystem are shown in Figs. 3,
4, and 5 respectively.

Fig. 3 shows the detailed architecture of the Application Market.
During the application-uploading phase, first, developers can upload
their gadgets through the application publication manager. Second,
application-related files such as the gadget itself and images are
stored in the application data storage. If developers do not wish to
maintain an online database by themselves, the application data stor-
age also provides a database for storing application-specific user data.
During the application-downloading phase, first, users can go to the
applicationmarket and select applications via the application installa-
tion manager. Second, this manager invokes the Offline Data Provider
of the Offline Subsystem to prepare for offline data during the process
of installation. Later, through the application execution manager,
users can execute their applications on mobile devices or PCs either
online or offline after downloading and executing the WOPRE Run-
time Environment (WOPRE RE).

In Fig. 4, before using the Offline Subsystem, users must first in-
stall a Client-side Offline Manager on their mobile browsers. Cur-
rently, Google Gears and some JavaScript programs implement this
manager. The Data Source Switcher component determines whether
it is online or offline, and chooses external Web sites or the local DB
as the data source. During the offline data preparation phase, first,
the Offline Data Agent component invokes the Offline Data Provider
to prepare and download offline Web content. Second, the Offline
Data Provider executes a Web Crawler to acquire adapted external
Web content if it is included in users' applications, and transforms
this content into images by the Snapshot Service. The width of trans-
formed images can be specified by developers so that they can be
viewed clearly onmobile devices. Finally, if users execute their appli-
cations offline, and change the user data such as inserting an item
into a to-do list, the Sync Agent and Sync Service synchronizes the
local user data with the Application Data Storage after themobile de-
vice returns to online mode.

There are several differences between the Offline Subsystem and
our previous offline framework [16]. First, because all the Web
pages which users may browse are under the control of developers,
users do not have to define an Interest List in advance. Second, in
our previous offline framework, the offline Web content are repub-
lished under a new domain; it is very difficult to ask users to browse
those pages with different URLs without the help of the Offline Web
Page Viewer. However, in the Offline Subsystem of WOPRE, since
users always go to the homepage of WOPRE first, which is under
the WOPRE domain, the role of Offline Web Page Viewer is replaced
by the homepage; therefore, no additional plug-in is required to be
installed and used. Finally, our previous offline framework only fo-
cused on offline Web browsing, but not offline Web application exe-
cution, so there was no synchronization mechanism supported.

Since Web pages usually contain some unimportant information,
such as advertisements, browsing them on mobile devices is easier
if only important content is selected to be displayed. Moreover, the
structure of Web content usually tends to be static; otherwise, certain
external services such as external RSS readers cannot extract Web
content correctly. Therefore, the DOM three paths are used to specify
which content is important.

Fig. 5 shows the detailed architecture of the Content Adaptation
Subsystem. The Content Adaptation Subsystem of WOPRE provides
an authoring tool for developers to specify which Web content from
which Web pages are included in their applications. For example, de-
velopers want to create a RSS news reader application and provide
links in an index page for linking to pages under a news Web site,
they may want to specify that the title and main body of article are
important, and only display the content of them on users' mobile
phones. With the Content Adaptation Subsystem, developers can do
so by the following steps. First, they have to open the external Web

Fig. 5. The detailed architecture of Content Adaptation Subsystem.

217Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
page that they want to specify, and download the Authoring Tool
onto the current browsers. In our implementation, the Authoring
Tool is implemented in JavaScript; therefore, it is easy to download
and execute this tool by clicking a bookmark. Second, with the help
of the Authoring Tool, developers can specify which blocks, or DOM
tree paths, are important for which applications, and save the selec-
tion results into the Configuration Database via the Configuration
Manager. Also, developers can specify whether all the Web pages
under the same domain should follow the same pattern of selection.
Finally, if the user or the Offline Subsystem wants to obtain the con-
tent of these Web pages through this application, the Page Tailoring
Service (a Web proxy) filters out unspecified content and provides
adapted pages that contain only specified content.

The major difference between the Content Adaptation Subsystem
and the authoring tool in our previous work [15] is that previously,
users have to specify which parts of Web pages are important, but
now, it's the developers' responsibility in WOPRE. In our previous
work, although we proposed the VIPS algorithm for automatic mobile
Web page adaptation based on the patterns extracted from users' pre-
vious selections, users still have to select some paths in at least one
page for creating the first pattern. However, in WOPRE, since users al-
ways link to external Web pages via applications, developers can
make the decisions of selection for users, so that users don't have to
do so by themselves.

3.3. System limitation

The major limitation of WOPRE is that it cannot handle encrypted
Web content such as HTTPS pages for either offline Web browsing or
content adaptation. In the case of offline Web browsing, since this
kind of pages usually require user authentication, the Web Crawler
cannot access to these pages without users' credentials. Although
we considered of implementing an interface for users to delegate
their credentials, it is very difficult to be applied to general Web
pages because different pages usually use different authentication
mechanism. In the case of content adaptation, since the Page Tailoring
Service is designed based on Web proxy, and one of the goals of Web
page encryption is to prevent pages from being tempered, it is impos-
sible to create adapted Web pages in the middle of external servers
and mobile devices. Therefore, we suggest developers to develop
the applications which only reference to public external Web pages.
If user data should be encrypted during communications, it is better
to handle the data encryption and decryption operations by local
JavaScript programs and server-side programs within the user-data
level, than within the Web-content level.

4. Detailed system design

In this section, we describe the detailed system design of WOPRE,
including the process of application publication and installation. In
order to explain how to use the functionalities of Offline Subsystem
and Content Adaptation Subsystem, we develop two applications
for demonstration; therefore, we also describe the detailed design
of these two applications as well as how they interact with our
Subsystems.

4.1. Application publication process

Fig. 6 shows the sequence diagram of how developers can publi-
cize their applications. After developers create their applications,
they can upload the gadget XML and related images to our application
market. For each uploaded gadget, the application market extracts all
the external URLs, creates a list of them, and create local URLs of them
for offline browsing; the list of external URLs are referenced by the
Offline Subsystem later when this application is installed by any
user. Since most of the functionalities of WOPRE are provided via
JavaScript interfaces, it is very easy to use them within gadgets.
Also, developers can use the Content Adaptation Subsystem if they
want to include some external Web content into their applications.
By using the Authoring Tool, developers can login to WOPRE, specify
which application uses the result, decide whether single page or the
whole domain is applied, choose the important regions of current
Web page, and store the tailoring result to the Content Adaptation
Subsystem.

4.2. Application installation process

Fig. 7 shows how users can install applications inWOPRE. For each
time a user decides to install an application, the application market
asks the Offline Subsystem to prepare for offline Web content. Two
ways are supported for preparing offline data: normal Web page pro-
cessing and RSS feed processing. When processing normal Web

image of Fig.�5

Fig. 6. The sequence diagram of application publication.

218 Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
pages, the URLs specified by applications are the target pages directly;
however, in the case of RSS feed processing, the RSS feed is only an
index, which contains multiple URLs for multiple targets. Therefore,
the Offline Data Provider has to acquire the RSS feed first, parse it,
Fig. 7. The sequence diagram o
and download all the Web content of all the targets referenced from
it with the Web Crawler if a RSS-feed type of URL is specified in appli-
cation. Since theWeb Crawler crawsWeb content via the Page Tailor-
ing Service of Content Adaptation Subsystem, the returned Web
f application installation.

image of Fig.�6
image of Fig.�7

Fig. 8. The sequence diagram of using the to-do list application.

219Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
content is adapted based on the application ID and developer ID. In
this way, users can download the adapted Web content for offline
browsing directly from the Offline Subsystem.
Fig. 9. The sequence diagram of usi
4.3. Synchronization service

One of problems of Google Gears is that it doesn't provide any syn-
chronization mechanism; it leaves this problem to the developers,
since different applications usually have different synchronization re-
quirements. However, it implies that developers have to provide an
online server and design their own synchronization mechanisms by
themselves. In WOPRE, we provide a simple and basic synchroniza-
tion service so that developers can use this service directly without
maintaining their own online servers.

In WOPRE, all the user data for application synchronization is
stored in the AppSync table. Each record of this table maintains the
user ID, application's ID, developer's ID, a key-value pair of values,
and the latest time when it is updated. Moreover, we provide a
table manager which provides some basic operations such as insert,
update, and delete, so that developers can use this table easily. The
AppSync table is implemented within both the Local DB on the mobile
device and Offline Data Storage, and the table manager is implemen-
ted within the Offline Data Agent on mobile device and the Offline
Data Provider. During the synchronization process, the Sync Service
checks that if there are two records have the same UserID, Develo-
perID, AppID, and Key values in these two tables then replaces the
older record with the newer one.

4.4. The to-do list application

A “to-do list” application is designed for demonstrating the capabil-
ity of Offline Subsystem. To-do list is a list which includes several tasks
which should be finished. Although it is simple, it is useful for users to
have an overview of tasks; therefore, users can easily decide the priori-
ties of tasks and arrange their time properly. A to-do list can be imple-
mented as an application of WOPRE so that it can be executed offline
ng the RSS reader application.

image of Fig.�8
image of Fig.�9

Fig. 10. The system implementation of WOPRE.

Table 1
The database schema of the table AppSync.

AppSync

Field Type Key

ID Int Primary
UserID Int Foreign
DeveloperID Int Foreign
AppID Int Foreign
Key varchar
Value varchar
Timestamp Datetime

220 Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
on mobile devices. The sequence diagram of using it is shown in Fig. 8.
After installing this application, users can execute it in offline mode,
and add new items into their to-do lists. The local offline data is syn-
chronized with the online server when users execute this application
again in online mode. In the implementation of the to-do list applica-
tion, each item from each user is recorded into a record of the AppSync
table. For each record, a hash value of item content is chosen as the Key
value, and the Value value is the content of item. If any item is deleted,
Value is set to null, but Key remains the same; this record is deleted dur-
ing the synchronization process. If any item is edited, the value of Key is
not re-hashed until it has been synchronized.

4.5. The RSS reader application

We design a RSS reader application of BBC News for demonstrat-
ing the capability of Content Adaptation Subsystem. In the gadget of
this application, a JavaScript function is invoked for preparing for
Web pages with the type of RSS feed specified. Also, since we use
the Authoring Tool to indicate that all the Web pages which are
under the specified domain and accessed by this application should
be tailored based on a selected pattern, all the returned Web pages
are adapted for mobile devices during the online updating process.
Moreover, before downloading eachWeb page, the Offline Subsystem
checks that whether this article exists in the Offline Data Storage; if it
exists, then it will not be downloaded again to speed up the updating
process. For online execution, if users want to browse external Web
pages with adapted content, they can set our Page Tailoring Service
of Content Adaptation Subsystem as Web proxy; in this way, no mat-
ter these pages are browsed online or offline, they are adapted for
mobile devices (Fig. 9).

5. System implementation and demonstration

5.1. System implementation

Fig. 10 shows the system implementation technologies of WOPRE.
On the server side, the Apache Shindig [47] platform is used to
implement the application market. Apache Shindig is an open-source
third-party project designed for executing Google Gadget applica-
tions. Because the PHP version of Shindig is used, most of the serv-
er-side components of WOPRE are implemented in PHP. Due to
AJAX security issues, JavaScript codes cannot access Web content
under other domains. Therefore, for each gadget uploaded to
WOPRE, the application installation manager examines all URLs refer-
enced in the gadget, and rewrites all external URLs to local ones for
offline browsing. However, it is better to provide the original URLs
for users under online mode so that real-time information is avail-
able. Hence, whether to use the original or rewritten URL depends
on whether the user is online. Table 2 shows two examples of URLs
before and after rewriting. If any external link is included within the
“baN” element, it is automatically rewritten into a short JavaScript
program that provides a different URL based on current online status.
Conversely, if an external link is referenced within an RSS XML docu-
ment that is going to be processed offline, the two URLs are
concatenated by the “||” symbols, and the offline WOPRE runtime an-
alyzes it and uses a different URL based on current online status.

TheWeb Crawler of Offline Data Provider is implemented by using
SiteShoter [48]. The most challenging problem of Web crawling is de-
ciding howmany levels should be crawled. For example, if Page A has
a link to page B, and page B has a link of page C, and page A is crawled
with level 1, then only the content in Page A is pre-fetched and

image of Fig.�10

Table 2
Examples of URL rewriting.

Before
rewriting
in HTML

ba href="http://sports.espn.go.com/nba/news/story?
id=6622805&campaign= rss&source=ESPNHeadlines"
level="1"Nclick meb/aN

After
rewriting
in HTML

bscript language="JavaScript"N var status=online_or_not(); if
(status==1){document.write("ba href=\"http://sports.espn.go.
com/nba/news/story?
id6622805&campaign=rss&source=ESPNHeadlines\" level=\"1
\"Nclick meb/aN"); }else{document.write("ba href="http://www.
wopre.com/offline/sports.espn.go.com /nba/news/story-
9274698167.jpg\"Nclick meb/aN");} b/scriptN

Before
rewriting
in RSS

b link level="1"Nhttp://sports.espn.go.com/nba/news/story?
id=6622805&campaign=rss&source=ESPNHeadlinesb/linkN

After
rewriting
in RSS

b linkNhttp://sports.espn.go.com/nba/news/story?
id=6622805&campaign=rss &source=ESPNHeadlines || http://
www.wopre.com/offline/sports.espn.go.com/nba/news/story-
9274698167.jpg b/linkN

Fig. 12. (a) The to-do list application (b) The to-do list applicationwith onenew itemadded.

221Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
available offline; if the level is 2, then the content of both A and B, but
not C, is available offline. Images should be processed at different
levels because images are usually regarded to be on the current
page, but they are actually treated as external links in HTML docu-
ments. Since different depths of levels are required in different appli-
cations, it is difficult to automatically decide them by WOPRE.
Therefore, we allow developers themselves to specify the level of
each external link in the “level” attribute. Examples of using this attri-
bute are also shown in Table 1. Thus, WOPRE can know how many
levels should be pre-fetched. At the last level, Level 1, since external
links do not work offline, WOPRE simply takes a screenshot of the en-
tire Web page with the width of mobile screen specified so that it can
be processed faster. Finally, for all links where the “link” attributes are
not specified, they are treated as Level 1.

In the Content Adaptation Subsystem, Muffin [49], a Java-imple-
mented Web proxy, is selected as the Page Tailoring Service. On the
mobile phone-side, Google Gears plays the role of Data Source
Switcher and Local DB.

5.2. System demonstration

The mobile version homepage and PC version homepage are
shown in Fig. 11. In the mobile homepage, the application execution
manager displays only icons of applications, so that it matches the
traditional user experience of using mobile applications. In the PC
version of homepage, the application execution manager provides
more details of each application, such as its name and which mobile
browser is supported. The reason why some applications are not sup-
ported by some browsers is because that the JavaScript program
Fig. 11. (a) The mobile version homepage (b) The PC version homepage.
developed by developers may not be able to be executed on some
mobile browsers due to the different levels of support of JavaScript.

Fig. 12 shows the to-do list application on mobile device. Even it is
under offline mode, user can still do some operations such as add a
new item or delete an old item.

Fig. 13 (a) shows the RSS reader application for BBC News on mo-
bile device. When this application is executed under online mode
without our content adaptation mechanism, the result is shown in
Fig. 13 (b); obviously, this Web page is not designed to be browsed
on mobile device. With our content adaptation mechanism, the result
is shown in Fig. 13 (c). Either the mobile device is under online mode
or offline mode, adapted Web pages can be provided to mobile users.

6. System evaluation

6.1. Performance evaluation

Table 3 lists the performance evaluation result of WOPRE. In order
to do so, we measure the consumed time of each application in each
operation and calculate the average time after 20 times of executions.
The operation which takes the longest time is online application in-
stallation for the RSS reader. The reason is that our RSS reader con-
tains five external links in each category, and there are five
categories in this application. In other words, all the offline data of
these 25 Web pages should be prepared during the installation
stage. Although the update process of the RSS reader also downloads
external Web content, the pages which already exist in the Offline
Data Storage are not downloaded again; therefore, it requires less
time for application update than installation. In addition, if real-time
external Web pages are downloaded from external Web sites under
online mode on mobile device, it takes more time for data transmis-
sion than the offline case.

6.2. Usability evaluation

The principal factors proposed by Benbunan-Fich [50] were used
for designing a questionnaire to evaluate the usability of WOPRE.
The questionnaire contains 10 questions based on factors of appeal,
content, ease of use, performance, and support. The questions are
listed in Table 4 with 6 (0–5) agreement degrees ranging from
“strongly disagree” to “strongly agree.” This questionnaire was used
to survey 24 users who were randomly chosen on the Internet.

Table 4 and Fig. 14 show that the lowest average degree of agree-
ment appears in Questions 5 and 6. Actually, these two questions are
highly rigid; users usually do not require professional help only when
they are highly familiar with a system and know what the result of

image of Fig.�11
image of Fig.�12

Fig. 13. (a) The RSS reader application (b) The online external Web page without content adaptation (c) The offline external Web page with content adaptation.

222 Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
each step is. Although the two questions with the lowest degree of
agreement both belong to the Ease of Use category, the category
that has the lowest agreement degree is Performance. Since down-
loading offline data requires time during the application installation
and update processes, users usually think that these operations are
not fast enough. However, the overall degree of agreement is satis-
factory. In addition, Fig. 15 shows the Cronbach α of the survey;
the support category has the smallest α (0.81), and the overall α
is 0.95.
Table 4
Questions included in questionnaire.

Category Question Average degree
of agreement

Appeal 1. I think the user interface is suitable 4.50
6.3. System comparison

The system comparison between WOPRE and other related
technologies is shown in Table 5. The Android/iPhone/iPad applica-
tions are not cross-platform on mobile device, and Java ME is not
cross-platform on PC. Since iGoogle and Flash are technologies
based on Web browser, they cannot be executed under offline
mode. Regarding the widget-type technologies, Windows Mobile
Widget is not cross-platform for both mobile device and PC; Opera
widget can be executed on PC, but not on most of mobile platforms;
Yahoo! Mobile includes both the traditional mobile application and
Web application technologies, so it is cross-platform when using
Web application and offlinable when using mobile application; how-
ever, it does not provide content adaptation mechanism for online or
offlineWeb content. Finally, all of these requirements are satisfied in
WOPRE.
Table 3
Performance evaluation of WOPRE.

Operation Average consumed time (s)

The to-do
list App

The RSS reader App Average of to-do
list and RSS
reader Apps

Application publication 0.37 0.39 0.38
Application installation 3.27 36.42 19.85
Application update 0.21 27.36 13.79
Application execution
on mobile device (online)

0.13 (add a
new item)

0.23 (browse an
external Web page)

Meaningless

Application execution on
mobile device (offline)

0.14 (add a
new item)

0.18 (browse an
external Web page)

Meaningless

Average of operations 0.82 12.92
7. Conclusion and future works

7.1. Conclusion

Due to the platform-dependent problem of mobile applications, ap-
plication developers must spend twice the timewriting the same appli-
cation twice in different languages for different mobile platforms. Even
if some technologies such as Java ME are designed as cross-platform
languages, they only cross mobile platforms, but not PC platforms.
Web applications are cross-platforms because mobile devices usually
provide mobile Web browsers. However, Web applications cannot be
executed in offline mode. Based on Yahoo!MobileWidget, Yahoo! Mo-
bile includes both the designs of mobile applications and Web applica-
tions, as Web applications are cross-platform, and mobile applications
are Offline-able. However, if an application includes external Web
pages, which are usually designed for PCs, it is difficult to view them
on mobile devices. The Web-based and Offline-able WOPRE system is
proposed to solve these problems; it contains an online market for ap-
plication publication as well as installation and two Subsystems for
for being displayed on small screens.
Appeal 2. I am willing to use this system

frequently.

3.92

Content 3. All the functionalities are well-inte
grated in the system.

4.00

Ease of Use 4. This system is easy to use. 4.25

Ease of Use 5. I don't need professional help when I
use this system.

3.83

Ease of Use 6. I can easily find the buttons that I
need every time.

4.42

Ease of Use 7. I clearly know what the result of
each step is.

3.83

Performance 8. The processing speed of this system
is fast.

3.92

Support 9. This system can do what I thought it
could do.

4.08

Support 10. This system makes my life
convenient.

4.25

image of Fig.�13

Fig. 14. The analysis result of usability evaluation (average degree of agreement).

Fig. 15. The analysis result of usability evaluation (Cronbach α).

223Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
application developers to design an Offline-able application with
adapted external Web pages easily. Based on these two Subsystems,
the “to-do list” and “RSS reader” applications are designed to demon-
strate their capabilities. Finally, a survey shows that the WOPRE is
user-friendly.

7.2. Future works

Currently, the iGoogle Gadget standard is used inWOPRE; applica-
tion developers are asked to follow this standard for application de-
velopment. In the future, other widget standards such as Yahoo!
Mobile Widget or Windows Mobile Widget will be included, so that
more existing widget applications can be executed on WOPRE. In ad-
dition, Flash applications will be supported on WOPRE. Since most
WOPRE libraries are designed by Web technologies, it is extremely
easy to support the functionalities of either Offline or Content Adap-
tation Subsystems in Flash. The gadget standard must be modified
so that developers can include Flash within their gadgets. Moreover,
the current work does not address social networks; in the future,
Table 5
The comparison between WOPRE and other related technologies.

Android/iPhone/iPad App. Java ME iGo

Cross-Platform (Mobile device) No Yes Yes
Cross-Platform (Mobile Device and PC) No No Yes
Easy to develop Application (Gadget-based
or not)

No No Yes

Offline App. Execution Yes Yes No
Adapted external Web content No No No
Offline external Web content available No No No
the Facebook API [51], will be supported so that existing Facebook ap-
plications can be executed on WOPRE, and WOPRE users can interact
with each other asynchronously within Web or Flash applications
even in offline mode. Furthermore, if HTML5 is supported by most
mobile Web browsers in the future, we will replace Google Gears
with the HTML5 standard, so that users do not have to install another
program. Finally, since the design of WOPRE is purely based on Web
technologies, it is highly suitable to be deployed onWeb OS platforms
such as Chrome OS [52]. In this manner, WOPRE can make the Web
OS market more competitive with other markets based on the Apple
App Store and Google Android Market. Therefore, we will deploy
WOPRE on Web OS systems and devices, and analyze whether Web
OS users are satisfied with the proposed system.

Acknowledgments

This work was mainly supported by the National Science Council
grant NSC97-2218-E-009-042: Google Android based smart device
system and its applications.
ogle Flash Windows mobile widget Opera widget Yahoo! mobile WOPRE

Yes No No Yes Yes
Yes No Yes Yes Yes
Yes Yes Yes Yes Yes

No Yes Yes Yes Yes
No No No No Yes
No No No No Yes

image of Fig.�14
image of Fig.�15

224 Y.-W. Kao et al. / Computer Standards & Interfaces 34 (2012) 212–224
References

[1] Wang Yi, Lin Jialiu, AnnavaramMurali, Quinn A. Jacobson, Hong Jason, Krishnamachari
Bhaskar, SadehNorman, “A frameworkof energy efficientmobile sensing for automatic
user state recognition”, Proc. of the 7th international conference onMobile systems, ap-
plications, and services, June 22–25, 2009, Kraków, Poland.

[2] Ch. Borst, T. Wimb¨ock, F. Schmidt, M. Fuchs, B. Brunner, F. Zacharias, P. Robuffo
Giordano, R. Konietschke, W. Sepp, S. Fuchs, Ch. Rink, “A. Albu-Sch¨affer, and G.
Hirzinger. Rollin' Justin — Mobile Platform with Variable Base”, Proc. of the IEEE
International Conference on Robotics and Automation, Kobe, Japan, 2009.

[3] Kao Yung-Wei, Peng Pin-Yin, Hsieh Sheau-Ling, Yuan Shyan-Ming, “A Client Frame-
work for Massively Multiplayer Online Games on Mobile Devices”, Proc. of Interna-
tional Conference on Convergence Information Technology (ICCIT2007), Nov. 21–23,
2007, pp. 48–53.

[4] Sedat Atmaca, Celal Cekena, Ismail Erturk, A new QoS-aware TDMA/FDD MAC
protocol with multi-beam directional antennas, Computer Standards & Interfaces
31 (4) (2009) 816–829.

[5] Edward David Moreno, José Ivo Fernandes de Oliveira, Architectural impact of
the SVG-based graphical components in web applications, Computer Standards
& Interfaces 31 (6) (2009) 1150–1157.

[6] Sharon P. Hall, Eric Anderson, “Operating Systems ForMobile Computing”, Journal of
Computing Sciences in Colleges (December, 2009).

[7] R. Godwin-Jones, Emerging technologies mobile-computing trends: lighter, faster,
smarter, Language, Learning and Technology 12 (3) (2008) 3–9.

[8] Yung Fu Chang, C.S. Chen, Hao Zhou, Smart phone for mobile commerce, Computer
Standards & Interfaces 31 (4) (2009) 740–747.

[9] Tomasz Knyziak, WieslawWiniecki, The new prospects of distributed measurement
systems using Java 2Micro Editionmobile phone, Computer Standards and Interfaces
28 (2) (2005) 183–193.

[10] T. Butter, M. Aleksy, P. Bostan, M. Schader, Context-aware user interface framework
for mobile applications, Proc. of ICDCS Workshops, 2007.

[11] Lu. Eric Jui-Lin, Yung-Yuan Cheng, Design and implementation of a mobile database
for Java phones, Computer Standards & Interfaces 26 (5) (2004) 401–410.

[12] O. Casquero, J. Portillo, O.R. Ramon, J. Romo, M. Benito, iGoogle and Gadgets as a
platform for integrating institutional and external services, Workshop on Mash-
Up Personal Learning Environments (MUPPLE'08), 2008, pp. 37–41.

[13] I. Hickson (Ed.), HTML 5. Technical report, Web Hypertext Application Technolo-
gy Working Group HTML 5, 2007http://www.whatwg.org/specs/web-apps/
current-work, Working Draft, Available.

[14] T. Melamed, B. Clayton, A comparative evaluation of HTML5 as a pervasive media
platform, Proc. of mobile computing, applications, and services: First International
ICST Conference (MobiCASE 2009), October 26–29 2009, p. 307, San Diego, CA, USA.

[15] Yung-Wei Kao, Tzu-Han Kao, Chi-Yang Tsai, Shyan-Ming Yuan, A personal webpage
tailoring toolkit formobile devices, Computer Standards & Interfaces 31 (2) (February
2009) 437–453.

[16] Yung-Wei Kao, Tung-Hing Chow, Yuan Shyan-Ming, Offline web browsing for
mobile devices, Journal of Web Engineering 10 (1) (2011).

[17] Lingfen Chen, Derek Woods, K. Curran, J. Doherty, Mobile development environments
for electronic finance, International Journal of Electronic Finance 4 (2) (2010) 99–119.

[18] Mojax Moblets, [online]Available:, https://code.google.com/p/moblets/.
[19] C. Tong, Analysis of SomePopularMobile SocialNetwork System,Helsinki University

of Technology, 2008.
[20] Yahoo! Go, [online]Available:, http://en.wikipedia.org/wiki/Yahoo!_Go.
[21] Yahoo! Mobile Widgets [online]Available:, http://mobile.yahoo.com/developers.
[22] Yahoo! Mobile, [online]Available:, http://mobile.yahoo.com/.
[23] Windows Mobile Widgets, [online]Available:, http://msdn.microsoft.com/en-us/

library/dd721906.aspx.
[24] Opera Widget, [online]Available:, http://widgets.opera.com/.
[25] Google Gadget, [online]Available:, http://www.google.com/webmasters/gadgets/.
[26] Google Maps API, [online]Available:, http://code.google.com/apis/maps/index.

html.
[27] Fitzgerald Michael, Google Ajax Search API, O'Reilly, 2007 978-0-596-52953-6.
[28] Google Calendar API, [online]Available:, http://code.google.com/apis/calendar/.
[29] Google Translate API, [online]Available:, http://code.google.com/apis/language/

translate/overview.html.
[30] Tzu-Han Kao, Shyan-Ming Yuan, Designing an XML-based context-aware trans-

formation framework for mobile execution environments using CC/PP and
XSLT, Computer Standards & Interfaces 26 (5) (2004) 377–399.

[31] J. Allaire, Macromedia flash MX— A Next-Generation Rich Client, Macromedia
White Paper, , 2002.

[32] L. Moroney, Introducing Microsoft Silverlight 2.0, Microsoft Press, 2008.
[33] T. Noda, S. Helwig, Rich Internet Applications, Technical Comparison and Case Studies

of AJAX, Flash, and Java based RIA, http://www.uwebc.org/opinionpapers2005.
[34] Google Gears, [online]Available:, http://gears.google.com/.
[35] Gears-Monkey, [online]Available:, http://code.google.com/p/gears-monkey/.
[36] Greasmonkey, [online]Available:, https://addons.mozilla.org/zh-TW/firefox/

addon/748.
[37] J. Duhl, Rich Internet Applications, White Paper, IDC, November, 2003.
[38] Daniel Peintner, Harald Kosch, Jörg Heuer, Efficient XML Interchange for rich in-

ternet applications, Proc. of 2009 IEEE International Conference on Multimedia
& Expo (ICME 2009), 2009.

[39] Mike Chambers, Daniel Dura, Georgita Dragos, Kevin Hoyt, Adobe AIR for Java-
Script Developers Pocket Guide, O'Reilly Media, April 2008 ISBN: 978-0-596-
51837-0.

[40] J.J. Garrett, Ajax: a New Approach to Web Applications, http://www.pablolfc.com.
ar/leer/Ajax.pdfFeb 2005.
[41] W.Y. Lum, F.C.M. Lau, A context-aware decision engine for content adaptation,
IEEE Pervasive Computing 1 (3) (2002) 41–49.

[42] A. Carreras, J. Delgado, E. Rodriguez, V. Barbosa, M.T. Andrade, H. Kodikara Ara-
chchi, S. Dogan, A.M. Kondoz, A platform for context-aware and digital rights
management-enabled content adaptation, IEEE Multimedia 17 (2) (April-June
2010) 74–89.

[43] Marcos Forte, Wanderley Lopes de Souza, Antonio Francisco do Prado, Using on-
tologies and Web services for content adaptation in ubiquitous computing, Jour-
nal of Systems and Software 81 (3) (March 2008) 368–381.

[44] Jin Jing, Abdelsalam Helal, Ahmed Elmagarmid, Client–server computing in mo-
bile environments, ACM Computing Surveys 31 (2) (1999) 117–157.

[45] Opera Small-Screen Rendering™, [online]Available:, http://dev.opera.com/
articles/view/making-small-devices-look-great/.

[46] Yu. Chen, Xing Xie, Wei-Ying Ma, Hong-Jiang Zhang, Adapting web pages for
small-screen devices, IEEE Internet Computing 9 (1) (2005) 50–56.

[47] Apache Shindig, [online]Available:, http://shindig.apache.org/.
[48] SiteShoter, [online]Available:, http://www.nirsoft.net/utils/web_site_screenshot.

html.
[49] Muffin, [online]Available:, http://muffin.doit.org/.
[50] R. Benbunan-Fich, Using protocol analysis to evaluate the usability of a commer-

cial Web site, Information Management 39 (2001) 151–163.
[51] Facebook API, [online]Available:, http://developers.facebook.com/.
[52] Alex Wright, Ready for a Web OS? Communications of the ACM 52 (12) (2009)

16–17.
Yung-Wei Kao was born on March 12, 1982 in Taipei,
Taiwan, Republic of China. He received his MBA degree in
Department of InformationManagement of National Central
University in 2006. He interests in Web Technologies,
Ubiquitous Computing, Distributed Objects, and Network
Security.
Chia-Feng Lin received his MS degree in computer science
from National Chiao Tung University, Taiwan ROC in 2006.
He is a PhD student in Computer Science from National
Chiao TungUniversity. His current research interests include
software architectures for large-scale distributed systems,
Cloud computing related issues, SOA andWeb2.0.
Kuei-An Yang was born on March 12, 1982 in Taipei,
Taiwan, Republic of China. He received his MS degree from
Institute of Computer Science & Engineering, in Department
of Computer Science of National Chiao Tung University in
2010.He interests inWeb Technologies, Nand FlashMemory
management, and Network Security.
Shyan-Ming Yuan was born on July 11, 1959 in Mauli,
Taiwan, Republic of China. He received his BSEE degree from
National Taiwan University in 1981, his MS degree in
Computer Science from University of Maryland, Baltimore
County in 1985, and his PhD degree in Computer Science
from theUniversity of Maryland College Park in 1989. Dr. Yu-
an joined the Electronics Research and Service Organization,
Industrial Technology Research Institute as a Research
Member in October 1989. Since September 1990, hehas been
an Associate Professor at the Department of Computer and
Information Science, National Chiao Tung University,
Hsinchu, Taiwan. He became a Professor in June 1995. His
current research interests include Distributed Objects,
Internet Technologies, and Software System Integration.
Dr. Yuan is a member of ACM and IEEE.

http://www.whatwg.org/specs/web-apps/current-work
http://www.whatwg.org/specs/web-apps/current-work
https://code.google.com/p/moblets/
http://en.wikipedia.org/wiki/Yahoo!_Go
http://mobile.yahoo.com/developers
http://mobile.yahoo.com/
http://msdn.microsoft.com/en-us/library/dd721906.aspx
http://msdn.microsoft.com/en-us/library/dd721906.aspx
http://widgets.opera.com/
http://www.google.com/webmasters/gadgets/
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/maps/index.html
http://code.google.com/apis/calendar/
http://code.google.com/apis/language/translate/overview.html
http://code.google.com/apis/language/translate/overview.html
http://www.uwebc.org/opinionpapers
http://gears.google.com/
http://code.google.com/p/gears-monkey/
https://addons.mozilla.org/zh-TW/firefox/addon/748
https://addons.mozilla.org/zh-TW/firefox/addon/748
http://www.pablolfc.com.ar/leer/Ajax.pdf
http://www.pablolfc.com.ar/leer/Ajax.pdf
http://dev.opera.com/articles/view/making-small-devices-look-great/
http://dev.opera.com/articles/view/making-small-devices-look-great/
http://shindig.apache.org/
http://www.nirsoft.net/utils/web_site_screenshot.html
http://www.nirsoft.net/utils/web_site_screenshot.html
http://muffin.doit.org/
http://developers.facebook.com/
Unlabelled image
Unlabelled image

	A Web-based, Offline-able, and Personalized Runtime Environment for executing applications on mobile devices
	1. Introduction
	2. Backgrounds and related works
	2.1. Cross-platform technologies
	2.2. Offline mobile Web browsing
	2.2.1. Web SQL database
	2.2.2. Web storage

	2.3. Mobile Web content adaptation

	3. High level system design
	3.1. System overview
	3.2. System architecture
	3.3. System limitation

	4. Detailed system design
	4.1. Application publication process
	4.2. Application installation process
	4.3. Synchronization service
	4.4. The to-do list application
	4.5. The RSS reader application

	5. System implementation and demonstration
	5.1. System implementation
	5.2. System demonstration

	6. System evaluation
	6.1. Performance evaluation
	6.2. Usability evaluation
	6.3. System comparison

	7. Conclusion and future works
	7.1. Conclusion
	7.2. Future works

	Acknowledgments
	References

