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Abstract-A nonlinear finite element method, which is based on the von Karman-Mindlin plate 
theory and thma principle of minimum total potential energy, is used to study the deformation and 
first-ply failure of thin laminated composite plates. The load-displacement curves of a number of 
laminated composite plates are determined using the proposed finite element method. Stresses 
obtained from. the linear and nonlinear finite element analyses are used to determine, respectively, the 
linear and nonlinear first-ply failure loads of the laminated plates based on several phenomenological 
failure criteria. The accuracy of the finite element results is then verified by comparison with the 
available experimental data. It has been found that good agreement between the finite element and 
experimental load-strain curves before first-ply failure is observed. If the reduction in plate stiffness 
induced by failure of plies is taken into account in the finite element model, close agreement between 
finite element and experimental load-displacement curves from first-ply failure up to total failure 
may be obtained. Regarding the prediction of the first-ply failure load, it has been found that some 
of the phenomenological failure criteria may yield results of consistent accuracy for the laminated 
composite plates under consideration. Nevertheless, accurate prediction of the failure process after 
first-ply failuxe is still intractable. Hence, for reliability assurance further research on failure analysis 
of laminated composite plates subject to transverse loading is needed. 

1. INTRODUCTION 

Because of their high stiffness/strength to weight ratios and many other superior properties, 
laminated composite materials have been widely used in the construction of mechanical, 
aerospace, marine and automotive structures which, in general, require high reliability. For 
reliability assurance, prediction of the failure process of laminated composite structures 
and the maximum loads that the structures can withstand before failure occurs has thus 
become an impo’rtant research topic. In particular, the first-ply failure analysis of laminated 
composite plates has been actively investigated in recent years. A vast literature has been 
devoted to matrix cracking and first-ply failure analysis of laminated composite plates 
subject to in-plane forces [e.g. Hahn and Tsai (1974), Wang and Crossman (1980), and 
Dvorak and Laws (1987)]. Extensive testing has also been conducted to study the formation 
of matrix cracks and stiffness reduction in composite laminates (Garrett and Bailey, 1977 ; 
Highsmith and Reifsnider, 1982). On the other hand, the mechanical behavior and first-ply 
failure load of laminated composite plates subjected to transverse loads has also been 
studied by a number of researchers. For example, Turvey (1980a,b, 1982, 1989) used 
analytical and numerical methods to study the linear and nonlinear first-ply failure loads 
of simply supported symmetrically and antisymmetrically laminated composite plates based 
on the classical and Mindlin laminated plate theory ; Reddy and his associates (1987, 1992) 
used the finite element method to calculate the linear and nonlinear first-ply failure loads 
of laminated composite plates based on several phenomenological failure criteria ; Kam 
and associates (1992, 1993) studied the first-ply failure probabilities of linear and nonlinear 
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laminated composite plates. As for deflection analysis, a number of researchers have 
investigated the nonlinear deflection of laminated composite plates using various methods 
(Reddy and Chao, 1982 ; Kuppusamy and Reddy, 1984; Dumir and Bhaskar, 1988). Most 
of the previous works on deflection or first-ply failure analysis of laminates under transverse 
loads, however, have been limited to theoretical investigations and few of them have been 
verified by experimental data. It is well known that laminated composite plates subject to 
static loads may experience large deflection during the failure process. In particular, for 
thin laminated composite plates (side-to-thickness ratio a/h > 70) the load-deflection 
relation may be nonlinear even before the occurrence of first-ply failure. For moderately 
thick laminated plates, the load-deflection relation usually becomes nonlinear after first- 
ply failure. The nonlinear effects, therefore, must be taken into account if more accurate 
predictions of the mechanical behavior and ultimate strength of laminated composite plates 
are desired. In this paper, a nonlinear finite element method based on the von Karman- 
Mindlin plate theory is used to study the nonlinear deflection and first-ply failure load of 
laminated composite plates subject to transverse loading. To validate the applicability of 
the present method to thin laminated composite plates, an eight-node element of the 
serendipity family and nine-node Lagrangian elements with different numerical integration 
rules are used separately to construct the load-displacement curves of several laminated 
composite plates loaded by an equivalent center point force and the finite element results 
are compared with those obtained from experiment. Stresses obtained with the linear and 
nonlinear finite element analyses of the plates are used to evaluate, respectively, the linear 
and nonlinear first-ply failure loads of the plates based on several phenomenological 
failure criteria. The capabilities of the failure criteria in predicting first-ply failure load are 
investigated by comparing the linear and nonlinear first-ply failure loads determined with 
the finite element analyses with those obtained from experiment using an acoustic emission 
technique. A hypothetical stiffness reduction model is proposed to study the deflection and 
the ultimate strength of the damaged laminated composite plates. The capabilities of the 
proposed stiffness reduction model in predicting load-displacement curves and ultimate 
strengths of the laminated plates are demonstrated by means of two examples. 

2. NONLINEAR THEORY OF LAMINATED COMPOSITE PLATES 

The laminated composite plate under consideration is made of a number of orthotropic 
layers of equal thickness. The x and y coordinates of the plate are taken in the midplane of 
the plate which has area a x b and thickness h. In order to have a theory suitable for both 
thin and moderately thick laminated plates, the displacement field is assumed to be of the 
form 

%(X, Y, 4 = uo (A Y) + ‘7 * +x(x, Y) 

$(X9 Y> 4 = 210 (4 Y) + z - Il/&% Y) 

uz(x, Y, 4 = a, Y), (1) 

where u,, uY, U, are the displacements in the x, y, z directions, respectively, uo, u,,, w 
the associated midplane displacements, and lclX and eY the shear rotations. The strain- 
displacement relations in the von Karman plate theory can be expressed in the form 

au0 1 aw 2 a*, 
E,=-+- - +z-=g+zl& 

() ax 2 ax ax 

au, 1 aw i a* 
ey =-+- - +z~=E~;+zK> ay ( ) 2 ay ay 

au, au, aw aw i=--+-+,-+z(~+~)=Fp+zx’ ay ax 
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where ~9 (i = x, y, S) are in-plane strains, &i (j = 4,5) are transverse shear strains, and ICY are 
bending curvatures. It is noted that in case of a linear analysis of the plate, the nonlinear 
terms, i.e. 

a~ 2 ( 1 ax 
and aw aw -.- 

ax ay' 

in the above equations can be neglected. The associated Piola-Kirchoff stress vector 0 is 

0 = bx, Qy, us, cs, 4 

The constitutive equations for the plate can be written as 

(3) 

and 

or in matrix form, 

and 

Q = ;ir. 

(44 

Vb) 

Here Ni, Mi, Ql and Q2 are the stress resultants defined by 

h/2 

(Ni, Mi) = s h/2 

(l,z)aidz, (QI, Qz> = 
-h/2 s (05, ad dz. (5) 

-h/2 

The A,, B,, D, (i, j = x, y, S) and AV (i,j = 4,5) are the in-plane, bending in-plane coupling, 
bending or twisting, and thickness-shear stiffness coefficients, respectively : 

(A,, B,,D& = T L+’ s QiF)(l,z,z’)dz (i,j= x,y,s) 
m=l %I 

‘4, = “c” zm+’ s k,kpQ$v’dz, (i,j = 4,5;a = 6-i,fl = 6-j) 
m=l z, 

(6) 

where z, denotes the distance from the midplane to the lower surface of the mth layer, NL 
is the total number of layers, Q, are material constants, and k, are the shear correction 
coefficients whiich are set as k, = kz = ,& 
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The basis of the formulation of the governing equations of the plate is the principle of 
minimum total potential energy in which the total potential energy 1~ is expressed as the 
sum of strain energy U and potential energy V, i.e. 

(7) 

@a) 

and 

v= - 
s 

dx, W(x, y) da, 
n 

where Y is plate volume, q&y) distributed load intensity, and R plate area. 

where 

n= u+v, 

U= f 
s 

,s=trdv 
c 

(W 

In vie& of the above strain-displacement relations and constitutive equations, the plate 
strain energy can be expressed as a function of the five unknown mid-plane displacements 
(no, oO, W, tjX, $,,). After integrating through the plate thickness, the strain energy becomes 

U = ; 
IS 

[sOTAs + 2soTBx + K=DK + r’;ir3 dx dy. 

The first variation of eqn (7) gives 

672 = iqu+ V) = 0. (10) 

3. FINITE ELEMENT FORMULATION 

Consider the laminated composite plate discretized into NEelements. The strain energy 
and potential energy of the plate are expressed, respectively, as 

[eoTAeo + 2soTBrc + rc=Drc + ~=A~] dQ 
Z 

(11) 

and 

v= f [S c/(x, &+4x, y) dfi 3 
is I n, Ii (12) 

where Q., U, are the element area and strain energy, respectively. 
The mid-plane displacements (u,, vo, W, @,, tj,,) within an element are given as functions 

of 5 x q discrete nodal displacements and in matrix form they are expressed as 

(13) 

where q is the number of nodes of the element ; CDi are the shape functions ; I is a 5 x 5 unit 
matrix ; @ is the shape function matrix ; 9, = {V,,, V e2,. . . ,V*)=; the nodal displacements 
Vei at a node are 
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Vei = ‘{UOi, vOi, wi, +.xiv $yi}T, i = l, . . * ,q* (14) 

The substitution of eqns (1 l)-( 13) into (10) yields 

87~ = F [c#~F,(~',)]~- y [GP:P& = 0, 
i= I i= 1 

(1% 

where F, (P,), P, are the element internal and nodal force vectors, respectively. The element 
internal force vector is obtained as 

Fe@,) = $+. 
e 

(16) 

The terms in F, are expressed explicitly in Appendix A. Using the standard finite element 
approach to add the contributions of all the elements in the domain and noting that the 
variations of nodal displacements are arbitrary, the equilibrium equations of the plate can 
be obtained from eqn (15) as 

F(V) -P = 0, (17) 

where F, V, P, are global internal force, nodal displacement and nodal force vectors, 
respectively. Since the above equations are nonlinear, an incremental-iterative loading 
procedure is adopted to construct the load-displacement curve of the plate. Express eqn 
(17) in a truncated Taylor series as 

aF(V”) 
F(V”)-P+ --+V” = 0, (18) 

where the superscript n denotes iteration number. 
The increments in nodal displacements are obtained from the above equation as 

AV”=- -’ . F(V”)-p], (19) 

where [ .I-’ denotes the inverse of the matrix in the bracket. 
The updated nodal displacements are 

V n+l = V”+AV (20) 

Define the structural tangent stiffness matrix KT and residual force vector +, respectively, 
as 

K 
dF 

T=z 

and 

$ = F-P. 

(21) 

(22) 

In view of the above equations, eqn (19) can be rewritten as 
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AV” = -K=(V)--+(Vn). (23) 

The solution converges when the norm of the residual force vector is less than a prescribed 
value, say, 10p3. It is noted that the structural tangent stiffness matrix K, in eqn (21) is 
obtained by assembling all the element tangent stiffness matrices Kei, i = 1, . . . ,NE. 

KT = y [aTK,a], 

with 

i= 1 

aFe 
Ke=,o,= 

a% 
aV: aO, ’ 

(24) 

(25) 

where a is a congruent transformation matrix. 
The terms in K, are listed in Appendix B. In the finite element formulation, one of the 

following three kinds of element may be used to construct the element tangent stiffness 
matrix : (i) a quadratic (q = 8) element of the serendipity family with reduced integration 
using the 2 x 2 Gauss rule (designated as Element A) ; (ii) a nine-node Lagrangian element 
with reduced integration using the 2 x 2 Gauss rule (designated as Element B) ; (iii) a nine- 
node Lagrangian element with integration using the 3 x 3 Gauss rule for computing the in- 
plane and flexural stiffnesses and the reduced 2 x 2 Gauss rule for transverse shear (des- 
ignated as Element C). In the case of linear finite element analysis, the tangent stiffness 
matrix KT becomes constant and the equilibrium equations of eqn (17) can be solved 
directly by using the standard finite element approach. 

4. FIRST-PLY FAILURE ANALYSIS 

The load that makes the first-ply fail is calculated based on seven different failure 
criteria, five of which are degenerate cases of the tensor polynomial criterion proposed by 
Tsai and Wu (1971). The limit state equations of the seven failure criteria are expressed as 
follows (Reddy and Pandey, 1987) : 

(0 

(ii) 

Maximum stress criterion 
The maximum stress criterion states that the stresses in the principal material directions 
must be less than the respective strengths, otherwise fracture is said to have occurred, 
that is, 

0, <XT; c3 <Z,; o5 <S; g2 < Y,; o4 <R; o6 <S, (26) 

where or, c2, g13 are normal stress components, cr4, g5, g6 are shear stress components, 
X,, Y,, Z, are the lamina normal strengths in the 1, 2, 3 directions and R, S are the 
shear strengths in the 23 and 12 planes, respectively. When or, c2, cr3 are of a compressive 
nature they should be compared with Xc, Yc, Zc which are normal strengths in 
compression along the 1, 2, 3 directions, respectively. 
Maximum strain criterion 
Failure of the material is assumed to occur if any of the following conditions are 
satisfied : 

El z---x,; E3>&; Es>&; E,>Yg; Ed>&; ES>&, (27) 

where Ed, Ed, -s3 are the normal strain components, Ed, Ed and Ed are shear strain 
components, XET, . . . ,R, are strain strengths. When E,, .s2, &3 are negative, they should 
be compared with XEc, YEc, ZEc, respectively, which are normal strain strengths in 
compression. 
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(iv) 

(v) 
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Polynomial type maximum stress criterion 
The polynomial type maximum stress criterion can be expressed as 

(01 -X4(61 +X&J* - Y,)(c, + Y&a, -Z,)(o, +Zc) 

x(c~~4?)(a~+R)(o,-S)(a~+S)(o~-S)(a~+S) =O. (28) 

Polynomial type maximum strain criterion 
Failure of the material is assumed to occur if the following condition is satisfied : 

(&,-XiT)(&t.tXEC)(&Z-Y~=)(&Z+Y~)(&3--ZET)(&3+ZFC) 

x (Ed - RN4 + R)@s - &)h +&h -&h + Se) = 0. (29) 

Hoffman’s criterion 
The Hoffman’s criterion can be expressed as 

1 

5 ( 

1 1 _- - 
X,X, + Y,Yc + z,zc ) 

@,--a,)*+- --- 
( 

-J- (Cq-0,)Z 
+ Z,Zc 1 

1 1 LL)(* _O;+-$_~,+(~_~)O~ 
+2X,X,+y,y, z,zc ’ * x, xc ( 

+(&-++(~)‘+($+(q 2 1. (30) 

(vi) Tsai-Hill criterion 
The Tsai-Hill criterion can be expressed as 

The values of X, Y, Z are taken as either X,, Y, and Z, or as Xc, Yc and Zc depending 
upon the sign of G,, c2 and c~, respectively. 

(vii) Tsai-Wu criterion 
The Tsai-Wu criterion can be expressed as 

where 

F,, = A; 1 

T c 
Fzz = y~yc F33 =& 

T c 

1 
F 44=-; 

R2 
F,, = +; 

1 1 1 
F,2 = -- 

2&Xc Y, Yc 
; F,3=- 

2JGzz 
; Fz3=- 

2JCKZZ’ 
(33) 
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In the above failure criteria, the contribution of normal stress c3 is in general small compared 
to the other stress components so that its effects have been neglected. The shear strengths 
in the 12 and 13 planes are assumed to be the same. The stresses determined from the linear 
and nonlinear displacement fields are used to compute, respectively, the linear and nonlinear 
first-ply failure loads. The determination of the nonlinear first-ply failure load is 
accomplished via an incremental-iterative scheme (Reddy and Reddy, 1992). 

5. STIFFNESS REDUCTION OF COMPOSITE LAMINATES 

The stiffness of a laminated composite plate will decrease when failure of plies occurs. 
Recently a number of stiffness degradation models have been proposed for studying damage 
in composite laminates (Hahn and Tsai, 1974 ; Laws et al., 1983 ; Talreja, 1985 ; Chang and 
Chang, 1987). For instance, Talreja (1985) investigated stiffness degradation of composite 
laminates via a continuum damage characterization approach. Chang and associates (1987, 
1989) used a phenomenological failure criterion to study stiffness degradation of laminated 
composite structures. On the other hand, Cantwell and Morton (1985) studied the influence 
of target bending stiffness on low velocity impact damage in CFRP laminates using a drop- 
weight tester. Target stiffness was a dominant parameter and controlled the mode of 
fracture. At low velocities, flexible targets responded primarily by bending which generated 
high tensile stresses in the lowest ply. This caused matrix cracks in the lowest ply, which 
were deflected at the lowest interface to form a delamination, which in turn was deflected 
by matrix cracks in the layer above, and the process repeated itself. As for thin cross-ply 
plates indented by a rigid spherical head statically, it is postulated that delamination has 
insignificant effects on the global behavior of the plates and matrix cracking is the major 
cause of laminate stiffness reduction before the final stage of the failure process. At the final 
stage the contribution of fiber breakage becomes important and the breakage of fibers may 
finally lead to the total collapse of the plates or the penetration of the indentor through 
plate thickness. Herein, a simple hypothetical stiffness reduction model is proposed to study 
the deflection of damaged laminated composite plates using the maximum stress failure 
criterion which can characterize failure modes. As observed in the load controlled inden- 
tation test of cross-ply plates, when matrix cracking occurs in a ply, a crack of moderately 
large size will occur in the fiber direction owing to a sudden release of fracture energy and 
redistribution of stresses in the damaged plate. Since the determination of exact crack size 
is a difficult task if not intractable, it is assumed that though generally it may not be valid 
for laminated composite plates under bending, once a matrix crack forms it will span the 
whole length of the plate. Hence, based on the maximum stress failure criterion, stresses at 
the integration points in each element are used to identify the occurrences of failure and 
determine the degradation of material moduli in the failed plies. If the stress component in 
the fiber direction (6,) of a ply at an element integration point reaches its limit value (fiber 
failure mode), all the moduli of the ply at that integration point are set to zero. On the 
other hand, if matrix fracture in a ply induced by either transverse stress (cr2) or shear stress 
(rr6) occurs at an element integration point (matrix failure mode), the crack is assumed to 
span the whole length of the ply to form a crack line and the transverse Young’s modulus 
(E,), the shear modulus (G,*), the transverse shear modulus (GZ3) and the Poisson’s ratios 
(v12, vZ3) of the ply at all the element integration points of the elements passed through by 
the crack line are treated as zero. The effects of transverse shear stresses (cd and g5) are 
small for thin plates and thus will not be included in the stiffness reduction model. The 
updated layerwise material moduli are then used to modify the element stiffness matrices 
of the damaged laminated composite plate. A schematic sketch of the stiffness reduction 
model is shown in Fig. 1. 

6. EXPERIMENTAL VERIFICATION 

The capability of the proposed finite element method in predicting deflection and first- 
ply failure load of laminated composite plates will be demonstrated by comparing the finite 
element results with available experimental results. Four types of centrally loaded laminated 
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all moduli equal 
to zero 

Failure in the ittl ply 

Ez =GLo=K, =0 at 
integration points 
on crack line 

Fig. 1. Stiffness reduction model. 

Table 1. Material properties of graphite/epoxy (Q-1 115) 

Material constants Strengths 

E, 
E* 
& 
G,z = GIN 
G 23 
012 = 013 
023 

142.50 Gpa 
9.79 Gpa 
0.79 Gpa 
~4.72 Gpa 
1.192 Gpa 
0.27 
13.25 

x, 2193.5 Mpa X, 0.015393 
XC 2457.0 Mpa XC 0.017242 
Y, = z, 41.3 Mpa Y,T = 2, 0.004128 
Y, = z, 206.8 Mpa Yc=Z, 0.021124 
R 61.28 Mpa R, 0.051409 
S=T 78.78 Mpa & = L 0.016691 

composite square plates of various lamination arrangements and side-to-thickness ratios 
were tested to failure (Kam, 1993 ; Kam and Sher, 1995). The laminated composite plates 
were made of graphite/epoxy (Q-l 115) prepreg tapes supplied by the Toho Co., Japan. The 
material propertiNes were determined from experiments conducted in accordance with the 
relevant ASTM standards (1990) and are given in Table 1. The experimental apparatus 
consisted of a 10..ton Instron testing machine, an acoustic emission (AE) system (AMS3) 
with two AE sensors, a displacement gauge (LVDT), a data acquisition system, a steel load 
applicator with a spherical head, and a fixture for clamping a specimen. A schematic 
description of the experimental setup is shown in Fig. 2. The dimensions of the laminated 
plates and the load applicator are given in Table 2. The fixture was made up of two square 
steel frames. Dming testing, the laminated plate was partially clamped by the two steel 
frames which were connected together by four bolts. It is noted that the clamping method 
allowed in-plane movements but not rotations at the edges of the laminated plate during 
loading. The contact areas between the composite laminate and the steel plates were also 
lubricated to reduce frictional effects. A stroke control approach was adopted in con- 
structing the load-deflection relation for the laminated plate. The loading rate was slow 
enough for inerti,a effects to be neglected. During loading, the displacement gauge and data 
acquisition system recorded center deflections so that the load-displacement curve of the 
laminated plate could be determined. In addition, two acoustic emission sensors were used 
to measure the stress waves’released at the AE sources in the laminated plate. The measured 
acoustic emissions were converted by the AMS3 (AE) system to a set of signal describers 
such as peak amplitude, energy, rise time and duration which were then used to identify 
the first-ply failure load of the laminated plate (Kam and Sher, 1995). For example, Fig. 3 
shows the energy-applied load diagram for a [O”/90”/Oo/90”], plate produced by the AMS3 
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PC 488 

Data Acquisition 
system 

Fig. 2. A schematic description of the experimental setup. 

Table 2. Properties of laminated plates and load applicator 

Plate Values 

Length (a) loomm 
Ply thickness (h,) 0.155 mm 
Lamination [0”/90”/0”/90”1,, KJ;/90;1s. W9O"l,, [0"/90"1, 
Load applicator radius r 5.0 mm 

60 

50 

40 

30 

20 

10 

0 
0 200 400 600 800 1000 1200 1400 

Load (N) 
Fig. 3. Energy vs. load produced by AMS3 acoustic emission system for a [0°/900/Oo/900], plate. 

system. The first-ply failure load of the plate is determined by identifying the first major 
energy rise as indicated in Fig. 3. 

7. NUMERICAL EXAMPLES AND DISCUSSION 

The aforementioned nonlinear finite element method is first used to study the deflection 
of several simply supported or clamped rectangular thin laminated composite plates with 
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Table 3. Properties of composite laminates subject to uniform load 

385 

Material ha (ply 
properties E, & G,z = G,, G 

3.4 Epa 
“12 = 013 a23 thickness) 

Values 132.5 Gpa 10.8 Gpa 5.7 Gpa 0.24 0.49 0.127 mm 

Strengths XT XC Y, = 2, Y, = 2, R S=T 
Values 1515 Mpa 1697 Mpa 43.8 Mpa 43.8 Mpa 67.6 Mpa 86.9 Mpa 

Plate Lamination scheme 
I (45”/ -45”/90”/0”/45”/90”/ -45°/oq, 
II (45”/ - 45”/0”/90”/45”/0”/-45”/90”), 
III (450/O”/ -45”/0”/ - 45”/90”/0”/45”), 
IV (450/O”/ - 450/o”/ - 45”/0”/45”/0”), 

b 

u=o 
x=0 

x=0 

$=O 

Y Y 
4 

b ’ 

0 UGO, \b=o = 0 lb=o. x=0. n-0 a 
_. 

.w=o, k=O k=O. q=o 

(a) Simply supported (b) Clamped edges 

Fig. 4. Boundary conditions of laminated plates subject to uniform load. 

Table 4. Deflections of laminated plates subject to uniform load 

Boundary 
condition 

Plate Normalized load Normalized center deflection w,/h) 
(PI&)l(alh)4 Present Reddy and Reddy (1992) 

I 9689.1 1.950 1.956 
Simply II 9030.1 1.913 1.919 
supported III 6177.7 1.842 1.845 

IV 4517.8 1.838 1.840 

I 5144.9 1.282 1.283 

Clamped II 3833.8 1.163 1.164 
III 2442.6 1.055 1.053 
IV 2083.1 1.066 1.064 

various lamination arrangements subjected to a uniformly distributed transverse load of 
intensity P. The properties of the laminates are given in Table 3. The two different boundary 
conditions and the dimensions of the laminated plates are shown in Fig. 4. In the finite 
element analysis Iof the plates, a 4 x 4 mesh (16 elements over the full plate) of nine-node 
Lagrangian elements with a 2 x 2 Gauss integration rule was used to model the laminated 
plates. The center deflections of the plates subject to a uniform load of various intensities 
are given in Tab1.e 4 and compared with those obtained by Reddy and Reddy (1992) in 
which a 5 x 9 mesh of nine-node Lagrangian elements was used in modelling the laminated 
plates. It is noted that the present finite element method could predict very accurate 
deflection for the laminated composite plates even when fewer elements are used in the 
analysis. To validate the capability of the present method in predicting accurate first-ply 
failure loads, the linear and nonlinear first-ply failure loads of a number of laminated 
composite plates were determined and compared with those obtained by Reddy and Reddy 
(1992). Close agreement between the results obtained by the present method and those of 
Reddy and Reddy (1992) was observed and, furthermore, both methods predicted the same 
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Table 5. First-ply failure loads of a clamped [0”/90”], plate subject to a center point load Q 

Normalized failure load (Q/E2)/(a/h)4 
Difference 

Failure criterion (I) Present (II) Reddy and Reddy (1992) (I) - (II)/(I) % 

Maximum stress 159999.5t 160730.7t 0.46 
1151806.2$ 1137201.5f 1.27 

Maximum strain 178368.2 179239.5 0.49 
1577164.3 1549940.9 1.73 

Maximum stress (polynomial) 156885.1 157582.2 0.44 
1068028.3 1059047.0 0.84 

Maximum strain (polynomial) 174521.2 175345.5 0.47 
1424543.9 1417095.1 0.52 

Hoffman 157185.8 157733.4 0.35 
1073394.3 1061680.9 1.09 

Tsai-Hill 158314.0 159020.6 0.45 
1092535.2 1083201.5 0.85 

Tsai-Wu 169166.1 163416.2 3.40 
1312456.0 1165771.9 11.18 

t Linear. 
1: Nonlinear. 

ts=o 
t:; 

0 0 

0 -X 
0 

\ 
’ n’h ply 

I 
1 

Z 
Fig. 5. Boundary conditions of a partially clamped quarter laminated plate. 

failure locations. For illustration purposes, Table 5 lists the linear and nonlinear first-ply 
failure loads of a clamped [0°/90”]s plate loaded by a center point force predicted by the 
present method and by Reddy and Reddy (1992) using various failure criteria for compari- 
son. It is noted that in the above analysis the nonlinear first-ply failure load was determined 
via an incremental-iterative procedure similar to the one adopted by Reddy and Reddy 
(1992). 

The present nonlinear finite element method is then used to predict the deflection and 
first-ply failure load of four types of partially clamped square thin cross-ply plates, namely, 
[O”/90”/Oo/900],, [Og/90;]s, [0;/90”], and [O”/90”]s, subject to a center point load. It is worth 
noting that the contact area between the indentor and the laminated plates is generally 
small and thus the modeling of the contact force as a concentrated force in the finite element 
analysis will not affect the overall behavior of the plates if the plates are relatively thin. The 
boundary conditions of the plates are shown in Fig. 5. A quarter plate is used in the finite 
element analysis and the results are compared with experimental results (Kam, 1993 ; Kam 
and Sher, 1995). First, the effects of the number and type of elements on the finite element 
load-deflection results are investigated. Figure 6 shows the load-displacement curves of 
the [0;/90$ plate obtained with the present finite method using different elements (Elements 
A-C) and a 2 x 2 mesh compared with the experimental load-displacement curve. It is 
noted that among the three elements Element C yields the best load-displacement curve 
when compared with the experimental one. The effect of the number of elements on the 
accuracy of Element C demonstrated in Fig. 7 is small and in general a 3 x 3 mesh over a 
quarter plate yields fairly good results. The effect of boundary conditions on the load- 
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Fig. 6. Loaddeflection curves of a [O~/90~]S plate modelled by Elements A-C using a 2 x 2 mesh 
for a quarter plate without stiffness reduction. 
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Fig. 7. Load-deflection curves of a [0;/90;]. plate modelled by Element C using various meshes for 
a quarter plate without stiffness reduction. 

displacement curve of the [O;/90;ls plate is also investigated. The load-displacement curve 
of the plate with completely clamped edges, i.e. u,, = v0 = w = tiX = $, = 0 along the four 
edges, using a 3 X: 3 mesh for a quarter plate is plotted in Fig. 7 for comparison. It is noted 
that the plate witlh completely clamped edges is much stiffer than the partially clamped one. 
Next consider the accuracy of the present method with Element C in predicting strains. 
Strains in the fiber and matrix directions at the center of the bottom surface of the 
[O”/900/Oo/90”], plate under indentation testing were measured using a biaxial strain gauge. 
Element C with different numbers of elements was used to model the load-strain curves in 
the fiber and matrix directions for the plate. The experimental and finite element results are 
shown in Figs 8 and 9 for comparison. It is again noted that the use of a 3 x 3 mesh over a 
quarter plate can yield very accurate results. Henceforth, Element C with a 3 x 3 mesh over 
a quarter plate is used to study the deflection and strength of cross-ply plates. The load- 
displacement results for the [0°/900/Oo/900]s, [0:/90”], and [O”/90”]s plates obtained by the 
present method are shown in Figs 10-12 and compared with the experimental results. It is 
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Fig. 8. Analytical and experimental load-strain curves in the fiber direction for a [0°/90”/Oo/90”], 
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Fig, 9. Analytical and experimental load-strain curves in the matrix direction for a [O”/900/00/90”], 
plate. 

noted that when compared with the experimental load-displacement curves the present 
finite element method can yield fairly good load-displacement curves at low loads (before 
first-ply failure). The discrepancies between the finite element and experimental results at 
loads higher than the first-ply failure load, which will be determined subsequently, are due 
to the stiffness reduction of the failed plies. When the aforementioned stiffness reduction 
model is used with Element C in the deflection analysis of, for instance, [0;/90;], and 
[O”/90”/Oo/900], plates, ,much better agreement between the analytical and experimental 
load-displacement curves can be attained as shown in Figs 13 and 14. It is noted that the 
analytical load-displacement curves of the damaged cross-ply plate have been obtained via a 
load control type incremental-iterative procedure in which the proposed stiffness reduction 
model together with an automatic load increment re-sizing technique has been used in 
tracing the load-displacement curves. The horizontal step changes.on the analytical load- 
displacement curves indicate failures of plies and sudden reductions of plate stiffness. Since 
the experimental load-displacement curves were obtained via a stroke (displacement) 



First-ply failure of laminated composite plates 389 

-&A-& :Artdyucal 

- : Experiment 

0 1 2 3 4 5 6 7 6 

Displacement (mm) 

Fig. 10. Analytical and experimental load-deflection curves of a [0”/90”/0”/90”], plate without 
stiffness reduction. 
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Fig. 11. Analytical and experimental load-deflection curves of a [0;/90”], plate without stiffness 
reduction. 

control approaclh, vertical rather than horizontal step changes on the curves could be 
observed. It is worth pointing out that due to the singularity of the stiffness matrix of a 
damaged plate under its maximum load, load increments of much smaller sizes have been 
used to trace the load-displacement curve near the maximum load and the last equilibrium 
state before the displacement of the plate becomes unbounded is used to approximate the 
ultimate strength of the plate. Though the use of the proposed maximum stress criterion 
based stiffness reduction model cannot accurately simulate the failure process of the lami- 
nated plates as indicated by the mismatch of the horizontal and vertical step changes in 
Fig. 14, the ultimate strengths predicted by the finite element method with stiffness reduction 
may closely approximate the experimental ones with errors less than 15%. Next consider 
the determination of first-ply failure loads of the laminated composite plates. In Figs 6 and 
10-12, the first-ply failure loads cannot be determined directly from either the analytical or 
experimental loa.d-deflection curves. In the process of estimating the first-ply failure load, 
the stresses in the plies at the nodes as well as the integration points of each element are 
first determined :in the linear or nonlinear finite element analyses of the plates using Element 
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Fig. 12. Analytical and experimental load-deflection curves of a [W/90”], plate without stiffness 
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Fig. 13. Load-deflection curves of a [0;/90;]. plate with and without stiffness reduction. 

C with a 3 x 3 mesh over a quarter plate. The linear and nonlinear first-ply failure loads for 
the laminates are then determined using the stresses obtained in the linear and nonlinear 
finite element analyses, respectively, based on the adopted failure criteria as described in 
the previous section. The finite element results obtained by the present method are given in 
Tables 6-9 and compared with the mean experimental results determined from four speci- 
mens for each lamination arrangement. The experimental first-ply failure loads of the 
laminated composite plates were identified directly from the energy vs load charts produced 
by the AMS3 acoustic emission system as shown, for example, in Fig. 3 for the 
[O”/900/Oo/9W]S plate. If the mean experimental first-ply failure loads are treated as exact, 
the errors in the finite element predictions based on various failure criteria can be determined 
as indicated in Tables 6-9. Regarding the capabilities of the adopted failure criteria in 
predicting first-ply failure load, it has been found that the maximum stress (independent 
and polynomial), Hoffman and Tsai-Hill failure criteria can yield fairly good results with 
consistent accuracy for the laminated plates. In particular, the independent maximum stre& 
criterion can predict first-ply failure loads with error around 6%. It is also worth noting 
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Fig. 14. Loa.d-deflection curves of a [0”/90”/0”/90”]. plate with and without stiffness reduction. 

Table 6. Theoretical and experimental predictions of first-ply failure load for a [Oi/90i]1 plate 

Failure criterion alh Theoretical Experimental Difference 
failure load F (N) failure load L (N) (IF-L]/Q % 

(i) Maximum stress 

(ii) Maximum strain 

(iii) Maximum stress 
(polynomial) 
(iv) Maximum strain 
(polynomial) 
(v) Hoffman 

(vi) Tsai-Hill 

(vii) Tsai-Wu 
$ 

229.11t 
267.08$ 
267.55 
330.91 
222.43 
255.37 

80.645 257.73 
312.02 
222.69 
255.76 
224.19 
257.35 
238.60 
280.44 

253.60 

9.66 
5.32 
5.50 

30.49 
12.29 
0.705 
1.63 

23.04 
12.19 
0.85 

11.60 
1.48 
5.91 

10.58 

tlinear. 
INonlinear. 
§Minimum error. 

that the experimental ultimate failure loads of the plates are much higher than the first-ply 
failure loads. T:he capability of simulating the actual failure process and predicting the 
ultimate failure loads of laminated plates with different lamination arrangements and side- 
to-thickness ratios is vital in the reliability assessment of such structures. Hence, the 
importance of the extension of the present method to first-ply failure load and ultimate 
strength prediction of laminated composite plates is obvious. 

8. CONCLUSIONS 

A nonlinear finite element method was developed for the prediction of nonlinear load- 
deflection curves and first-ply failure loads of centrally loaded and partially clamped 
laminated composite plates using several phenomenological failure criteria. A hypothetical 
stiffness reduction model was adopted to improve the prediction of load-displacement 
curves of damaged laminated composite plates. Experimental results on loaddisplacement 
curve and first-ply failure load of laminated plates with four different lamination arrange- 
ments were used to verify the accuracy of the solutions obtained by the present methods. 
The results have shown that the present method, especially when used with nine-node 
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Table 7. Theoretical and experimental predictions of first-ply failure load for a [0°/900/Oo/900], plate 

Failure criterion alh Theoretical Experimental Difference 
failure load F (N) failure load L (N) (IF-L]/L) % 

(i) Maximum stress 

(ii) Maximum strain 

(iii) Maximum stress 
(polynomial) 
(iv) Maximum strain 
(polynomial) 
(v) Hoffman 

(vi) Tsai-Hill 

(vii) Tsai-Wu 

290.12t 
337.261 
355.47 
443.07 
278.12 
317.62 

80.645 335.34 
405.53 
278.53 
318.21 
280.81 
320.64 
304.13 
356.23 

317.74 

8.69 
6.14 

11.87 
39.44 
12.47 
0.04$ 
5.54 

27.57 
12.34 
0.15 

11.62 
0.91 
4.28 

12.11 

tlinear. 
$Nonlinear. 
§Minimum error. 

Table 8. Theoretical and experimental predictions of first-ply failure load for a [0;/90”], plate 

Failure criterion alh Theoretical Experimental Difference 
failure load F(N) failure load L (N) (IF-L]/L) % 

(i) Maximum stress 

(ii) Maximum strain 

(iii) Maximum stress 
(polynomial) 
(iv) Maximum strain 
(polynomial) 
(v) Hoffman 

(vi) Tsai-Hill 

(vii) Tsai-Wu 

tlinear. 
SNonlinear. 
$Minimum error. 

108.26t 31.19 
147.613 6.18 
122.86 21.91 
185.31 17.78 
106.34 32.41 
142.92 9.16 

105.26 120.32 157.34 23.53 
176.84 12.39 
106.45 32.34 
143.15 9.02 
107.06 31.96 
144.42 8.21 
112.77 28.33 
157.78 0.285 

Table 9. Theoretical and experimental predictions of first-ply failure load for a [00/900], plate 

Failure criterion alh Theoretical Experimental Difference 
failure load F (N) failure load L (N) (IF-ICI/L) % 

(i) Maximum stress 

(ii) Maximum strain 

(iii) Maximum stress 
(polynomial) 
(iv) Maximum strain 
(polynomial) 
(v) Hoffman 

(vi) Tsai-Hill 

(vii) Tsai-Wu 

tlinear. 
SNonlinear. 
§Minimum error. 

64.94f 58.92 
150.00$ 5.115 
76.04 51.90 

220.35 39.39 
63.52 59.82 

141.60 10.43 
152.67 73.99 158.08 53.19 

200.00 26.52 
63.60 59.77 

141.96 10.20 
64.03 59.50 

144.06 8.87 
68.30 56.79 

166.40 5.26 
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Lagrangian elements, can predict fairly good load-deflection curves and ultimate strengths 
for plates with damage. Nevertheless, the actual failure process of the damaged plates could 
not be simulated 'by the present method. Hence, further modification of the proposed 
stiffness reduction model is required. The capabilities of the phenomenological failure 
criteria in predicting first-ply failure load have been investigated and discussed. It has been 
found that fairly accurate determination of first-ply failure loads of laminated composite 
plates based on maximum stress, Hoffman and Tsai-Hill failure criteria can be achieved. It 
is suggested that further research on failure mechanisms and predictions of first-ply failure 
and maximum loads of laminated composite plates subject to transverse loads using other 
approaches such as fracture energy method be pursued. 
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APPENDIX A: ELEMENT INTERNAL FORCE VECTOR F, = [F:] 

The terms c (a = 1,2,. ,5, denoting degree of freedom at a node; i = 1,2,. , q, denoting node number) of 
the element internal force vector F, are expressed as 
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Ff = f 
I 

2A4& + w,,)$ dxdy 
“, 
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APPE.NDIX B: ELEMENT TANGENT STIFFNESS MATRIX K. = [K;@] 

The terms K”,B (IX, /I = 1, 2,. . ,5, denoting degree of freedom at a node; i, j = 1, 2,. . , q, denoting node 
number) of the element tangent stiffness matrix K, are given by 

Ki’ = e:S;+e:S~+e,e,(S~y+S;:y) 

+f 
s 

A I I @40,x + 34,,)@$‘,4 dx dy 
*, 
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where 


