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A Generalized Poor-Verdú Error Bound for
Multihypothesis Testing
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Abstract—A lower bound on the minimum error probability
for multihypothesis testing is established. The bound, which is
expressed in terms of the cumulative distribution function of the
tilted posterior hypothesis distribution given the observation with
tilting parameter , generalizes an earlier bound due the
Poor and Verdú (1995). A sufficient condition is established under
which the new bound (minus a multiplicative factor) provides the
exact error probability asymptotically in . Examples illustrating
the new bound are also provided.

Index Terms—Channel reliability function, converse channel
coding theorems, hypothesis testing, maximum-a-posteriori esti-
mation, probability of error.

I. INTRODUCTION

I N [3], Poor and Verdú establish a lower bound to the min-
imum error probability of multihypothesis testing. Specif-

ically, given two random variables and with joint distri-
bution , taking values in a finite or countably-infinite
alphabet and taking values in an arbitrary alphabet , they
show that the optimal maximum-a-posteriori (MAP) estimation
of given results in the following lower bound on the prob-
ability of estimation error :

(1)

for each , where denotes the posterior distri-
bution of given and the prior distribution is arbitrary
(not necessarily uniform). This bound has pertinent informa-
tion-theoretic applications such as in the proof of the converse
part of the channel coding theorem that yield formulas for both
capacity and -capacity for general channels with memory (not
necessarily information stable, stationary, etc) [5], [3]. It also
improves upon previous lower bounds due to Shannon [4], [3,
Eq. (7)] and to Verdú and Han [5], [3, Eq. (9)].
In this work, we generalize the above Poor-Verdú lower

bound in (1) for the minimum error probability of multihy-
pothesis testing. The new bound is expressed in terms of the
cdf of the tilted posterior distribution of given with
tilting parameter , and it reduces to (1) when ; see
Theorem 1. We also provide a sufficient condition under which
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our generalized Poor-Verdú bound, without the multiplicative
factor , is exact in the limit of going to infinity.
Specifically, the sufficient condition requires having a unique
MAP estimate of from almost surely in , where
is the distribution of ; see Theorem 2. We present a few
examples to illustrate the results of Theorems 1 and 2. Note
that we will use the natural logarithm throughout.

II. MAIN RESULTS

Consider two (correlated) random variables and , where
has a discrete (i.e., finite or countably infinite) alphabet

and takes on values in an arbitrary alphabet
. The minimum probability of error in estimating from
is given by

(2)

where is the MAP estimate defined as

(3)

Theorem 1: The above minimum probability of error in
estimating from satisfies the following inequality

(4)

for each and , where for each ,

(5)

is the tilted distribution of with parameter .

Note: When , the above bound in (4) reduces to the
Poor-Verdú bound in (1).

Proof: Fix . We only provide the proof for
since the lower bound trivially holds when .
From (2) and (3), the minimum error probability incurred

in testing among the values of satisfies

where . For a fixed , let be the
-th element in the set

such that its elements are listed in non-increasing order; i.e.,
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and

Then

(6)

Furthermore, for each above, define such that

be the respective element for satisfying

Since is the largest among ,

is non-decreasing in for each ; this implies that

(7)

For any , we can write

(8)

where is the indicator function and the second inequality
follows from (7). To complete the proof, we next relate

with , which is exactly
. Invoking [3, eq. (19)], we have that for any

and any random variable with , the
following inequality holds with probability one

Thus

Applying the above inequality to (8) by setting , we
obtain

where the first equality follows from (6).

We next show that if the MAP estimate of from
is almost surely unique in (3), then the bound of Theorem 1,
without the factor, is tight in the limit of going to
infinity.

Theorem 2: Consider two random variables and
, where has a finite or countably infinite alphabet

and has an arbitrary alphabet .
Assume that

(9)

holds almost surely in , where is theMAP estimate from
as defined in (3); in other words, the MAP estimate is almost

surely unique in . Then, the error probability in the MAP
estimation of from satisfies

(10)

for each , where the tilted distribution is
given in (5) for .

Proof: It can be easily verified from the definitions of
and that the following two limits hold for each :

where

(11)

and is the set of positive integers, and

for ;

for .
(12)

As a result, we obtain that for any ,

(13)

(14)

where (13) holds by the dominated convergence theorem since
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Furthermore, (14) holds since the limit (in ) of

exists for every by (12), hence implying that

Now condition (9) is equivalent to

(15)

thus,

(16)

where (16) follows from (6). This immediately yields that for
,

Observation 1: We first note that since the bound in (4) holds
for every , it also holds in the limit of going to infinity
(the limit exists as shown in the above proof):

(17)
for any .
Furthermore, if condition (9) does not hold (or equivalently

from (15), if ), but there exists an integer
such that , then using (14), we can

write (17) as

To render this lower bound as large as possible, its formula
above indicates that although the multiplicative constant
favors a small , the integration term in (a) actually has its
smallest value when is less than (see (b)). Therefore, a
compromise in the choice of has to be made in order to max-
imize the bound.

III. EXAMPLES

A. Ternary Hypothesis Testing

We revisit the ternary hypothesis testing example examined
in [3, Figs. 1 and 2], where random variables and have
identical alphabets , is uniformly dis-
tributed (i.e., ) and is related to via

if
if and
if and
if and
if and

where we assume that . In [3],
and are used.

A direct calculation reveals that the MAP estimation function
(3) for guessing from is given by for every ,
resulting in a probability of error of when

and . Furthermore, we obtain that is
exactly determined via

as predicted by Theorem 2, since condition (9) holds (since
almost surely in , where is defined in (11)).

We next compute the new bound in (4) for ,
and for different values of and plot it in Fig. 1, along

with Fano’s original bound (referred to as “Fano” in the figure)
given by
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Fig. 1. Lower bounds on the minimum probability of error for Example III-A:
bound (4) versus for and Fano’s original and weakened
bounds.

Fig. 2. Lower bounds on the minimum probability of error for Example III-A:
bounds (1) and (4) versus optimized over .

and Fano’s weaker (but commonly used) bound

shown in [3, Fig. 2] (referred to as “Weakened Fano” in the
figure). The case of corresponds to the original Poor-
Verdú bound in (1). As can be seen from the figure, bound (4)
for and 100 improves upon (1) and both Fano bounds
and approaches the exact probability of error as is increased
without bound (e.g., for and , the bound is quite
close to ). In Fig. 2, bounds (4) and (1), maximized over

, are plotted versus . It is observed that when ,
bound (4) improves upon (1).

B. Binary Erasure Channel

Suppose that and are respectively the channel input and
output of a BEC with erasure probability , where
and . Let and

with . Then, the MAP estimate of from is
given by

if
if

and the resulting error probability is .
Calculating bound (4) of Theorem 1 yields

if

if

if .

(18)

Thus, taking and then in (18) results in the
exact error probability . Note that in this example, the orig-
inal Poor-Verdú bound (i.e., with ) also achieves the exact
error probability by choosing ; however this max-
imizing choice of for the original bound is a function
of system’s statistics (here, the input distribution ) which is
undesirable. On the other hand, the generalized bound (4) can
herein achieve its peak by systematically taking and then
letting .
Furthermore, since in this example, for every

, we have that (9) holds; hence, by Theorem 2, (10)
yields

where the last equality follows directly from (18) without the
factor.

C. Binary Input Observed in Gaussian Noise

We herein consider an example with a continuous observation
alphabet , where is the set of real numbers. Specifically,
let the observation be given by , where is uni-
formly distributed over and is a zero-mean
Gaussian random variable with variance . Assuming that
and are independent from each other, then for
and

(19)

which directly yields a MAP estimate of from given
by if and if . with
a resulting error probability of , where

is the cdf of the standard
(zero-mean unit-variance) Gaussian distribution. Furthermore,
since , we have
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Fig. 3. Example III-C: bound (4) versus for ;
and .

and the generalized Poor-Verdú bound (4) yields

(20)

Now taking the limits followed by for the
right-hand side term in (20) yields exactly ;
hence the generalized Poor-Verdú bound (4) is asymptotically
tight. The bound is illustrated in Fig. 3 for which
gives . It can be seen that for and ,
bound (4) is quite close to . Finally note that (19) directly
ascertains that condition (9) of Theorem 2 holds; thus is
given by (10).

IV. CONCLUDING REMARKS

We generalized the Poor-Verdú lower bound of (1) for the
multihypothesis testing error probability. The new bound, given
in (4), involves the tilted posterior distribution of the hypothesis
given the observation with tilting parameter and reduces to the
original Poor-Verdú bound when . We established a suffi-
cient condition under which the bound (without its multiplica-
tive factor) provides the exact error probability when .
We also provided some examples to illustrate the tightness of
the bound in terms of .
In [3], Poor and Verdú used (1) to show an information-spec-

trum based upper bound to the reliability function – i.e.,
the optimal channel coding error exponent – for general chan-
nels [3, Eq. (14)] and they conjectured that the bound is tight. In
[1], this bound was shown not to be tight at low rates for mem-
oryless BECs.
We can similarly apply the new bound (4) to obtain a general-

ized upper bound on . Specifically, for a general channel
[5], [2] with input

and corresponding output
, we have

(21)

for every rate and where

and

Also, in light of (17), the following upper bound holds

(22)

for any . The bound in (22) is exact for a class of
channels that satisfy Theorem 2 (which includes the finite-input
memoryless Gaussian channel). However, the determination in
closed form of this information-spectral multi-letter character-
ization for remains an open challenging optimization
problem.
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