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SUMMARY

This study aims to model temperature distributions in an aquifer thermal extraction (ATE) system that
contains a single extraction well in a thin confined aquifer. The aquifer is bounded by hot dry rocks with
different thermomechanical properties and thicknesses. Based on the heat convection—conduction equation,
a mathematical model is developed to describe the spatial and temporal temperature distributions of the
ATE systems. The mechanisms of heat transfer in the model involve horizontal convection and thermal
conduction in the aquifer, and vertical thermal conduction in both rocks. A semi-analytical solution in
dimensionless form is developed using the Laplace transform technique and its corresponding time-domain
result is computed by the modified Crump method. In addition, the steady-state solution is obtained by
applying the final value theorem. The simulation results from the semi-analytical solution indicate that
the aquifer temperature distributions are affected by aquifer thickness, the thermomechanical properties
of the aquifer and rocks, geothermal gradient, outer boundary temperatures of the rocks, extraction rate,
and operating time. The present solution can be used as a preliminary tool for assessing heat extraction
efficiency in ATE systems. Copyright © 2010 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Heat extraction from geothermal energy resources through aquifer thermal extraction (ATE) systems
is an alternative to obtain thermal energy. Therefore, the extraction efficiency of an ATE system
must be estimated prior to operation.

Sauty et al. [1] presented a theoretical study of the thermal behavior of hot water storage in an
aquifer. A finite difference model was used to predict the well temperature during various production
periods. In addition, Sauty et al. [2] performed field experiments on hot water storage and compared
the experimental results with theoretical predictions given by Sauty et al. [1]. Carotenuto et al. [3]
conducted some experiments on a geothermal exchanger system for heat extraction from an aquifer
without fluid withdrawal. They estimated the heat flow between cold and warm fluids in the aquifer
using the finite element method. Tenma et al. [4] presented a simulation model to design a thermal
storage system in low-temperature geothermal resources and evaluated the sensitivity of the results
to parameters, such as well distance, well depth, and flow rate. They used the FEHM (Finite Element
Heat and Mass transfer) code developed by Zyvoloski et al. [5] to simulate heat and mass transfers
in porous media. Furthermore, Tenma et al. [6] conducted field tests in a hot dry rock (HDR)
system in Hijiori, Japan, to optimize heat extraction effectiveness in a two-layered reservoir. They
found that the best option for heat extraction is to increase the flow rate into the deep reservoirs.
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Yang and Yeh [7] presented a mathematical model to simulate thermal energy transfer from the
injection of hot water into a confined aquifer with different geological properties in the underlying
and overlying rocks. Their model involves the transfer mechanisms of horizontal convection in the
radial aquifer and vertical conduction in the confining rocks. Yang and Yeh [8] also developed an
analytical model describing heat energy extraction from an HDR in a multi-well system. They found
that heat extraction effectiveness is affected by well spacing, well radius, reservoir thickness, and
pumping rate.

Ghassemi et al. [9] utilized an integral equation formulation with a Green’s function to simulate
the heat extraction by circulating water in a fracture embedded in a geothermal reservoir. Ghassemi
and Kumar [10] examined the changes in fracture aperture and fluid pressure caused by the
individual and combined influences of thermal stress and chemical processes resulting from heat
extraction from subsurface rocks. Furthermore, Ghassemi et al. [11] presented a porothermoelastic
model to explore hydrothermomechanics in response to cold water injection in an enhanced (or
engineered) geothermal system. They investigated the changes in fracture aperture caused by
cooling and fluid leak-off into adjacent rocks. Yin et al. [12] developed a fully coupled, thermal
half-space model based on a finite element method and a displace discontinuity method to analyze
stress, pressure, temperature, and volume change in thermal reservoirs.

The objective of this study is to develop a mathematical model describing the temperature
distribution in an ATE system after extracting hot water from a geothermal confined aquifer. The
model assumes that an extraction well fully penetrates the confined aquifer, which is underlain
and overlain by finite-thickness HDRs with different thermomechanical properties and geothermal
gradients in the vertical direction. The outer boundaries of the overlying and underlying rocks are
represented by the Robin boundary condition. Heat energy is partially captured from the aquifer
and transferred from adjacent rocks to the water of the aquifer. The solution of the model in
dimensionless form is developed by the Laplace transform technique and its corresponding result
domain is computed by the modified Crump method [13, 14]. The present solution can be used to
simulate the spatial and temporal temperature distribution in ATE systems and assess the influences
of geological parameters as well as thermal properties on temperature distribution.

2. ANALYTICAL STUDY

2.1. Conceptual model

Figure 1 shows a schematic representation of the ATE system composed of a thin confined aquifer
underlain and overlain by two different HDRs. The aquifer and rocks extend infinitely in the
horizontal direction. The rocks are impermeable and the geological parameters as well as the
thermal properties of the aquifer and rocks are temperature invariant. In addition, the rocks are
considered to have linear geothermal gradients in the vertical depth and the initial temperature
in the aquifer is uniformly distributed because the aquifer is thin. Heat transfer occurs due to
horizontal convection and thermal conduction in the aquifer. In addition, only vertical thermal
conduction occurs between the rock and the aquifer. A finite-radius extraction well is installed
and screened throughout the confined aquifer. Water is pumped through the extraction well with a
constant flow rate Q from the aquifer over the operating time. The water temperature is assumed
uniform throughout the entire wellbore. In addition, the geomechanical effects produced by the
well discharge are assumed negligible.

The heat convection—conduction equation describing aquifer temperature distribution in the ATE
system can be written as [15, p. 25]

2
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Figure 1. Schematic representation of an aquifer thermal extraction system.

where the subscripts m, 1, and 2 denote the aquifer, underlying rock, and overlying rock, respec-

tively; T is the temperature; b is the thickness; K is the thermal conductivity; pc is the thermal

capacity; r is the radial distance from the center of the extraction well; z is the vertical distance

from the bottom of the aquifer; and ¢ is the operating time. The volumetric flux per unit pore area

within the confined aquifer, i.e. flow velocity u, is equal to —Q/(2nrnb,,), where n is the aquifer

porosity and the negative sign indicates that the flow is in the opposite direction of the coordinate.
The initial temperature is expressed as

Tn(r,0)="Tno 2)
where T,,0 is a constant temperature.
The continuity of the total heat flux between the extraction wellbore and the aquifer requires

aTm(”‘Wa 1)
_KmT:(pc)mu(r=rw)[Tm(rW7t)_Tm0] 3)

The aquifer temperature maintains a constant value at infinity, i.e. the initial temperature. Such
a boundary condition is expressed as

Tin(00,t)=Tyo “4)

The heat conduction equation describing the temperature distribution in the underlying rock can
be written as [15, p. 8]

OTi(r.z,1) _(po)1 OTi(r,z,1)

5
072 K ot ©)

Considering the presence of a geothermal gradient, the initial temperature distribution in the
underlying rock can be expressed as

T\(r,z,0)=Tno—g12, —b1<z<0 (6)

where g| represents the geothermal gradient in the underlying rock.

Consider that there is a perfect thermal contact at the interface between the underlying rock and
the aquifer such that the heat transfer is very large; therefore, the continuity of the temperature at
the interface can be expressed as

T1(r,0,6)=Tp(r,1) (7
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At the lower boundary in the underlying rock, a Robin-type condition employed to specify the
unknown total heat flux across the boundary is [15, p. 17]

oTy(r,—by,t
—K1%=—h1[ﬂ(r, —b1,t)—Tiol (®)

where £ is the convective heat transfer coefficient of the underlying rock. The convective heat
flux, the term on the right-hand side of Equation (8), is proportional to the difference between the
outer boundary temperature and the surface temperature of the underlying rock, 779, which can be
expressed as T19=Tno+g1b1.

Similarly, the heat conduction equation describing the temperature distribution in the overlying
rock can be written as [15, p. 8]

('isz(r, Z,1) _ (pc)y 0Ty (r, z, 1)

9
6z2 K> ot ©)

which is subject to the following initial and boundary conditions:
Io(r,z,0) =Tno— g2z, bm<z<bm+b2 (10
Tr(r, by, t) = Ty (r,t) at the lower boundary (1)

and
OTr(r, by +by, t

—K, 0T, bm b2, 1) =hy[To(r, by +b2, t)— Tyo] at the upper boundary (12)

0z

where h7 is the convective heat transfer coefficient of the overlying rock and 7>, the atmospheric
or surface temperature of the overlying rock, is expressed as Trg=T;,0 — g2(b;, +b2) with the
variable g, representing the geothermal gradient in the overlying rock.

2.2. Laplace-domain solutions

The Laplace-domain solutions for the temperature distributions of various problems are mentioned
in related handbooks [15—17]. Here, using the normalized parameters listed in Table I, Equations
(1)—(12) can be expressed in dimensionless forms. A description of the detailed developments
of the Laplace-domain solutions for the aquifer, underlying rock, and overlying rock is given in
Appendix A. The final dimensionless solution of the aquifer temperature distribution in the Laplace
domain is

TmD(R,p)=—1<&>v[ 20Ky (v/A(p)R) }[B(P)]
p\ R 20Ky (v A(P)Rw) +(VA(P)RWKy—1(VA(P)Rw) | L A(P)
—% (13)
with
A(p)=p+Kipq1x1+Kapgaxa (14)
and
B(p) = Kipq1y114T1,(1+ 1 B1)— P Tiop] — K2pq2y2|4T25(1+ o+ B B2)+ 2 T20p |
—KipTig+KopThe+4KrpTheqox2 (15)
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Table 1. Normalized parameters used in this study.
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where p is the Laplace variable [18]; K,(-) is the modified Bessel function of the second kind with
order v; qi2 = p/ua;p; and x; =[4q; sinh(4g; B;)+ p; cosh(4q; B;)]y; with y; =1/[4q; cosh(4q; B;)+
p; sinh(4q; B;)], where i= 1, 2. In addition, the Laplace-domain solutions of dimensionless temper-
ature distribution in the underlying and overlying rocks are, respectively,

Tin(R, Z1, p) = Tup(R, p)y1{4qi coshlqi(4B1 — Z1)]+ B, sinh[q1(4B1 — Z1)]}

sinh(q1Z1) T
—¢y1[4T1g<1+ﬂlBl)—ﬁ1TmD]+7gzl (16)

and
_ _ ATy, .
Thp(R,Zy, p)= | Tup(R, p)+ > v2{4q2 cosh[q2(4 By — Z2)1+ f, sinh[q2(4 B, — Z7)]}

inh(an 7 T
4 g2 Z2) (@2 2)y2[4T2g(1+ﬁ2+ﬂ232)+ﬁ2T20D]—%(224'4) (17

Note that Equations (16) and (17) include the aquifer temperature distribution, Tp(R, p), given
by Equation (13).

2.3. Steady-state solution

The steady-state solution of dimensionless aquifer temperature distribution can be obtained from
Equation (13) by applying the final value theorem [19]. The detailed development of the steady-state
solution of dimensionless aquifer temperature is shown in Appendix B and the result is

Tup(R oo)—_(&>”[ 20K, (/AO)R) MB(O)]_B(O) s
TR ) 20K (VA Ry)H(VAO RWK 1 (VAR | LAO) ] A0)
with

A)=Kipfix+Kapp,y (19)
and

B(0)= K px|4T\g(14B1B1)—p1Tiop] — K2py|4Tog(1+4 B+ 2 B2)+ B2 T20p ]
—KipTig+KopTrg+4KopTrefry (20)

where x =1/4(14 5, B1) and y=1/4(1+ f, By).
Similarly, the steady-state solutions for the temperature distributions in the underlying and
overlying rocks can be derived from Equations (16) and (17), respectively, as

Tip(R, Z1,00)= l—ﬁ TmD(RaOO)‘F&TIOD (21
4(14p,B1) 4(1+4 B, B1)
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and

BrZ>

- 22
4(1+ﬁ232)T20D (22)

B2Z:
Top (R, Z>, =|1l-—
2D (R, Z3, 00) [ {1+ 5B2)

:| Tup (R, 00)+

3. NUMERICAL INVERSION OF THE LAPLACE-DOMAIN SOLUTIONS

Equations (13), (16), and (17) comprise hyperbolic functions (e.g. sinh(-) and cosh(-)) and Bessel
functions Ky(-); thus their time-domain solutions may not be tractable. The routine DINLAP of
IMSL [20], developed based on a numerical algorithm originally proposed by Crump [13] and
later modified by de Hoog et al. [14], is used to obtain the results domain. This routine has been
successfully applied to solve some groundwater problems [21, 22]. This algorithm approximates the
Laplace inversion by expressing the inverted function in terms of a Fourier series and accelerates the
calculation using the Shanks method [23]. Equations (13), (16), and (17) are computed numerically
with accuracy to the fourth decimal.

The order v of Bessel function K,({) in Equations (13), (16), and (17) is a dimensionless
nonintegral convective parameter, denoted as —Q(pc),,/(4nnb,, K,,). Using an ascending series
for I,({), the term K,({) given by Abramowitz and Stegun [24, p. 375] can be rewritten as

T I, )1,

2 sin(vm)

Ky(O= (23)

with

1 k
_@
0" & <4 >
IU(C)=< ) Y e 24

2) Sk T(v+k+1)

where I'(-) is the Gamma function. As || is large, K,({) tends to be infinity. Using asymptotic
expansion of a large argument, K,({) can be approximated as [24, p. 378]

= [T A=l  (A=D(U=9)  (“-DE-9(1—-25) 3
Ky(O)= 2 {1+ 0 + B2 + 3160 +...},<|argg|<2n> (25)

where Z=4v2. The calculation of Equation (25) for summing the infinite terms is laborious. The
Shanks method is again adopted to accelerate the calculation in this equation. This method has
been successfully used to study groundwater area [25, 26].

4. RESULTS AND DISCUSSION

Consider that the ATE system has a well radius ry, =0.05m with the extraction rate Q=1 x
10~*m3/s. The aquifer thickness b, is 10m while the thicknesses of the upper rock b; and the
lower rock b, are 50 and 40 m, respectively. The confined aquifer has an initial temperature of
70°C and the hot water in the aquifer is continuously pumped out from the extraction well. The
outer boundary temperature of the underlying rock varies with the constant gradient while that
of the overlying rock has a fixed temperature of 23°C. We investigate the influences of aquifer
thickness, geothermal gradients, and the outer boundary temperature of the rocks on heat extraction
efficiency. The thermomechanical properties of the aquifer and rocks listed in Table II are used in
the following case studies. The extracted temperature, T, is defined as the temperature located at
0.05 m from the rim of the extraction well.

The contour of temperature distribution in the ATE system is shown in Figure 2 for Q=
1x107*m3/s and 1 x 10~3m?3/s at the operating time r =10* days. The thermal front is defined
as the distance from the center line of a well to the location at a temperature of 51.0°C. The
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Table II. Parameter values of the aquifer and rocks.

Parameter name Symbol Value
Thickness of the aquifer b 10m
Thickness of the rocks b1, by 50, 40 m
Density of the aquifer Pm 1047 kg/m3
Density of the rocks Pl P2 2600, 2650kg/m3
Specific heat of the aquifer Cm 2713J/kg-K
Specific heat of the rocks c1, €2 800, 1046J/kg-K
Thermal conductivity of the aquifer K 24W/m-K
Thermal conductivity of the rocks K, Ky 1.5, 2.59W/m-K
Convective heat transfer coefficient of the rocks hy, hy 0.6, l.OW/m2 -K
Geothermal gradient of the rocks g1, & 0.03, 0.06°C/m
Porosity of the aquifer n 0.3

thermal front in the aquifer is located at radial distancer = 12 m for @ =1x 10~*m?3/s shown in
Figure 2(a) and at r =45m for Q =1 x 107> m? /s shown in Figure 2(b). These two figures indicate
that a larger extraction rate produces a lower aquifer temperature at the same radial distance.

Figure 3 shows the predicted curves of aquifer temperature (7},) versus r at t =10, 5x 103,
10%, 2x10*, 2% 10° days, and at steady state for (pc), =2.84 x 10°J/m3-K, K,, =2.4W/m-K,
by =10m, T, =23°C, T;,0=70°C, and Q=1x10"*m?>/s. This figure shows that T,, decreases
with increasing ¢ and decreasing r. Under the same operating time, the aquifer temperature increases
slightly near the extraction well, significantly at a radial distance ranging from 10 to 100 m, and
then approaches a constant value at »>100m. The results also show that the values of extracted
temperature (T,,) are 69.4, 61.5, 50.2, 36.8, and 22.8°C at =103, 5x 103, 10* 2x10* and
2x 107 days, respectively. In addition, the aquifer temperature maintains constant values in the
regions after » =30, 80, 100, 130, and 200 m at t =103, 5x 103, 10%, 2x 10%, and 2x 10° days,
respectively. If one defines the heat extraction efficiency (1) as T,/ Tmo, then its values are 0.99,
0.88, 0.72, 0.53, and 0.33 at r=103, 5x10%, 10*, 2x10* and 2x 10 days, respectively. This
shows that # decreases with 7. In addition, the aquifer temperature distribution over a long period
of time (say # =2 x 10° days) agrees with that of the steady-state solution. This indicates that there
is no advective heat transfer in the ATE system when ¢ is very large.

Figure 4 shows the predicted curves of extracted temperature (7;,) versus ¢ for aquifer thickness
b, =10 and 30 m with various values of geothermal gradients g; and g». When g1 =g>=0°C/m
(denoted by the solid line), a larger b,, yields a higher T, from 10% to 2 x 103 days. In this period,
T, is significantly affected by the aquifer thickness due to the thermal capacity (i.e. the product
of density and specific heat, pc) per unit thickness. When g1 =0.03°C/m and g;=0.06°C/m
(denoted by the dashed line), the curves of T;, versus ¢ are represented with a circle symbol for
case 1 (b, =10m) and with a star symbol for case 2 (b,, =30m). This figure shows that a smaller
by, yields a higher T,, when t<103 days, indicating that the heat transfer at the interface of the
aquifer and rocks is quick for case 1. However, the difference of T, between cases 1 and 2 is
dependent on the geothermal gradient and thermal conductivity. On the other hand, a larger b,
yields a higher T, when ¢>103 days, implying that a larger b,, yields a higher thermal capacity
per unit thickness. Moreover, the figure also shows that 7;, approaches 22.0°C for the case of
g1=g2>=0°C/m and 22.8°C for the case of g; =0.03°C/m and g»=0.06°C/m when r>2 x 10°
days. Obviously, the geothermal gradient of the rocks has a significant effect on the extracted
temperature.

The curves of Ty, versus ¢ for various values of b, and the outer surface temperature of the
overlying rock (739) are plotted in Figure 5. The figure shows that T, increases with decreasing
t. It also shows that T, remains constant when ¢<103 days and a larger T»o yields a higher T,
when t>103 days for the same b,,. In addition, the difference of T,, between the cases of b,, =10
and 30 m increases with # when ¢ ranges from 103 to 2 x 10° days and approaches a constant when
1>2x10° days. For a fixed value of T»g, the curve of Ty, versus ¢ is represented with a circle
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Figure 2. The temperature distribution in the ATE system at r=10* days for h;=0.6W/m2-K,
hy=1.0W/m?-K, and Q= (a) 1x10~*m3/s and (b) 1 x 1073 m3/s.

symbol for the b,, = 10m case and with a star symbol for the b, =30m case. The figure also shows
that a smaller b, yields a higher T,, when r<2x 103 days for the T59=50°C case and r<1 x 103
days for the T»9=30°C case. On the other hand, a larger b, yields a higher T,, when ¢>2x 10°
days for the T»9=50°C case and r>1x 103 days for the T»)=30°C case. Obviously, a thicker
aquifer yields higher heat energy per unit thickness. It is evident that 73, approaches 50.3°C for
the T>o=50°C case and 29.9°C for the 759 =30°C case when t>2 x 10° days. Finally, it can be
concluded that the outer surface temperature has significant impact on aquifer temperature for ¢
ranging from 10° to 2 x 103 days.

5. CONCLUSIONS

A mathematical model is developed to simulate the temperature distribution for extracting hot water
from geothermal confined aquifers. Based on the model, a semi-analytical solution is developed
to predict the dimensionless temperature distributions in the aquifer as well as the underlying and

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2012; 36:85-99
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Figure 3. Curves of aquifer temperature (7},) versus radial distance (r) predicted by the transient

solution (Equation (13)) at t= 103, 5% 103, 10%, 2x 10%, and 2 x 10° days and by the steady-s-

tate solution (Equation (18)) for (pc),=2.84x10°I/m3-K, K, =24W/m-K, b, =10m,
T, =23°C, T;0=70°C, and Q=1x10"*m?3/s.
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Figure 4. Curves of extracted temperature (7y,) versus operating time (¢) for various values of aquifer
thickness and geothermal gradient.

overlying rocks. The time-domain results are computed numerically by the modified Crump method
with accuracy to the fourth decimal. In addition, the steady-state solution is also provided in this
study. The analyzed results have revealed several important points. The extraction rate, aquifer
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Figure 5. Curves of extracted temperature (7,,) versus operating time (¢) for the cases of 7T50=30 and
50°C when the aquifer thickness (b,,) is 10 or 30 m.

thickness, geothermal gradient, and outer temperature of the rocks have significant impacts on
the extracted temperature in the ATE system. The transient solution matches with the steady-state
solution when the operating time is longer than 2 x 103 days. In addition, the convective heat transfer
coefficient affects the rock temperature distribution only near the outer boundaries of the rocks.

The solution can be used to assess the effects of extraction rate, thermomechanical properties,
aquifer thickness, geothermal gradient, outer rock surface temperature, and convective heat transfer
coefficient on the aquifer temperature distributions. The solution can also be applied to assess the
spatial and temporal temperature distributions in the aquifer and adjacent rocks in ATE systems.
Accordingly, this solution can be used for designing an efficient ATE system to extract geothermal
energy for power generation or hot springs for tourism. Note that the effect of rock deformation
on fluid flow and thermal convection, not included in our conceptual model, should be considered
if the rock deformation produced by well discharge is large.

APPENDIX A: DEVELOPMENT OF THE SOLUTIONS (13), (16), AND (17)

Equations (1)-(12) can be expressed in dimensionless forms using dimensionless parameters given
in Table I. The heat convection—conduction equation describing the aquifer temperature in dimen-
sionless form can thus be expressed as

2
0 Tup(R,T 1-2v\ 0T,,,p(R, T T p(R,Zy,7 0Thp(R,Zy, 1
mD(2 )+< > mD( )+K10 1p(R,Z1,7) + Kap 2p(R, Z3,7)
5R R 5R 6Z1 Z1=0 aZZ Zr=0
0T,,p(R,
_ mli( 7) (A1)
0t
The dimensionless forms for the initial and boundary conditions are
Tnp(R,0)=0 (A2)
0T p(Ry, T) 2v
—— = — | Twp(Ryw, 7 A3
OR Ry, mD( w ) ( )
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and
Tynp(c0, 1)=0 (A4)

The heat conduction equation describing the dimensionless temperature distribution in the under-
lying rock can be written as

PTip(R.Z1,v) 1 Tip(R.Zy.7)

6212 = o , 0<Zi<4B; (AS)
where o p =4u; /o, and Z1 =—4z/b,,. The dimensionless initial and boundary conditions are
T1p(R,Z1,0)=TgZ, (A6)
Tip(R,0,7)=Tup(R,7) (A7)
and
%ZBWZ—%[HD(R,‘LBI,T)—TIOD] (A8)

where Tiop =(T10— Tn0)/(Tp — Tino),» Bi=Db1/by, and By =h1by /K;.
Similarly, the heat conduction equation describing the dimensionless temperature distribution
in the overlying rock is
2
0" Thp(R, Z>, 1 0Txp(R, Z>,
ThoR. 231 _ 1 IR 22.0) o _4p, (A9)
aZ% %Y)) ot

where oop =40y /0y, and Zy =4(z—by,)/by,. The dimensionless initial and boundary conditions
are

Tp(R,Z3,0) =T Z> (A10)
Top(R,0,7) = Tyup(R, 7) (A11)

and

0T>p(R,4B>,
TR 4AB2D __Paip, R 4By, 1) Too) (Al2)
07, 4

where T20p = (T20 — T1n0)/(Tp — Tino), B2=b2/bm, and B, =hoby /K>.
Taking Laplace transforms of Equations (A1), (A3), and (A4), respectively, yield

d*T,,p(R, 1—2v\ dT,,p(R, dTp(R, Z;,
mD( P)+( ) mD( P)+K]D 1D( 1 P)

dR? R dR dz,;
Z1=0
dTQ (R9225 ) G2l
tKyp 22 T (R, p) (A13)
dz,
Z>=0
dTmD(RWaP) 20\ -
——————= — ) T.p(R Al4
dR Ry, mD(Rw, p) ( )
and

Tnp(00, p)=0 (A15)

Moreover, taking Laplace transforms of Equations (AS), (A7), and (A8), respectively, lead to
&*Tip(R, Z1.p) _

5 =qiTip(R. Z1. p)—71Z) (A16)
4z
Tip(R.0, p)=Tup(R, p) (ALT)
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and

d7Tip(R,4B1,p) _ By
4

- By
Tip(R,4B, —T A18
iz, 1D( 1 P)+4p 10D (A13)

where q%:p/aw and y%:Tlg/qu.
Similarly, taking Laplace transforms of Equations (A9), (A11), and (A12), respectively, obtains

&Tap(R, Z2, p)

. =q3Tan(R. Z2. p)+7322 (A19)
dz3
Tp(R,0, p) = Tup(R, p) (A20)
and
dTop(R,4B2, p)  Po - B
= P2 Dp(R, 4By, p)+ = Taop (A21)
dz, 4 4p

where q22 =p/azp and y%: Trg/o2p.
Equations (A16) and (A19) are linear differential equations and thus can be solved by the
superposition principle. Their solutions in the Laplace domain consist of the homogeneous solution,

—=h . = .
T]D, and the nonhomogeneous solution, Tﬁ). That is

J— —h —
Tip=T,  +T (A22)

The Laplace-domain solution of Equation (A16) for temperature distribution in the underlying
rock is

— T
T10=C1coshq1Z1+C2sinhq121+£Zl (A23)
p

where C; and C, are the undetermined constants. Substituting Equation (A23) into Equations
(A17) and (A18) and taking some algebraic manipulations, the undetermined constants can then
be determined as

Ci=Tup(R, p) (A24)
and

Cr=—Tpp(R, p)xi —%[4T1g<1+ﬁ131>—ﬁ1nw] (A25)

where x| =[4q sinh(4q| B1)+ B cosh(4q1 B1)]y1 and y;=1/[4q cosh(4q B1)+ B sinh(4q1 By)].
Equation (16) can be obtained by substituting the constants of Equations (24) and (25) into
Equation (23). Similarly, the Laplace-domain solution for the overlying rock, Equation (17), can
be obtained from Equations (A19)-(A21).

Substituting Equations (16) and (17) into Equation (A13), one obtains

d&*Tup(R, p) N 1—2v\ dTup(R, p)
dR? R dR

— 1
—A(P)Tmp(R, p)= ;B(p) (A26)

where the functions of A(p) and B(p) in Equation (A26) are given as Equations (14) and (15),
respectively. Equation (A26) is a linear differential equation which can also be solved by applying
the superposition principle. The Laplace-domain solution of Equation (A26) consisting of the

homogeneous solution, T, ,, and nonhomogeneous solution, T,[; p» can be expressed as
Twp=T, ,+T,p (A27)
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The homogeneous equation in Equation (A27) is a special form of Bessel equation and its
general solution is

Typ=R™[D11,(/A(P)R)+D2Ko(/A(P)R)] (A28)

where v is equal to —Q(pc),, /(4nnb,y, Kyy); D1 and D, are the undetermined constants; 7, (-) and
K, (-) are the modified Bessel function of the first and second kinds with order v, respectively. The
nonhomogeneous equation in Equation (A27) can be easily solved and its particular solution is

77 = 5P (A29)

mD pA(p)
Based on the superposition principle, the Laplace-domain solution can then be obtained from
substituting Equations (A28) and (A28) into Equation (A27) as

= _ B(p)

Twp=R""[D11,(y/ A(p)R)+D2Kv(\/A(P)R)]—pA—f;) (A30)

Substituting Equation (A30) into Equations (A14) and (A15), the constants of D and D, can
be determined as

D;=0 (A31)
and
Rv |: 2v } [B(p)i|
Dy=— (A32)
P L2vKy(VA(P)Rw)+(VA(P)Rw)Ky—1(V/A(p)Rw) 1 L A(p)

The dimensionless aquifer temperature distribution in Equation (13) can then be obtained from
substituting Equations (A31) and (A32) into Equation (A30).

APPENDIX B: DEVELOPMENT OF EQUATION (18)

The steady-state solution can be obtained from the transient solution when applying the final value
theorem [16] as

Tup(R,00)=lim pT,,p(R, p) (B1)
p—0

Accordingly, substituting Equation (13) into Equation (B1) yields

b(R, oo)_hm{ (R )[ 20K(V/APIR) IB(p)} B(p)} )
g 20K (VAP Re)+HVAPI R Ko 1 VAP Re) L A(p) | A(p)

The hyperbolic functions given by Abramowitz and Stegun [21, p. 85] are

g ¢ 7
sinh()={+ 5+ 5+ 5+ (l<00) (B3)
and
g8
cosh(C)—1+2|+ RaThat (|¢|<o0) (B4)

Set {{=(4q1B;1) and {,=(4¢g2B>) and let p— 0 for Equations (B3) and (B4). Then, Equa-
tions (14) and (15) reduce to Equations (19) and (20), respectively. Substituting Equations (19)
and (20) into Equation (B2) leads to the steady-state solution of dimensionless aquifer temperature
presented in the text as Equation (18).
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NOTATION

b; thickness, m, i =1, 2, or m

B; bi /by, i =1, 2; dimensionless thickness

gi geothermal gradient, °C/m, i=1, 2

h; convective heat transfer coefficient, W/ m2K,i=1,2
K; thermal conductivity, W/m-K, i =1, 2, or m

Kip K;/K,,i=1,2; dimensionless thermal conductivity
p Laplace transform variable

qg;  p/ap,i=1,2

0 extraction rate, m3/ S

r radial distance from the center of extraction well, m
I'w wellbore radius, m
R 2r /by, ; dimensionless radial distance from the center of extraction well

Ry, 2rw /by ; dimensionless wellbore radius

t operating time, s

T; temperature, °C, i=1, 2, m, or b

Tip (T;i—Tuo)/(Tp—Tno), i =1, 2, or m; dimensionless temperature

Tig 8ibm /4Ty —Tyo), i =1, 2; dimensionless geothermal gradient

7_}0 dimensionless temperature in Laplace domain, i = 1, 2, or m

u —Q/@2nrnb,,); volumetric flux per unit pore area, m/s

—Q(pc)m/(@nnb,, K,,); dimensionless convective parameter

Z vertical distance from the bottom of the aquifer, m

VA —4z/b,,; dimensionless vertical distance from the bottom of the aquifer to the
underlying rock

Z 4(z —by)/by; dimensionless vertical distance from the bottom of the aquifer to the
overlying rock

o Ki/(pc)i, i=1, 2, or m; thermal diffusivity, mz/s

oaip  4uai/oy,, i =1, 2; dimensionless thermal diffusivity

Bi hiby,/K;, i =1, 2; Biot number

7 Tig/up,i=1,2

(pc); thermal capacity, J/m3-K, i=1, 2, or m

T 4ou,t/ bi; dimensionless operating time
Subscripts

b atmospheric temperature of ground surface
m aquifer

0 reference value

1 underlying rock

2 overlying rock
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