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An efficient and robust shooting algorithm for the design of bidirectionally pumped Raman fiber amplifiers is
proposed. First, a parameter S, new to our knowledge, called scaling vector, is introduced. This parameter is used
in combination with the physical picture of stimulated Raman scattering to generate accurate initial guesses for the
powers of backward pumps in the bidirectionally pumped Raman fiber amplifiers. Second, a modified Newton—
Raphson method is developed. With an appropriate restriction for the adjustment of increments of initial guess
attached, the modified Newton—Raphson method is used to correct the initial guesses to approach the true solution
of the problem. By combining the method of initial value determination and the correction mechanism, 14 types
of bidirectionally pumped Raman fiber amplifiers are designed. The simulation results show that the proposed
shooting algorithm is more efficient and stable than most of the existing ones. Comparison with three other re-
levant methods reported in the literature is made to reveal the advantages of the new method. © 2011 Optical

Society of America
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1. INTRODUCTION

Raman fiber amplifiers (RFAs) have been widely used in
wavelength-division-multiplexing (WDM), long-haul (LH), and
ultra-long-haul optical fiber communication systems [1-3].
The RFAs used in these systems can be forward pumped,
counterpumped or bidirectionally pumped. Among them the
bidirectionally pumped RFAs have more even gain spectrum
and noise figure than the forward-pumped or counterpumped
RFAs have [4,5]. In numerically dealing with the equations of
these RFAs, the equations of forward-pumped RFAs are the
easiest to solve. The power evolution of pumps and signals
along the fiber can be directly obtained by any integration
method. In the counterpumping and bidirectional pumping
configuration, on the other hand, some of the optical channels
are known for their powers at one end of the gain fiber, while
the others are known at the other end of the gain fiber; an
ordinary integration method cannot be applied directly. Find-
ing the solution of the Raman amplifier equations in the coun-
terdirectional or bidirectional pumping configuration is a
two-point boundary value problem. This problem can be
solved by the shooting algorithm in general. Several schemes
using the shooting algorithm have been applied to the counter-
pumped or bidirectionally pumped Raman amplifier equations
[6-11]. In the shooting algorithm, accuracy and the correction
mechanism of initial guesses are very important issues for the
efficiency and convergence criteria of the scheme. A linear
correction mechanism for the correction of initial guesses
was used in [6,7]. The linear correction mechanism has advan-
tage of easy implementation. However, from the consideration
of transmission capacity, a large number of optical channels is
often desired. In order to reduce the system cost, the number
of amplifiers needs to be minimized, so longer relay distance is
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preferred. To improve optical signal-noise ratio, strong input
optical powers are frequently used. In all these practical
cases, the adjustments involved in the linear correction me-
chanism to find a solution of an RFA are vast. Even so, diver-
gence occurs occasionally. A better correction mechanism
would be good in situations like these. Recently, several cor-
rection mechanisms based on the Newton—-Raphson method
have been proposed [8-11] for the design of counterpumped
RFAs. However, these correction mechanisms are sensitive to
the initial guesses used. In [8,9] a method for the determina-
tion of initial guess was provided for counterpumped RFAs. In
this method, all counterpumps are viewed as forward pumps.
In [10,11] a novel initial value determination method was pro-
posed by making use of a contraction factor as well as the
physical picture of stimulated Raman scattering (SRS). These
methods are effective for the counterpumped Raman coupled
equations. Unfortunately, they are not fully applicable to the
bidirectionally pumped Raman coupled equations due to the
different pump power evolution scenarios of the bidirection-
ally pumped RFAs and of the counterpumped RFAs. A better
initial value determination method is required for the design of
the bidirectionally pumped RFAs.

In this work, an efficient and robust shooting algorithm for
the design of bidirectionally pumped RFAs is proposed. First,
a scaling vector S is introduced for the determination of initial
values of the Raman amplifier equations in the bidirectionally
pumped configuration. It is found that the forward pumps in
the bidirectionally pumped RFAs have larger influence on the
power evolution of the backward pumps than the forward
signals in counterpumped RFAs have. Furthermore, the influ-
ence varies with wavelengths of the forward pumps. For
example, when forward pumps of shorter wavelengths are
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applied to the RFAs, the appropriate initial powers of the
backward pumps are usually increased by SRS interaction
of the backward and the added forward pumps. In contrast,
when forward pumps of longer wavelengths are applied to
the RFAs, the appropriate initial powers of the backward
pumps generally decrease to cooperate with the forward
pumps. Therefore, the previously introduced contraction fac-
tor [10,11], which weighs all backward pumps equally, is not
suitable for the case where some pumps propagate forward,
while some other pumps propagate backward. The replace-
ment of the contraction factor is the scaling vector S, where
a different component deals with a different backward pump.
The second point of the proposed shooting algorithm is to re-
place the linear correction method with a modified Newton—
Raphson correction method so that the correction procedure
for the initial guesses can be performed efficiently. By com-
bining the scaling vector § with the modified Newton—
Raphson correction mechanism, an efficient and robust
shooting algorithm for bidirectionally pumped RFA equations
is constructed.

2. COUPLED EQUATIONS OF RFAs

When pumps and signals propagate simultaneously along the
fiber of an RFA, by considering the interactions between the
pumps, between the signals, and between the pumps and sig-
nals, the power in each channel of the bidirectionally pumped
RFAs is mathematically modeled by the coupled equations in
the steady state [6,10,11],

ny+ng+m
dpP;

4 = Y 9(v,v:)P;P; - ;P;,
2 J=1g4#i

(i=1,2-,n +ny+m), (1)

where n; is the number of backward pump channels, 7, is the
number of forward pump channels, m is the number of signal
channels, P;, v;, and «; are the power, frequency, and attenua-
tion coefficient of the ith optical channel, respectively. The
“+” is designated to the forward traveling pump and signal
waves, and the “~” is designated to the backward traveling
pump waves. The Raman gain coefficient g(v;,v;) describes
the power transfer between the jth and the 7th optical chan-
nels. It is given by g(v;,v;) = (1/KegAese)g;(v; — ;) for v; > v;
and  g(v),v;) = —(1/KegrAesr) (vi/07)9: (v - v;)  for v; <y,
where g, (Av) is the Raman gain coefficient spectrum mea-
sured at the optical frequency v, A is the effective overlap
core area between waves of different optical channels, K ¢ =
2 is the polarization factor. Without loss of generality, the op-
tical channels are so numbered that the frequency is descend-
ing from the first optical channel to the (n; + ns + m)th
optical channel, i.e., v; > v; for ¢ < j. Equations (1) indicate
that, when the light wave of frequency v; propagates along
the fiber with the light waves of other frequencies, due to
the SRS, it receives power from the light waves of frequencies
larger than v;; in the meantime it loses power to the light
waves of frequencies smaller than v;. It should be noted that
the attenuation and Raman gain coefficient spectra of a trans-
mission fiber, as illustrated in Fig. 1, are so irregular that they
cannot be expressed in a closed form. There are also highly
nonlinear interactions existing between different optical
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Fig. 1. Raman gain coefficient (measured at 1 gm pump wavelength)
and (inset) loss spectrum of a single-mode fiber.

channels. Because of these two reasons, Egs. (1) has no ana-
lytical solution in general. It has to be dealt with numerically.

3. NEW SHOOTING ALGORITHM

Generally speaking, a shooting algorithm applicable to the
two-point boundary value problem of a set of differential equa-
tions consists of three parts, namely, the determination of
accurate initial guesses, a correction mechanism for the im-
provement of the initial guesses, and a numerical integration
procedure. For the numerical integration, any computational
method can be used as long as it performs the integration
accurately. The Runge-Kutta method with adaptive step size
is used in this work. In general, the initial guesses and their
correction mechanism are crucial for a shooting algorithm to
converge quickly and stably. In the following sections, these
two issues will be discussed in detail.

A. Scaling Vector and Determination of Accurate Initial
Guesses

For a bidirectionally pumped RFA, the ny forward pumps and
m signal channels propagate from the beginning of the fiber
(hereinafter, Port I) to the end of the fiber (hereinafter, Port
II), and the n; backward pumps propagate from Port II to Port
I. The powers of the forward pumps and signals are therefore
known at Port I asPI = (PIhPIZv .'.,Pl(n2+1)‘ "'PI(7L2+m))y while
the powers of the backward pumps are known at Port II as
Py, = (Prip1. Pupas - - -» Pripyy, )- Because the powers of the back-
ward pumps are unknown at Port I, an initial guess P| =
(P, Py, ..., Py, ) at Port Thas to be made to start the integra-
tion of Egs. (1). Starting from the given powers of the forward
pumps and signals Py = (Pyy, Pr, ..., Pyn,11)s - -Piiny+m)) and
the guessed powers of the backward pumps P|=
(P, P, ..., Py, ) at port I, Egs. (1) can be integrated step
by step to obtain all powers of the optical channels along
the fiber until Port II. This process is referred to as “shooting.”
The final results obtained at Port II are designated as Py =
(PHI’PHZV "'7PII(’VL2+1)5 -~~PH(?’LZ+’"L)) for the forward pumps
and signals and Py, = (P, Ppyo. -+, Ppypy, ) for the backward
pumps. These values are called the “shot” values. The shot
powers Py are then compared with the actual backward
pump powers P, = (P, Prpg. .- Prpy,) at port IL Their
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difference is used by the correction mechanism, which will be
discussed in Subsection 3.B, to generate an improved new in-
itial guess for the next round of shooting. This procedure will
be repeated until a prescribed criterion is met.

In the above shooting process, the accuracy of initial guess
for the backward pump powers Pj at port I plays a crucial rule
in the efficiency and convergence of the shooting. A good in-
itial guess could not only avoid waste of computational time
but also minimize the risk of computational breakdown for the
shooting process. A primary initial guess could be derived
from the following concerns [10,11]. First, let the first indivi-
dual backward pump with power Pr,; propagate on its own
along the fiber from Port II to Port 1. As it reaches Port I, its
power is numerically obtained as Pj;,. Second, let both the
first and the second backward pumps with powers Pr,; and
Py, respectively, propagate along the fiber from Port II to
Port I, and the power of the second pump at Port I is obtained
as PJ,,. This process is repeated until the last backward pump.
The obtained vector Pj, = (Pyy;, Pl ...,Piw) can then be
used as a primary initial guess. When all the pumps and signals
propagate together, due to SRS, every pump will transfer its
power to pumps and signals of longer wavelengths. In the
meantime, every pump will receive power from the other
channels of shorter wavelengths. The actual backward pump
power emerging form Port I, Pij, could therefore be larger or
smaller than the corresponding primary initial guess P{tj,
depending on the position of its wavelength among the wave-
lengths of the other pumps. In order to give a more appropri-
ate initial guess, a scaling vector S = (1/S,1/Ss, ...,1/S,;) is
introduced and is multiplied by Py, = (Pyy,, Py, ... Py, ;) t0
produce a better initial guess for powers of the backward
pumps at Port I,

Py = (Pyy.Py. .. P}, ) = 5P}
= (Pilt/Slvpim/SZ’"'7Pin1z/sn1) (2)

where S; € (0, ) is a parameter to be determined. The gen-
eral guideline for selecting the values of S; is as follows. For
the jth pump, if it loses more power to channels of larger wa-
velength than it receives from channels of shorter wavelength,
S; should be set to a value larger than 1.0. Otherwise, S;
should be set to a value smaller than 1.0. The bigger the dif-
ference between loss and gain, the larger S; should be set to,
and vice versa. The use of appropriate S is tested in many
numerical simulations of this work in the design of bidirec-
tionally pumped RFAs, and efficient convergence of the shoot-
ing program is observed in all cases.

B. Correction Mechanism for Initial Guesses

In the shooting procedure, due to the use of guessed
initial values for the backward pump powers at Port I, the
resulting P{ij is usually not equal to Pry;, j=1,2,...,n.
Their discrepancy is designated as D = (P, — Py, Prye—
Pz, .. Py, = Prpn, ). If all the components of vector D
are zero, the guessed initial values P = (P, Pj,, ...,Pinl) cor-
rectly represent the actual backward pump powers that would
emerge from Port I. To reveal the true solution, the compo-
nent values of the vector D are minimized by the Newton—
Raphson method with the following formulas to update the
guessed values in P; [10-13]:
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P =P 1 aAP, (3)

AP, =-J1.D, 4)
Jll J12 Jlm
Jor Ja oy

J=1 . : S (5)
Jnll Jn12 e Jnlnl

where AP; and J are the increment of P; and the
Jacobian matrix, respectively, for the next shooting process.
The element of J is determined by J;; = dDy/oPy; (k,
Jj=1,2,3,...,m7), and in the numerical calculation the partial
differential operator is replaced by finite difference formula.

In Eq. (3), an appropriate value of « is crucial for the con-
vergence of the shooting algorithm. Too large negative adjust-
ment of P} may result in Py; (the component of P;) being less
than zero. Obviously, negative Pij corresponds to no physical
circumstance. On the other hand, too small adjustment of P;
may result in extra iterations for the shooting. In [10] a suffi-
ciently small value of @ was chosen. Later it was found that a
small value of a is not always necessary. In [11]  is initially set
to 1.0. If the resulting adjustment a AP} could not meet the cri-
teria, a is decreased gradually until all the criteria are met. The
value of a is chosen according to two criteria. One is to ensure
that all the components of P;, Pij, are between 0 and Pijt' The
other one is to ensure that the Euclidean norm of the error
vector D, ||D||, decreases in the succeeding shooting. When
all the pumps are applied backward from Port II to Port I,
the above criteria are proven effective [11]. In this work, how-
ever, since some of the pumps are launched from Port I, it is
found that the limitation set by Pijt is no longer valid. Accord-
ing to the discussion just before Eq. (2), the actual backward
pump power emerging from Port I, P{j, could be smaller or
larger than the corresponding Piﬁ, depending on the relative
position of the wavelength of the jth pump among the wave-
lengths of the other pumps. Therefore, the limitation of Pij <
P{ﬂ is removed for the bidirectional pumping scheme.

In summary, the whole procedure of new shooting algo-
rithm used in this work is as follows.

1. Determine the initial values P; for the backward pumps
according to Subsection 3.A.

2. Use the Runge—Kutta method to integrate Egs. (1) with
the initial guess P from Port I to Port II along the fiber.

3. Generate the error vector D and its Euclidean norm ||D||
for the kth iteration.

4. Compare ||D|| to a prespecified small quantity ¢ and
compare k to the maximum allowed number of shootings
Ngnax- If [ID]| < € or k > Ng.¢, terminate the shooting proce-
dure and output the numerical results; otherwise go to Step 5.

5. Generate the new P; according to Subsection 3.B, and
go to Step 2.

4. RESULTS AND DISCUSSION

Using the proposed method, 14 different bidirectionally
pumped RFAs are simulated, and the results are compared
with three other existing methods in terms of efficiency
and stability. The Raman gain coefficient and attenuation



H. M. Jiang and K. Xie

Table 1. Parameters Used in Simulations of

Four-Pump RFAs

Parameter Name Unit Values
Fiber length km 50
Effective core area of fiber um? 80
Wavelength separation of signals nm 1.0
Power of each signal channel mW 0.1
Power of each pump channel mwW 300
Starting wavelength for signals nm 1530
Ending wavelength for signals nm 1625
Number of pumps 4
Wavelength of the first pump nm 1430
Wavelength of the second pump nm 1455
Wavelength of the third pump nm 1480
Wavelength of the fourth pump nm 1505

spectra of the fiber used in the simulations are illustrated in
Fig. 1. The other parameters are listed in Table 1. Under these
conditions the following three schemes of bidirectionally
pumped RFAs are simulated, namely, (1) one forward pump
and three backward pumps, (2) two forward and two back-
ward pumps, and (3) three forward pumps and one backward
pump. The wavelengths of pumps increase with their channel
indices. There are 14 different arrangements in total derivable
from these schemes, as summarized in Tables 2-4, where F'
represents the forward pumping and B denotes the backward
pumping. Regarding the simulation results, Y is an indication
of convergence of the corresponding case. To the contrary, N
represents that the corresponding method fails to deliver a
solution for the corresponding case. The numeric character
following Y indicates the required iterations of adjustments
from the initial guesses in the shooting process. The values
of contraction factor f used in Method III and of the scaling
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vector component S; used in Method IV are given in the
parentheses. Note that here 1/f is equivalent to the parameter
c of [10] or d of [11].

Method I uses the undepleted pump approximation [14] to
guess the initial values of the backward pumps. In the guess of
initial values, any SRS between pumps and between pumps
and signals are not taken into account. The equivalent method
[8,9] is used by Method II to guess the initial values of back-
ward pumps. In the equivalent method all counterpumps are
viewed as forward pumps. Method III uses a contraction fac-
tor [10,11] to obtain the initial values of backward pumps. The
correction mechanism for these initial values used in Methods
I-IIT is the modified Newton-Raphson method. The new
shooting algorithm proposed in this work is represented by
Method IV.

From Tables 2—4, it is found that Method I fails in every case
except in Case I, while Methods II and III find the solution in
several cases. On the other hand, Method IV is much more
robust. It successfully identifies the true solution in all the 14
cases. Because the correction mechanism used in all the four
methods is the same as the one illustrated in Subsection 3.B,
the four methods are different mainly in the way their initial
guess is decided. It is evident from Tables 2—4 that the initial
guess method has a big impact on the convergence perfor-
mance of a shooting algorithm. The evolutions of powers from
initial guesses of Methods I—IV and from the true solution are
plotted in Figs. 2 and 3 for the second and the fourth backward
pumps of Case II of Table 3. It is seen that the initial guess of
Method IV is close to the true solution. The accurately guessed
initial values of Method IV play an important role on the sta-
bility and efficiency of this method.

Method I does not take the SRS into account in making the
initial guess for powers of the backward pumps. It therefore

Table 2. Simulation Results of Four-Pump RFAs with One Forward Pump and Three Backward Pumps

First Pump Second Pump Third Pump Fourth Pump Method I Method II Method III Method IV
Case I F B B B Y, 11 N N Y, 33,2 2)
Case II B F B B N N Y, 4 (4) Y, 3 (5, 4, 3)
Case III B B F B N N Y, 6 (20) Y, 5 (30, 20, 10)
Case IV B B B F N N Y, 4 (35) Y, 3 (50, 40, 30)

Table 3. Simulation Results of Four-Pump RFAs with Two Forward and Two Backward Pumps

First Pump Second Pump Third Pump Fourth Pump Method I Method II Method III Method IV
Case 1 F F B B Y, 4 N N Y, 3 (0.9, 0.8)
Case 1T F B F B N N N Y, 2 (20, 0.7)
Case III F B B F N N Y, 2 (20) Y, 2 (25, 20)
Case IV B F F B N N Y, 3 (30) Y, 3 (30, 25)
Case V B F B F N Y, 5 Y, 6 (70) Y, 5 (75, 70)
Case VI B B F F N Y, 5 Y, 4 (70) Y, 4 (80, 60)

Table 4. Simulation Results of Four-Pump RFAs with Three Forward Pumps and One Backward Pump

First Pump Second Pump Third Pump Fourth Pump Method I Method II Method III Method IV
Case I F F F B Y, 3 Y, 4 Y, 3 () Y, 3 (2)
Case II F F B F N Y, 4 Y, 2 (30) Y, 2 (30)
Case III F B F F N Y, 2 Y, 1 (35) Y, 1 (35)
Case IV B F F F N Y, 2 Y, 2 (200) Y, 2 (200)
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Fig. 2. (Color online) Evolutions of the second pump power for
different initial guesses and final solution in simulation of the four-
pump RFA in Case II of Table 3.

produces a poor outcome in complex circumstances such as
high input powers, a large number of channels, and/or a longer
relay distance. In these situations, discrepancy between the
true solution and the initial guess for the backward pump
powers at Port I is quite large due to the lack of consideration
of the strong SRS between different optical channels. As
shown in Figs. 2 and 3, the guessed initial values of the second
and the fourth backward pumps derived by Method I are
23.0mW higher and 46.6 mW lower, respectively, than the true
values of the corresponding pumps at Port 1.

Method II is not a good method either for the determination
of initial values of the backward pumps when the RFAs are
bidirectionally pumped, as will be explained below. In this
method the backward pumps are treated as forward pumps
when their initial values are decided. Although this scheme
works for backward-pumped RFAs, its reliability reduces
when forward pumps coexist with backward pumps. It can be
imagined that, when all pumps are launched into one port of
the transmission fiber with signals, as was done in Method II,
all pumps transfer their powers to signals as propagating
along the fiber. Because the pumps also receive power from
other pumps of short wavelength due to SRS between pumps,
the powers of some pumps may increase initially. After the
initial transition stage, due to the attenuation by fiber and
depletion by signals, the power will decrease monotonically
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Fig. 3. (Color online) Evolutions of the fourth pump power for
different initial guesses and final solution in simulation of the four-
pump RFA in Case II of Table 3.
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along the fiber for any pump. This phenomenon is clearly ob-
servable from Figs. 2 and 3. The power of the second pump
decreases monotonically from right to left according to
Method II, while the power of the fourth pump derived by this
method grows at the beginning then decreases monotonically
from right to left. In a bidirectionally pumped RFA, however,
the forward and backward pumps are applied simultaneously,
and the real picture of the power evolution is more compli-
cated. At a particular fiber position, the actual power level of
a pump depends not only on its distance from its source but
also on the wavelengths of its neighboring pumps. As illu-
strated by the curves marked with “Final solution” in Figs. 2
and 3, the power of the second backward pump monotonically
decreases along the transmission fiber from right to left.
On the other hand, the power of the fourth backward pump
decreases initially then increases from right to left along the
transmission fiber. Because the treatment of Method II does
not correctly reflect the true situation, a big difference be-
tween its initial guess and the actual value results. The initial
guesses derived for the second and the fourth backward
pumps by Method II are 4.1 and 25.1 dB lower, respectively,
than those of the true solution.

Method III also works well for backward-pumped RFAs
[10,11]. In a backward-pumped RFA the actual output pump
power P{j from Port I is always smaller than the corresponding
P{jt, as analyzed in [11]. Piﬁ can therefore be used as the bound
of initial guess. After being weighed by an appropriate con-
traction factor f > 1, the initial guess P{jt /f approximates
the actual pump powers Pij fairly accurately. However, such
bound does not exist when forward and backward pumps are
applied simultaneously. The actual output pump powers P{j
from Port I could be smaller or larger than the corresponding
P{ﬂ, depending on the actual wavelength of the pump. As
shown in Figs. 2 and 3, the actual output power of the second
backward pump is 4.3dB lower than the initial guess of
Method III, while the actual output power of the fourth back-
ward pump is 10.1dB higher than the corresponding initial
guess. For the fourth backward pump, although it suffers from
power loss due to pump depletion and material attenuation, it
also receives more power from other pumps of short wave-
lengths, especially those forward pumps, so its overall balance
increases when it reaches Port I. Based on a similar argument,
the overall balance of the second backward pump decreases
at Port I. Because different pumps follow different evolution
tracks, it is not a good idea to use the equally weighed quantity
Py, /f as the initial guess. For example, a larger f results in a
smaller difference between P}, /f and P}, but in the meantime
results in a larger difference between P},,/f and P}, and vice
versa. This explains why Method III does not work as well
for bidirectionally pumped RFAs as it does for backward-
pumped RFAs.

In Method IV, the different pump evolution tracks are taken
care of by replacing the contraction factor f with the scaling
vector S. The improvement is clearly demonstrated by the ex-
amples listed in Tables 2—4, where all the cases dealt with by
Method IV are shown convergent. The initial guesses of the
second and fourth backward pumps derived by Method IV
are 0.3 and 0.5 dB higher, respectively, than those of the true
solution, very close to the points they respectively converge
to. The reason for the better performance of Method IV can be
explained as following. Because of the exponential growth of
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the backward pump powers, a too large initial guess of the
backward pump could directly result in divergence of the
shooting process, while a too small initial guess could incur
an overly large increment of backward pump power at
Port I for the next shooting. Similar to the effect of the overly
large initial guess, the overly large increment of pump power
could also result in numerical overflow. By the use of scaling
vector S, the different P{jt are weighed differently, so the initial
guess of pump power P{j,, /S; is very close to the actual true
solution Pi;“ The curves of Method III and IV in Figs. 2 and 3
are power evolutions of the second and fourth backward
pumps, calculated from their corresponding initial guesses
using the contraction factor f* and the scaling factor S, respec-
tively, with all pumps and signals applied. The improvement
brought out by S is noticeable. Obviously, when the number of
backward pumps reduces to one, the scaling vector S contains
only one component and effectively reduces to the contrac-
tion factor f.

Similar to Case II of Table 3, it is found that, in all the other
cases listed in Tables 2 and 4, the shooting procedure will con-
verge if the initial guess is close enough to its corresponding
true solution. For example, there is one backward pump, three
forward pumps of shorter wavelengths, and 96 signal channels
of longer wavelengths in the RFA of Case I of Table 4. Because
of SRS, the fourth backward pump receives enough power
from the three forward pumps to compensate for its power
loss to the signals. In this case, all four methods provide a
good-enough initial guess so all the shooting procedures con-
verge. Because the initial guess derived by Method IV with the
use of an appropriate scaling factor S is always close enough
to the corresponding true solution, the new proposed shooting
algorithm using the modified Newton—Raphson method as a
correction mechanism for the initial values always succeeds
in finding the true solution. It is very robust in the simulation
of bidirectionally pumped RFAs, even in extreme cases such
as extended fiber length, high level pump and/or signal power,
vast number of pumps and signals, variable pump schemes,
etc. It is worth pointing out that, besides Method IV, another
numerical method called the average power analysis techni-
que [15-17] can also be used to solve the Raman coupled equa-
tions under conditions of Case II of Table 3. However, since
the average power analysis technique is based on the so-called
small-signal travelling-wave approximation and since the
conditions of Case II of Table 3 involve intense signal power
and/or strong SRS, which violate the small-signal travelling-
wave approximation, larger numerical error is expected.

The calculation times of different methods in simulations of
the bidirectionally pumped RFA for Case I of Table 4 are sum-
marized in Table 5. It is found that the calculation efficiency of
Method IV is the highest one. In Case I of Table 4, only one
backward pump is applied; Method IV degenerates to Method
III. This is why the calculation time of Method III is almost the
same as that of Method IV; the small discrepancy between
them is due to computational error. It is interesting to note
that, although the number of iterations of Method I and

Table 5. Calculation Time of Different Methods in
Case I of Table 4

Method I Method I Method III Method IV

Calculation time (s)  9.172 10.266 7.109 7.093
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Fig. 4. (Color online) Comparison of gain profiles of a four-
pump RFA generated by four different numerical methods for Case I
of Table 4.

Method IV are both 3 in Case I of Table 4, the calculation time
of Method I is about 30% bigger than that of Method IV. The
reason lies in the different initial conditions. Because of a
worse initial guess, Method I needs more steps for adjustment
using the Runge-Kutta method along the fiber to satisfy
the required accuracy in a iteration, so it takes longer than
Method IV. The corresponding gain profiles generated by
Method I to Method IV in Case I of Table 4 are illustrated
in Fig. 4. It is seen that, after convergence, all these methods
achieve almost the same gain profiles on a four-pump RFA.
This suggests that the gain profile in Fig. 4 is a correct one and
that these methods confirm their correctness on the design of
RFAs by each other.

5. CONCLUSION

In summary, an efficient and robust shooting algorithm for the
simulation of bidirectionally pumped RFAs is proposed in this
work. With this method, the bidirectionally pumped Raman
coupled equations can be solved under various conditions.
This new shooting algorithm improves not only the efficiency
of calculation but also the stability of the shooting algorithm.
In this scheme, a scaling vector S is introduced to produce
accurate initial guesses for the shooting algorithm. With the
appropriate limitations for the increments of initial values ap-
plied, a better correction mechanism based on the Newton—
Raphson method is introduced to evolve the initial guess to
the final solution quickly. In total, 14 types of bidirectionally
pumped RFAs with four pumps arranged differently in direc-
tion and wavelength are tested. The results show that the pro-
posed shooting algorithm is convergent in many practical
situations, including the cases when high optical powers, long
transmission fiber, or a large number of pumps and signals are
involved. In most of these extreme cases, the other three re-
levant methods discussed in this paper for comparison are
shown to fail to deliver a solution. This shooting algorithm
provides an efficient and robust methodology for the design
of bidirectionally pumped RFAs in an LH WDM system.
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