
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012 113

Parametric OBMC for Pixel-Adaptive Temporal
Prediction on Irregular Motion Sampling Grids

Yi-Wen Chen and Wen-Hsiao Peng

Abstract—This paper adapts overlapped block motion compen-
sation (OBMC) to suit variable block-size motion partitioning.
The motion vectors (MVs) for various partitions are formalized as
motion samples taken on an irregular grid. From this viewpoint,
determining OBMC weights to associate with these samples be-
comes an under-determined problem since a distinct solution has
to be sought for each prediction pixel. In this paper, we tackle this
problem by expressing the optimal weights in closed form based
on parametric signal assumptions. In particular, the computation
of this solution requires only the geometric relations between the
prediction pixel and its nearby block centers, leading to a generic
framework capable of reconstructing temporal predictors from
any irregularly sampled MVs. A modified implementation is also
proposed to address the MV location uncertainty and to reduce
computational complexity. Experimental results demonstrate that
our scheme performs better than similar previous works, and
when compared to the recently proposed Quadtree-based adap-
tive loop filter and enhanced adaptive interpolation filter, show a
comparable gain. Furthermore, the combination of it with either
of them gives a combined effect that is almost the sum of their
separate improvements.

Index Terms—Overlapped block motion compensation
(OBMC), parametric window design, variable block size motion
compensation (VBSMC), video coding.

I. Introduction

BLOCK-BASED motion compensation (BMC) has been
the most popular approach, in hybrid video coding

schemes, for removing temporal redundancy. Conceptually, it
uses one single motion vector (MV) as an estimate of the true
motion field for a block of pixels, in order to trade off the
accuracy of motion representation for less overhead. When
chosen to minimize the mean squared block matching error,
the MV is shown to approximate the true motion of the block
center [19], [23]. It then makes good sense to view the function
of BMC as a motion interpolator implementing a rectangular
filter function. Obviously, such a crude interpolator can easily
become problematic.

In the past, various algorithms have been proposed to
improve BMC. The most straightforward technique is variable

Manuscript received October 30, 2010; revised February 28, 2011; accepted
May 10, 2011. Date of publication May 31, 2011; date of current version
January 6, 2012. This work was supported by the NSC, Taiwan, under NSC
Project 100-2221-E-009-073. This paper was recommended by Associate
Editor W. Gao.

The authors are with the Department of Computer Science, National Chiao
Tung University, Hsinchu 30010, Taiwan (e-mail: ewchen@csie.nctu.edu.tw;
pawn@mail.si2lab.org).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2011.2158341

block-size motion compensation (VBSMC), which increases
motion sampling density in areas with complex motion to
compensate for the inefficiency of BMC. By contrast, control-
grid interpolation (CGI) [17] and overlapped block motion
compensation (OBMC) [16] use more sophisticated algorithms
to reconstruct the motion field without additional samples.
The former improves motion interpolation by employing a
triangular filter function, while the latter directly gives a
linear estimate of each pixel’s intensity based on predictors
derived from the current and nearby block MVs. Both are
able to alleviate blocking artifacts effectively, but in practice,
OBMC is preferred to CGI since the averaging of predictors
also helps to reduce quantization noise [20]. To address the
non-stationarity of the motion field, there are also hybrid
schemes, which provide various combinations of BMC, CGI,
and OBMC [6], [8], [9], [12]. However, they all require MVs
to be sampled on a regular grid, i.e., to be generated by fixed
block-size motion estimation.

Motivated by the preceding observations, we are led to seek
an optimized hybrid of VBSMC and OBMC, aiming to trade
better prediction for fewer MVs while retaining the flexibility
to adapt motion sampling structure according to variations
in image statistics. However, determining OBMC weights to
associate with MVs on an irregular grid poses a challenging
problem. This is because the variable block-size partitioning
yields spatially varying geometric relations between a predic-
tion pixel and its nearby block centers. In this case, solving for
the weights with the least-squares method would become an
under-determined problem since a distinct solution has to be
sought for each possible context. Clearly, there may be more
parameters to be estimated than there are data points.

This problem is not new. A similar situation occurred in
the development of H.263 [1]. At that time, it was resolved
by treating larger blocks as a collection of smaller blocks with
the same MV in each smaller block as in the larger aggregate
block and by applying a fixed window function to all MVs.
In an attempt to extend the notion to H.264/AVC, Wang et al.
[21] additionally proposed to weight more heavily those MVs
from smaller aggregate blocks, which they believed can more
reliably represent the motion of neighboring blocks, although
no justification was given. Both methods suffer from the same
problem that inner pixels in larger blocks are not properly
compensated. Essentially, the MVs utilized for OBMC of those
pixels are replicated from the same (aggregate) block MVs,
producing a net effect like BMC. A third method that has
recently been proposed is irregular-grid OBMC [6], which

1051-8215/$26.00 c© 2011 IEEE

114 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

circumvents this deficiency by an adaptive window support
that scales with local motion sampling density. It, however,
remains unclear how to choose a proper scaling factor for
each MV.

This paper departs from heuristic methods to approach
the problem from a theoretical perspective. We formalize the
notion of motion-compensated prediction (MCP) as a two-
stage process consisting of sparse motion sampling followed
by the reconstruction of temporal predictors. Within such a
framework, OBMC in its generalized form is seen to find
a linear minimum mean square error (LMMSE) estimate for
every pixel’s intensity based on motion-compensated signals
derived from MVs sampled at nearby block centers. This
viewpoint allows us to derive a parametric solution, termed
parametric overlapped block motion compensation (POBMC),
for determining the optimal weights in closed form. In doing
so, the signal models in [23] are adopted to describe the proba-
bilistic structures of the underlying intensity and motion fields.
One important result of our POBMC is that its parameters
include only the �2 distances between the locations of the
prediction pixel and the MVs involved, i.e., their geometric
relations are all that are needed to determine the weights. This
leads to a generic method of reconstructing temporal predictors
from any sparsely and irregularly sampled motion data.

Although our approach has some parallels with the other
parametric solution [19], the unique features that distinguish
this paper from it include the following.

1) Our focus is to adapt OBMC to suit variable block-size
motion partitioning, while [19] concentrates on adjusting
OBMC windows, based on the use of fixed block-
size partitioning, in response to variations in sequence
statistics.

2) We adopt an alternative signal model [23], which not
only better represents the reality but also gives a result
that is considerably more intuitive and tractable.

3) We address the uncertainty associated with a block MV’s
location by introducing a compensation term to reflect
its dispersion around the block center.

4) We propose a suboptimal yet computationally efficient
implementation, which need not solve the Wiener-Hopf
equation and thus eliminates the need to compute matrix
inverse.

In addition, we implement the proposed scheme with KTA
2.4r1 [11] and provide a performance comparison with the re-
cently proposed enhanced adaptive interpolation filter (EAIF)
[22] and Quadtree-based adaptive loop filter (QALF) [7]
together with an analysis on how they interact with each other.

In the common test conditions, our POBMC delivers better
rate-distortion (R-D) performance than both the H.263 OBMC
[1] and the parametric solution [19]. Relative to an H.264/AVC
anchor with extended macroblock (MB) size, it achieves 3.1%
(0.7–13.6%) BD-rate reductions, compared to 4.6% (0.5–
10.1%) and 7.2% (1.3–18.0%) with the single use of EAIF
and of QALF, respectively. Although POBMC has the least
gain among these filters, it can be combined efficiently with
either of the other two filters. The result is an improvement
that is almost the sum of their separate effects. In particular,
the combination of POBMC and QALF performs very close

to or better than that of EAIF and QALF, even in cases where
the single use of EAIF outperforms that of POBMC.

The rest of this paper is organized as follows. Section
II revisits the notion of MCP from a perspective based on
motion sampling and reconstruction. Section III presents in
detail the derivation of our parametric solutions. Section IV
examines their properties by contrasting theoretical predictions
with empirical data. Section V evaluates the compression
performance of POBMC from various aspects and provides
a runtime analysis. Section VI concludes this paper with
a summary of our observations and a list of future works.
Finally, the implementation details of POBMC are elaborated
on in the Appendix.

II. Interpretation of MCP as Motion Sampling and

Reconstruction

An insightful perspective on MCP is to view its process
as consisting of sparse motion sampling followed by the
reconstruction of temporal predictors. In this context, block-
based motion estimation acts as a motion sampler taking
samples at block centers while BMC interpolates, using the
nearest-neighbor rule, between motion samples to construct
the motion field. This interpretation facilitates a better under-
standing of various MCP schemes from a unified framework.
For example, if we take such a view, VBSMC is merely an
enhancement of BMC in motion sampling. The various MB
partitionings are assimilated to different sampling structures,
and choosing a specific block partitioning can be thought of as
determining a local sampling pattern. By a similar reasoning,
the difference between BMC and CGI is easily seen to be a
different choice of motion interpolator. Somewhat less intuitive
is OBMC, which does not directly reconstruct the motion field.
Nevertheless, it was shown in [20] that an optimal OBMC
window is also an optimal motion interpolation function, with
which CGI can achieve the same mean squared prediction
error as OBMC. This result furnishes another view of OBMC
from the standpoint of motion interpolation. As an illustration,
Fig. 1 contrasts graphically these techniques for the 1-D case.

With these ideas in mind, we cast the problem of combining
OBMC with variable block-size motion partitioning as a linear
estimate of a pixel’s intensity based on predictors derived from
motion samples taken on an irregular grid. The estimator will
have the form of an finite impulse response filter with spatially
varying coefficients due to the variations in local motion
sampling structure. Particularly, we shall first assume that all
motion samples are positioned exactly at block centers. Then,
the derivation will be repeated to consider the uncertainty of
their locations owing to the use of variable block-size motion
search. Developing these methods is the main contribution of
this paper and we shall in the following discuss each of them
in detail.

III. POBMC

A. Review of OBMC

This section briefly reviews the basics of OBMC, to aid the
understanding of our POBMC. In words, OBMC is to find a

CHEN et al.: PARAMETRIC OBMC FOR PIXEL-ADAPTIVE TEMPORAL PREDICTION ON IRREGULAR MOTION SAMPLING GRIDS 115

Fig. 1. Various MCP schemes in the 1-D case. (a) MCP based on the true motion field. (b) BMC. (c) CGI. (d) OBMC.

LMMSE estimate of a pixel’s intensity value Ik(s) based on
motion-compensated signals {Ik−1(s + v(si))}Li=1 derived from
its nearby block MVs {v(si)}Li=1. From an estimation-theoretic
perspective, these MVs are plausible hypotheses for its true
motion, and to maximize coding efficiency, their weights
w = [w1, w2, . . . , wL]T are chosen to minimize the mean
squared prediction error subject to the unit-gain constraint [16]
as follows:

w∗ = arg min
w

ξ(w) s.t.
L∑

i=1

wi = 1 (1)

where

ξ(w) = E

⎧⎨⎩
(

Ik(s) −
L∑

i=1

wiIk−1(s + v(si))

)2
⎫⎬⎭ .

Applying the Lagrangian method to (1) then gives

w∗ = R−1

[
P − U

(
UT R−1P − 1

UT R−1U

)]
(2)

where [R]ij = E[Ik−1(s + v(si))Ik−1(s + v(sj))] and [P]j =
E[Ik(s)Ik−1(s + v(sj))] stand, respectively, for auto-correlation
and cross-correlation matrices, and U is a column vector
with all elements equal to one [16]. Given that the un-
derlying intensity and motion fields are stationary and that
motion samples are taken on a square lattice (such is the case
when an image is divided into a group of square blocks for
motion search), the optimal weights w∗ for pixel s depend
solely on its relative position within a block. They are often
obtained using the least-squares method due to lack of knowl-
edge of the probabilistic models of real data.

The concept of OBMC can be generalized to the case where
motion sampling structure is irregular. The challenge, however,
becomes how to compute for each pixel its optimal weights
to associate with nearby MVs, given that both auto-correlation
and cross-correlation functions are spatially varying. The least-
squares solution, although feasible in theory, is impractical
because the storage of weighting coefficients optimized for
different contexts demands huge memory requirements. To
tackle this problem, we resort to a parametric solution.

B. Signal Models

POBMC aims to give a closed-form formula for the optimal
weights. To do so, it usually needs to assume signal models
for the intensity and motion fields. The choice of the models
often involves a tradeoff between accuracy, simplicity, and
tractability, and can sometimes be quite subtle. For instance,
Tao et al. [19] model the auto-correlation functions of the
intensity and motion fields using quadratic and exponential
functions, respectively. These models are so chosen that R and
P can be expressed in closed form. In general, different models
have their merits and faults, and what model best represents
reality is normally justified by empirical simulations.

In this paper, we aim to give a direct estimate of the optimal
weights w∗. This is accomplished by adopting the motion
model proposed in [23], which assumes that the difference
between the true motion of any two pixels, e.g., s1 and s2, has
a normal distribution of the form

vx(s1) − vx(s2) or vy(s1) − vy(s2) ∼ N (0, αr2(s1, s2)) (3)

where α is a positive number indicating the degree of mo-
tion randomness in the horizontal or vertical direction,1 and
r(s1, s2) is the �2 distance (measured in the unit of pixel)
between s1 and s2. Caution, however, must be exercised
when using (3) because it is an incomplete specification. The
variance αr2(s1, s2) must be bounded from above for the model
to be proper. To see this, let us assume the motion field is
stationary and symmetric. It then follows from (3) that

E{vx(s1)vx(s2)} = E{vy(s1)vy(s2)} = σ2
m + μ2

m − αr2(s1, s2)

2
(4)

where μm and σ2
m are the mean and the variance of the motion

field, respectively. Using the Cauchy-Schwarz inequality, we
have 4σ2

m ≥ αr2(s1, s2) ≥ 0. The lower bound is obvious,
but the upper bound deserves more attention. According to
(4), it implies that the MVs of two far-away pixels are
negatively correlated. A tighter bound that agrees more with
the general observation is 2σ2

m, which will make them become
uncorrelated. We can equivalently define a clipper function for

1The smaller α value suggests the motion field has higher spatial correlation.

116 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

r(s1, s2) to have the property r̂(s1, s2) = Clip(0, r(s1, s2), τ),
where the clipping threshold τ =

√
2σ2

m/α. Hereafter, we shall
omit the tedious repetition of this constraint by using r̂(s1, s2)
in place of r(s1, s2).

C. Optimal Weights in Parametric Form

With the signal model in (3), we next proceed to determine
the optimal weights w∗ using calculus. To begin with, we
rewrite, by noting that

∑L
i=1 wi = 1, the mean squared

prediction error ξ(w) in (1) as

ξ(w) = E

⎧⎨⎩
(

L∑
i=1

wid(s; v(si))

)2
⎫⎬⎭ (5)

where d(s; v(si)) = Ik(s) − Ik−1(s + v(si)) denotes the residual
signal when Ik(s) is predicted from the motion-compensated
signal Ik−1(s + v(si)) using the MV v(si) for block i. Equa-
tion (5) can be written more compactly in matrix notation as

ξ(w) = wT E{ddT }w = wT Dw (6)

where d = [d(s; v(s1)),d(s; v(s2)), . . . ,d(s; v(sL))]T .
To continue, we borrow a result in [23], which shows that

if (3) is valid, then E{d2(s; v(si)} has a closed-form formula
given by

E{d2(s; v(si)} = E{(Ik−1(s + v(s)) − Ik−1(s + v(si)))
2}

= ε̂r2(s, si) (7)

where ε is a constant indicating the joint randomness of
the motion and intensity fields, Ik(s) = Ik−1(s + v(s)) with
v(s) denoting the true motion of pixel s, and the block MV
v(si) is approximated as the motion associated with the block
center si. What remain to be determined in D are those off-
diagonal entries, i.e., E{d(s; v(si)d(s; v(sj)}, i �= j; in fact, their
derivations are merely an application of (7). With a little bit
of algebra,2 we obtain

E{d(s; v(si)d(s; v(sj)}
= E{(Ik(s)−Ik−1(s + v(si)))(Ik(s)−Ik−1(s + v(sj)))}
=

1

2
E{(Ik(s)−Ik−1(s + v(si))

2}

+
1

2
E{(Ik(s)−Ik−1(s + v(sj))2} (8)

−1

2
E{(Ik(s+v(si))−Ik−1(s + v(sj))2}

=
1

2
ε
(
r̂2(s, si) + r̂2(s, sj) − r̂2(si, sj)

)
.

The astute reader may feel a sense of misgiving about the
approximation E{(Ik(s+v(si))−Ik−1(s + v(sj))2} ≈ ε̂r2(si, sj),
as it does not seem to be a direct extension of (7). The subtle
difference is the replacement of v(s) with v(si). However,
assuming that v(si) represents the true motion of the block
center si, its proof can be carried out in the same manner as
for (7). Another testament to its mathematical correctness is
that (9) includes (7) as a special case where si = sj .

2(a − b)(a − c) = 1
2 (a − b)2 + 1

2 (a − c)2 − 1
2 (b − c)2.

Fig. 2. Distribution of a block MV’s location when the block size used
for motion search is varied. (a) 16 × 16. (b) 32 × 32. The MV location
is approximated by the centroid position of the first ten pixels, in a block,
having relatively smaller prediction error.

Returning to (6), we are now ready to find the optimal
weights. Since ξ(w) is to be minimized subject to

∑L
i=1 wi = 1,

the solution space has only a dimension of L− 1. To simplify
the computation, we define a reduced-dimension weight vector
w̃ = [w̃1, w̃2, . . . , w̃L−1]T , the elements of which are free
variables and are related to the weight vector w by

w = e − Mw̃ (9)

where

e= [0, 0, . . . , 1]T
L×1

and

M =

[−I
UT

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 · · · 0
0 −1 0 · · · 0
0 0 −1 · · · 0
...

...
...

. . .
...

0 0 0 · · · −1
1 1 1 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
L×(L−1)

.

When spelled out, (9) simply states that wi = w̃i, 1 ≤ i ≤ L−1
and wL = 1 −∑L−1

i=1 w̃i. Substituting (9) into (6), setting the
gradient of ξ with respect to w̃ to 0, and solving the resulting
system equations then yields

w̃∗ = (MTDM)
−1

MTDe. (10)

The result of w̃∗ immediately gives that of w∗ by (9) as
follows:

w∗=
(

I − M(MTDM)
−1

MTD
)

e. (11)

Inspection of (11) reveals that the optimal weights depend
solely on the distances between the prediction pixel s and
the block centers involved {si}Li=1. The ε term is absent in the
final result. This remarkable property allows MVs sampled
on a possibly irregular grid to be incorporated for OBMC,
providing a reconstruction method applicable to any sampling
structures.

D. Optimal Weights in a Special Case

An interesting special case occurs by considering D as a di-
agonal matrix. In this case, the prediction errors {d(s; v(si)}Li=1

CHEN et al.: PARAMETRIC OBMC FOR PIXEL-ADAPTIVE TEMPORAL PREDICTION ON IRREGULAR MOTION SAMPLING GRIDS 117

are uncorrelated with each other, i.e., E{d(s; v(si)d(s; v(sj)} =
0, ∀i �= j, and w∗ becomes

w∗ =

(
L∑

i=1

1

r̂2(s, si)

)−1 [
1

r̂2(s, s1)
,

1

r̂2(s, s2)
, . . . ,

1

r̂2(s, sL)

]T

.

(12)

The proof of this result requires some work but involves
only straightforward computations. Equation (12) is a great
simplification of (11); the optimal weights w∗

i are simply the
normalized inverses of the corresponding squared distances
between s and si. It has the interpretation that prior to
normalization, the contribution of each MV v(si) to estimating
its nearby pixel intensities is a function of pixel s that decays
quadratically with r̂(s, si). If we take such a view, other
functions can be substituted for 1/r̂2(s, si). For example, it may
be just as well to adopt the raised cosine or bilinear function
of various supports, or to change the power of 1/r̂(s, si).
As an afterthought, each of these functions may correspond
to making some specific assumptions about the motion and
intensity fields. Due to its simplicity, (12) will be included in
the following sections as an alternative to (11).

E. MV Location Uncertainty

In the preceding derivation, we have always assumed that
a block MV represents the true motion of the block center.
However, this is an approximation; in fact, it may correspond
to the motion of any pixel around the center. To see this,
consider a small group of pixel locations in a block where
prediction errors are relatively smaller. We think of the block
MV as the motion connected to their centroid. Although not
precise, this expedient provides a rough estimate of the MV
location without having to acquire the true motion field. Fig. 2
presents two plots showing the centroid distributions when the
block size used for motion search is varied. Two observations
are immediate: 1) the means of both distributions are close to
the block center, which justifies the widely accepted approx-
imation, and 2) the variance is nonzero and increases with
the increasing block size, which suggests that the locations of
si, sj in (7) and (8) should be modeled probabilistically.

We now generalize both equations to consider their random
effects. To conform with our previous notation, we denote by
s̃i = si +ni (respectively, s̃j = sj +nj) their true locations, which
are characterized by an independent, additive noise vector ni

(respectively, nj) with mean zero and covariance matrix as
follows:

Knini
=

⎡⎣ δ
(x)
i ρi

√
δ

(x)
i δ

(y)
i

ρi

√
δ

(x)
i δ

(y)
i δ

(y)
i

⎤⎦ .

Substituting s̃i for si in (7) and applying the law of iterated
expectations, we get

E{d2(s; v(̃si)}
= E

{
E{d2(s; v(̃si))|̃si}

}
= εE

{
r̂2(s, s̃i)

}
	 εE

{
(s(x)−s(x)

i − n(x)
i)2 + (s(y)−s(y)

i − n(y)
i)2

}
(13)

	 ε̂r2(s, si) + ε(δ(x)
i + δ

(y)
i)

where the superscripts x, y indicate the two components of a
point or a vector. In (13), the locations of pixel s and the block
center si are treated as known variables because we know
exactly what MVs will be utilized for the motion compensation
of pixel s. As such, they are deterministic quantities and the
expectation in the penultimate approximation is taken with
respect to ni only. In the course, we have tacitly ignored the
clipping effect on r(s,̃si), which however is crucial for our
signal models to be proper (Section III-B). A way out of this
difficulty is to assume that si is close enough to s so that the
result in (13) is a good approximation. This assumption can
be justified to some extent since in practical implementation
of our schemes, we use only those neighboring MVs that are
closer to a pixel for its motion compensation. From (13), the
consequence of MV location uncertainty is an increase in
the mean squared prediction error. Of particular interest is
that the penalty depends only on the variances of ni (or
equivalently, the variances of s̃i) regardless of its distribution.

A similar calculation leads us to

E{d(s; v(̃si)d(s; v(̃sj)}
=

1

2
εE

{(
r̂2(s, s̃i) + r̂2(s, s̃j) − r̂2(̃si, s̃j)

)}
	 1

2
ε
(
r̂2(s, si) + δ

(x)
i + δ

(y)
i

)
+

1

2
ε
(
r̂2(s, sj) + δ

(x)
j + δ

(y)
j

)
− 1

2
ε
(
r̂2(si, sj) + δ

(x)
i + δ

(y)
i + δ

(x)
j + δ

(y)
j

)
=

1

2
ε
(
r̂2(s, si) + r̂2(s, sj) − r̂2(si, sj)

)
where ni and nj are assumed to be independent. As shown,
the variance terms in (14) cancel each other out, leading to the
same result as in (8). Simply substituting (13) into the matrix D
in (11) gives the modified optimal weights with consideration
of MV location uncertainty. These results also apply to the
case where D is a diagonal matrix.

In concluding this section, we want to point out that the
proposed scheme has two parameters to be determined: the
clipping threshold τ and the degree of MV location uncertainty
δ = δ

(x)
i + δ

(y)
i . The latter actually denotes a set of parameters,

one for each distinct block size. As will be discussed later,
they can be determined by offline training.

IV. Analysis of Window Functions

While (11) characterizes the contributions of a set of MVs
to estimating the intensity of a pixel, an equivalent yet more in-
sightful perspective is to see the window function of each MV,
which specifies its weights used to estimate pixel intensities
in a neighborhood [16]. In this section, we shall gain further
insights into the proposed solutions from this viewpoint. To
ease comprehension, we first consider the simpler case of
fixed block-size motion partitioning, followed by the more
sophisticated one involving variable block-size partitioning.

A. Theoretical Window Functions

Fig. 3(a)–(c) plots the window functions for various clipping
threshold values τ’s. Their counterparts in Fig. 3(d)–(f) shows
the results when the off-diagonal entries of D are set zero. In

118 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

Fig. 3. Effect of the clipping threshold value on the shape of the proposed parametric windows with (a)–(c) non-diagonal and (d)–(f) diagonal D matrices.
From left to right, the clipping threshold values are 10, 15, 35, respectively.

Fig. 4. Window functions along the slide of Y = 16 based on a (a) non-
diagonal or (b) diagonal D matrix.

the former case, we observe that the window shape inflates
with the increasing τ, and eventually converges to a bilinear
function. This trend of inflation continues in the latter case
although the change in the window shape is not that radical,
especially when the value of τ becomes high enough. These
phenomena can be explained by noting that a higher clipping
threshold implies a stronger correlation between the motion of
different pixels (smaller α) or a larger motion variance (larger
σ2

m). Under these circumstances, it is intuitive to expect that
the influence of a block MV will extend to more pixels.

To gain a better appreciation of how the window shape
evolves, Fig. 4 further displays the cross sections of these
windows along the slide Y = 16. There are several points to be
noted here. First, the weights around the block center (X = 16)
are seen to be smaller than 1. This result is a manifestation
of MV location uncertainty. As expected, their values tend to
approach 1 if we have δ = δ

(x)
i +δ

(y)
i = 0 [see (13)]. Some other

interesting observations follow from comparing the window
values at X = 16.5 (current block center) and at X = 0.5 or
32.5 (neighboring block centers). The windows with a diagonal
D resemble normal functions in shape, and exhibit an upward
trend in magnitude near the block center (respectively, a
downward trend at the neighboring block centers) as the value
of τ increases. In the general case, however, the behavior is
more intricate: the peak value escalates first and then declines.

But, both cases have one thing in common: their windows
converge to a function dependent only on δ when τ is large
enough.

B. Comparison with Empirical Window Functions

The different results above lead us to wonder which model is
more reasonable and how much the penalty is for keeping only
the diagonal entries of D. In this section, we provide empirical
justifications by contrasting the parametric windows with those
obtained by the least-squares method. Results of [19] are
also included for comparison. Particularly, to demonstrate the
best achievable performance of our parametric schemes, both
the values of τ and δ are searched exhaustively based on
minimizing the mean squared prediction error, and so is the
parameter ρm in [19].3

From the results presented in Fig. 5(a), we see that the
proposed windows with a non-diagonal D match closely the
least-squares ones. The other windows, although showing
similar magnitudes at block boundaries (X = 8.5 or 24.5), have
much higher weights near the block center (X = 16.5). Despite
their distinct appearances, the penalties in mean-squared error
(MSE) are somehow surprisingly not as high as expected.
We find that there are actually several window functions (of
different shapes) performing almost equally well. To see this,
Fig. 5(b) plots the resulting MSEs as functions of τ and
δ for the case of non-diagonal D. The best settings, which
yield similar MSEs as achieved by the optimal windows, are
labeled “minimum.” From the figure, these settings roughly
have τ = 15 ∼ 20 and δ = 100 ∼ 200; however, many
other choices deliver similar performance. For example, all
the settings in Fig. 4, except setting B, are among the best
performing ones even though their window shapes differ
noticeably. In particular, it seems beneficial (in terms of MSE)
to have a high clipping threshold. This may be attributed to the

3The parametric solution in [19] originally has four parameters to be
determined. But, a little neat algebra shows that the resulting window is
dependent on only the correlation coefficient of the motion field, ρm.

CHEN et al.: PARAMETRIC OBMC FOR PIXEL-ADAPTIVE TEMPORAL PREDICTION ON IRREGULAR MOTION SAMPLING GRIDS 119

Fig. 5. Comparisons of window functions and their MSE surfaces. (a) Parametric windows versus optimal least-squares windows. The MSE surfaces of the
proposed parametric solution with a (b) non-diagonal or (c) diagonal D matrix.

incorporation of an R-D based motion search criterion, which
imposes a motion smoothness constraint and thus increases the
motion correlation. Notice that the MSE stops decreasing when
τ exceeds a certain value because, as mentioned previously,
the window converges to a function dependent on δ. From
Fig. 5(b), one may doubt the necessity of using parametric
windows, since the bilinear function shown in Fig. 3(c) seems
to provide sufficiently good performance. While this is indeed
the case for fixed block-size motion partitioning, it is not true
for the variable block-size case. As will be seen in the next
section, difficulties arise when a fixed window is to be applied
to MVs sampled on an irregular grid. In addition, it is worth
noting that this bilinear function differs from the usual one
[16] in that its peak value at the block center is much smaller
than 1, which has to do with the MV location uncertainty. A
side experiment shows that the latter yields larger MSEs due to
the ignorance of this uncertainty. Finally, some sequences are
seen to be more sensitive to parameter selection than others.

Fig. 5(c) further shows the results for the case of diagonal
D. Comparing with Fig. 5(b), there is an obvious distinction
in the region with τ ≥ 15, where the MSE first decreases
slightly along the δ-axis and then increases rapidly (in some
cases) with the increasing δ. The “minimum” points thus have
δ = 10 ∼ 50. Analogous to the general case, there are also
more than one window function showing similar performance
to the least-squares solutions; examples are settings B and C in
Fig. 4. Interestingly, what are improper settings in the general

Fig. 6. Irregular motion sampling grid due to the use of variable block-size
motion partitioning.

case now become proper ones. This is because the meanings of
both parameters change when we twist D. It is for the same
reason that the estimation of their values becomes difficult.
Fortunately, their optimal values are found empirically to be
less sequence-dependent, even if not truly independent, and
can be obtained offline. According to the MSE results in
Fig. 5(a), ignoring the off-diagonal entries of D does not seem
to have a significant impact on prediction performance, if δ and
τ are chosen properly. Because of its simplicity and fairly good
performance, we shall hereafter adopt (12) as our parametric
solution.

C. Window Functions on Irregular Sampling Grids

The discussion so far has been restricted to window func-
tions for regular motion sampling structures. We now turn
our attention to irregular ones, which could result from an

120 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

application of variable block-size motion partitioning. One
example of such a structure is given in Fig. 6.

Fig. 7(a) and (b) plots the window functions associated with
those MVs in the shaded area for the cases of non-diagonal
and diagonal D, respectively. Some of them are displayed
separately for close scrutiny. We see that these functions may
not be symmetric, and their shapes depend highly on the local
sampling pattern. An interesting observation is that windows in
areas with a higher motion sampling density (i.e., in MBs with
more partitions) are less concentrated; this implies a stronger
averaging of the relevant MVs. In theory, it seems reasonable
as these MVs, spatially closer to each other, are assumed to
be highly correlated, but in practice, this may not always be
the case. Sometimes a MB is segmented into smaller partitions
because it spans across multiple objects with different motion.
We thus propose to adjust the value of δ in a MB-adaptive
manner. Recall that it indicates the dispersion of a MV’s
location around the block center; generally, MVs for smaller
blocks should have a smaller δ value. After such adjustment,
the results, as illustrated in Fig. 7(c), are more centralized
windows in high density areas, which help to mitigate the
over-blurring of block boundaries. In particular, the tuning of
δ need not be fine-granular; an adaptive selection between two
distinct levels is sufficient (Section V).

Finally, the results based on the window function in H.263
are shown in Fig. 7(d). Recall that in H.263, a fixed window
function is used for OBMC. To apply the same window to all
MVs, the issue of variable block-size motion partitioning is
resolved by treating larger blocks as a collection of smaller
blocks with the same MV in each smaller block as in the
larger aggregate block. Hence, in computing the effective
weighting factor of a MV at some specific pixel, we add
up the contributions of all its replicas. From the figure, the
window functions for larger blocks have a value equal or
close to 1 around the block centers, which implies their inner
pixels are not properly compensated by OBMC. This result
is a direct consequence of the MV replication mechanism.
As will be seen next, this approach leads to poor compression
performance; in fact, applying any fixed window with the same
approach will suffer from a similar problem.

V. Experimental Results

The proposed POBMC is analyzed by a series of tests: the
first test compares its compression performance with that of
similar previous works, including the OBMC in H.263 [1]
and the parametric solution in [19]; the second test contrasts
POBMC with the two in-loop filters, EAIF [22] and QALF
[7], in KTA [11]; and the third test studies how these in-loop
filters interact with each other in a complete codec. Finally,
we conclude this section with a software runtime analysis,
to offer a rough indication of its complexity characteristics.
All OBMC schemes are implemented in KTA 2.4r1 [11],
with details given in the Appendix. All tests, unless otherwise
stated, use the configurations shown in Table I. The results are
obtained by encoding the first 100 frames of standard JCT-VC
test sequences [2]. Those for POBMC are produced using (12)
with τ = 32.

TABLE I

Encoder Configurations

Configuration Setting
GoP Structure IPPP... IBBB... Hierarchical B
Intra period 0 0 24
QPP and QPB QPI+1 QPI+1 QPI+1/2/3/4
QPI 22, 27, 32, 37
CABAC On
Reference frames 4 (P), 2 (B L0, B L1)
8 × 8 transform On
De-blocking On
RDO On
MV range ±128
Motion search 3 (EPZS)
Sub-pixel MC On
Adaptive rounding Off
Motion comp. block sizes 8 × 8 to 32 × 32

A. R-D Performance Analyses

1) Comparison of OBMC Algorithms: Table II compares
the compression performance of different OBMC schemes
by showing their BD-rate savings [4] relative to an anchor
encoding, which conforms to H.264/AVC High Profile with
inclusion of extended MB size (up to 32 × 32). In particular,
they all involve an adaptive switching between BMC and one
or more OBMC options. The subscript H-I indicates the use of
only one OBMC option. For example, POBMCH-I denotes the
hybrid of BMC and POBMC with δ = 16, and POBMCH-II

includes one more option with δ = 0. To signal the choice
of MCP schemes, a flag is sent for each non-skip super MB
(a MB of size 32 × 32). If a super MB is split into partitions
smaller than or equal to 16 × 16, the flag will be transmitted
at the 16 × 16 block level. For POBMCH-II, one additional bit
is used to signal the δ value.

It is observed from Table II that BilinearH-I performs sim-
ilarly to 263H-I. Essentially, they both use a fixed window
function and thus suffer from the same problem of having to
use the MV replication mechanism to address variable block-
size partitioning. As expected, adapting window functions
on the fly is beneficial, and the benefits of our parametric
solutions are more obvious. In the IPPP case, POBMCH-I

has an average BD-rate saving of 2.9%, with a minimum
of 0.9% and a maximum of 9.6%. Adding one more OBMC
option with δ = 0 (POBMCH-II) further improves performance
slightly, giving, on average, 0.1–0.6% extra gains. These
results provide only a lower bound on what is achievable,
because the creation of POBMC predictors currently uses
motion parameters4 optimized for BMC. It is for the same
reason that the gains of POBMC (and similarly, of the other
OBMC schemes) over the anchor decrease radically when the
IBBB or Hierarchical B structure is in use. Note that both bi-
prediction and POBMC are multi-hypothesis MCP techniques,
and we are comparing a well-optimized bi-prediction with
a suboptimal POBMC. Another cause of this performance
decline is the increased use of the SKIP and Direct modes,

4Here, the motion parameters include the partition choice, the prediction
type (forward-prediction, backward-prediction, or bi-prediction) for each
partition, as well as the corresponding MV(s).

CHEN et al.: PARAMETRIC OBMC FOR PIXEL-ADAPTIVE TEMPORAL PREDICTION ON IRREGULAR MOTION SAMPLING GRIDS 121

Fig. 7. Window functions overlaid on the irregular motion sampling grid shown in Fig. 6. The proposed parametric windows with a (a) non-diagonal D
matrix (Clip=17, δ = 121), (b) diagonal D matrix (Clip = 19, δ = 25), (c) diagonal D matrix plus a MB-adaptive adjustment of δ (Clip = 19, δ = 16 for 8 × 8
MVs and δ = 36, otherwise), and (d) H.263 windows.

TABLE II

BD-Rate Saving Comparison of Various OBMC Schemes

Category Non-Parametric Parametric
Scheme 263H-I Bilinear∗H-I TaoH-I POBMCH-I POBMCH-II POBMCH-II+MD
GoP IPP IBB HB IPP IBB HB IPP IBB HB IPP IBB HB IPP IBB HB IPP IBB HB
HD S03 0.2 0.8 0.4 0.4 0.9 0.4 1.0 1.4 0.6 5.0 2.3 1.2 5.1 2.7 1.7 7.2 2.8 1.8

S04 0.3 0.3 0.3 0.3 0.3 0.4 0.7 0.5 0.5 0.9 0.9 1.2 1.4 1.1 1.9 2.6 1.4 2.0
S05 0.4 0.7 0.2 0.5 0.7 0.3 1.7 1.4 0.5 3.3 2.3 1.0 3.6 2.6 1.6 5.9 2.8 1.6
S06 2.0 0.7 0.3 2.1 0.8 0.2 2.3 1.2 0.4 3.5 2.1 1.1 3.6 2.5 1.6 5.7 2.9 1.6
S07 2.9 1.1 0.9 3.1 1.0 0.9 7.8 1.9 1.4 9.6 3.1 3.2 10.2 3.7 3.9 13.6 4.0 4.2

Average 1.2 0.7 0.4 1.3 0.7 0.4 2.7 1.3 0.7 4.3 2.1 1.5 4.8 2.5 2.1 7.0 2.8 2.2
WVGA S08 −0.2 −0.1 −0.2 −0.1 −0.2 0.2 1.0 0.4 0.4 1.8 1.0 0.7 1.9 1.5 1.1 3.4 1.9 1.4

S09 0.3 0.4 0.3 0.4 0.3 0.3 1.4 0.8 0.5 2.6 1.3 1.1 2.9 1.6 1.3 4.6 1.8 1.4
S10 0.0 0.2 −0.1 0.2 0.3 0.2 1.3 0.4 0.4 1.4 0.8 0.7 1.8 0.9 0.9 3.5 0.9 1.0
S11 0.2 0.6 0.3 0.3 0.7 0.3 1.5 0.8 0.4 2.0 1.4 1.0 2.4 1.6 1.4 4.0 1.6 1.4

Average 0.1 0.3 0.1 0.2 0.3 0.3 1.3 0.6 0.4 2.0 1.1 0.9 2.3 1.4 1.2 3.9 1.6 1.3
QWVGA S12 0.1 0.3 0.2 0.1 0.4 0.2 1.5 0.5 0.4 2.2 1.1 0.6 2.4 1.6 0.8 4.0 1.8 0.9

S13 0.8 0.8 0.4 0.9 0.7 0.4 2.1 1.4 0.6 3.3 2.3 1.2 3.8 2.5 1.2 5.9 3.0 1.2
S14 −0.1 −0.1 −0.2 0.1 0.2 −0.1 1.0 0.4 0.3 1.4 0.9 0.7 1.7 1.3 0.9 3.0 1.5 1.1
S15 0.1 0.2 0.2 0.1 −0.1 0.2 1.1 0.5 0.4 1.1 0.9 0.6 1.4 1.3 0.7 2.7 1.7 0.7

Average 0.2 0.3 0.2 0.3 0.3 0.2 1.4 0.7 0.4 2.0 1.3 0.8 2.3 1.7 0.9 3.9 2.0 1.0
720p S16 1.0 0.3 0.6 1.1 0.2 0.7 1.4 0.5 0.8 2.1 1.0 1.5 2.4 1.5 2.4 4.1 1.8 2.5

S17 1.6 1.8 0.8 1.5 2.0 0.7 2.2 3.3 1.2 4.1 5.5 2.2 4.7 5.8 2.6 7.7 6.2 2.6
S18 1.0 0.5 0.5 1.2 0.4 0.6 1.5 0.8 0.8 2.9 1.4 1.5 3.5 1.7 1.8 5.3 1.8 2.0

Average 1.2 0.8 0.6 1.3 0.8 0.7 1.7 1.5 0.9 3.0 2.7 1.7 3.5 3.0 2.3 5.7 3.3 2.4
Overall 1.1 0.6 0.4 1.2 0.6 0.4 1.9 1.0 0.6 2.9 1.8 1.2 3.3 2.1 1.6 5.2 2.4 1.7
∗The bilinear window function shown in Fig. 3(c) is used.
Positive values mean bitrate savings, whereas negative values mean bitrate increments.

especially in the Hierarchical B sequence. In those modes,
POBMC is not functioning. Even so, POBMCH-II still yields
0.9–5.8% and 0.7–3.9% BD-rate savings in the IBBB and
Hierarchical B sequences, respectively.

The obvious inefficiency of POBMC can be improved
by optimizing motion parameters. The rightmost column
(POBMCH-II+MD) of Table II presents the results when par-
tition choices (and only partition choices) are additionally
adapted for POBMC at a higher computational cost (Ap-
pendix). As can be seen, the performance improves further
in the IPPP case, adding up to an average saving of 5.2%,
whereas the improvements are much smaller in the remaining
cases. To see why, Fig. 8 contrasts the mode distributions

before and after this optimization, where the percentage
of each mode indicates its average spatial coverage in a
frame, i.e., the number of pixels coded by that particular
mode. It is observed that despite the use of suboptimal
motion parameters, POBMC is still more efficient than single-
hypothesis MCP. It thus tends to favor the use of larger
partitions, thereby reducing the overhead for signaling motion
parameters. However, the impact of this suboptimality can
be such that the superiority of POBMC over bi-prediction
becomes modest. This explains why POBMC is enabled less
frequently in the IBBB or Hierarchical B sequence and why
the increase in the use of larger partitions is not as signif-
icant as in the former case. Nevertheless, it is expected to

122 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

Fig. 8. Mode distribution comparison of POBMCH-II and POBMCH-II+MD. (a) QP22, S03 (Kimono). (b) QP22, S13 (BQSquare).

TABLE III

Comparison of In-Loop Prediction Filters

Filter Function Predictor Formulation Filter Optimization

POBMC Motion uncertainty Pk(s) =
∑

i∈I1
wi(s)I ′

k−1(s + v(si)) E
{

(Ik(s) − Pk(s))2
}

EAIF Aliasing Pk(s) =
∑

i∈I2
wi(v(sc))I ′

k−1(s + v̂(sc) + di)
∑

s(Ik(s) − Pk(s))2

QALF Quantization noise Pk−1(s) =
∑

i∈I3
wiI

′
k−1(s + di)

∑
s(Ik−1(s) − Pk−1(s))2

I ′
k−1 : reference frame with coding noise.

TABLE IV

BD-Rate Saving Comparison of Various In-Loop Filters

Scheme POBMCH-II+MD EAIF QALF
GoP IPP IBB HB IPP IBB HB IPP IBB HB
HD S03 7.2 2.8 1.8 9.8 5.6 2.9 12.8 9.3 9.1

S04 2.6 1.4 2.0 2.6 2.0 2.2 2.8 3.2 4.4
S05 5.9 2.8 1.6 3.2 2.1 2.8 5.8 4.4 5.7
S06 5.7 2.9 1.6 7.2 4.3 3.5 8.9 6.3 6.0
S07 13.6 4.0 4.2 9.3 8.7 7.4 10.3 15.0 11.7

Average 7.0 2.8 2.2 6.4 4.5 3.8 8.1 7.6 7.4
WVGA S08 3.4 1.9 1.4 6.2 8.1 3.9 10.7 11.1 7.9

S09 4.6 1.8 1.4 4.0 3.4 2.3 4.7 3.8 3.2
S10 3.5 0.9 1.0 4.5 2.6 3.3 5.2 7.9 9.1
S11 4.0 1.6 1.4 1.9 1.5 1.1 2.2 2.5 2.4

Average 3.9 1.6 1.3 4.2 3.9 2.6 5.7 6.3 5.7
QWVGA S12 4.0 1.8 0.9 3.7 2.2 2.4 5.3 3.2 3.5

S13 5.9 3.0 1.2 8.8 8.0 7.5 9.1 15.0 18.0
S14 3.0 1.5 1.1 2.0 1.7 1.4 2.8 3.6 4.1
S15 2.7 1.7 0.7 0.5 0.5 0.5 1.8 1.3 1.9

Average 3.9 2.0 1.0 3.8 3.1 3.0 4.7 5.8 6.9
720p S16 4.1 1.8 2.5 7.1 4.7 6.3 12.4 8.1 8.2

S17 7.7 6.2 2.6 8.4 10.1 7.6 11.7 13.0 10.7
S18 5.3 1.8 2.0 8.4 4.5 6.6 10.5 6.6 7.6

Average 5.7 3.3 2.4 8.0 6.4 6.9 11.5 9.2 8.8
Overall 5.2 2.4 1.7 5.5 4.4 3.9 7.3 7.1 7.1

CHEN et al.: PARAMETRIC OBMC FOR PIXEL-ADAPTIVE TEMPORAL PREDICTION ON IRREGULAR MOTION SAMPLING GRIDS 123

perform better if the MVs and prediction directions are further
optimized.

2) Comparison of In-Loop Filters and the Combined
Effects: Having compared the compression performance of
various OBMC schemes, we now proceed to show how
POBMC performs relative to EAIF and QALF. We begin by
contrasting the functions, implementations, and optimization
criteria of these filters in Table III. As can be seen, they all
form a predictor (at every pixel position) from a weighted
average of the reference samples, using the Wiener or least-
squares criterion. However, what samples are involved depends
on their main functions. For example, to address motion
uncertainty, POBMC takes in those pointed to by the current
and neighboring block MVs, I ′

k−1(s+v(si)), some of which may
be at sub-pixel positions. To generate sub-pixel samples, EAIF
interpolates between adjacent integer samples, with a filter
support lying mainly around s+v̂(sc), where v̂(sc) is the current
MV in integer precision. The small deviation di (in units of
integer samples) from s+v̂(sc) partly helps to mitigate the prob-
lem of motion uncertainty. In complete analogy with EAIF,
QALF also linearly combines nearby integer samples, but for
a purpose of smoothing out quantization noise present in the
reference frame. The filtered image Pk−1(s), when used for
MCP, yields a form similar to that of EAIF: Pk−1(s+v̂(sc)) =∑

i∈I3
wiI

′
k−1(s + v̂(sc) + di). While averaging the reference

samples, these filters all reduce noise to some extent. Their
functions overlap, but each has its own emphasis. As a result,
they possess very different filter characteristics: POBMC has
a pixel-adaptive filter function, whereas that of EAIF and that
of QALF are sub-pixel-dependent and fixed,5 respectively.

Table IV compares the BD-rate savings of POBMCH-II+MD,
EAIF, and QALF. In the IPPP case, POBMC and EAIF offer
a nearly identical average BD-rate saving (∼5.3%), although
the results in individual test sequences are highly variable. The
gain of QALF, by contrast, is about 2% higher. In particular,
they all perform better in high-resolution sequences. It is worth
noting that the performance impact due to the use of bi-
prediction on EAIF or QALF is minimal to moderate (see
the results for the IBBB and Hierarchical B structures). The
impact is mostly negative for EAIF, but is positive in quite
a few sequences for QALF. Overall, both exhibit a perfor-
mance decline in these prediction sequences; however, the
performance drop relative to the IPPP setting is comparatively
much smaller. The reasons are twofold: first, these tools have
less overlap with bi-prediction than POBMC, in terms of
functionalities, and second, the SKIP and Direct modes can
still benefit from enabling them.

Although POBMC has the least gain among these filters, it
can be combined more efficiently with either of the other two
filters. Table V presents the BD-rate savings of all possible
joint applications of these filters. An interesting observation
is that the combination of POBMC and QALF performs very
close to or better than that of EAIF and QALF, even in the
IBBB or Hierarchical B case where the single use of EAIF
outperforms that of POBMC. This leads us to suspect that

5Note that some advanced QALF algorithms [10], [15] feature a pixel-
adaptive filter.

a considerable part of the gain from EAIF is actually due
to an attenuation in quantization noise. In this regard, EAIF
shares similarities with QALF. This conjecture is supported by
another observation that EAIF is still advantageous to high-
resolution sequences, in which the signal aliasing is supposed
to be less severe. The results in the rightmost column of
Table V also indicates that the benefits of additionally enabling
EAIF on top of POBMC+QALF are quite limited, except in
few low-resolution sequences, such as S10 and S13, where the
aliasing may still be significant.

B. Complexity Analyses

1) Encoding and Decoding Times: This section compares
the software runtimes of the algorithms discussed above to
provide a rough indication of their complexity characteristics.
For the runtime measurements, a single machine equipped
with Intel Core i7-860 CPU (2926 MHz), 8 GB RAM, and
SATA-2 hard drive is used to run encoding or decoding in a
single thread. The execution time is measured on Windows
Vista 64-bit SP1 using NTimer. YUV writing is enabled
during encoding. When interpreting the results, one should
be aware that the software runtime can be more related to the
implementation quality of an algorithm than to its intrinsic
complexity.

The upper half of Table VI6 presents the encoding times of
these algorithms in the form of average time ratios7 relative
to the anchor encoding. As can be seen from the left most
column, adding OBMC option increases the encoding time by
30–50%. This is attributed to the extra computation required
for mode decision and pixel-adaptive weighting. Moreover,
computing weighting coefficients by parametric solutions (e.g.,
TaoH-I and POBMCH-I) involves floating-point arithmetic,
thereby taking 10–20% longer encoding time, and as ex-
pected, the more flexible POBMCH-II increases the encoding
time further (˜10%). When POBMCH-II+MD is in use, the
encoding time almost doubles due to multi-pass R-D based
mode decision. Similar results can also be seen in EAIF. By
contrast, QALF introduces only a moderate time increase (20–
45%), the reason probably being that determining restoration
filter and segmentation map may still be computationally less
demanding than performing mode decision, which requires
actually coding all the MBs using all possible options. We
finally note that the impacts of these algorithms on encoding
time appear consistent regardless of prediction structures.

While there is a wide variation between the encoding times
of these algorithms, the difference between their decoding
times is less significant. Still, performing OBMC leads to
slow decoding times; relative to the anchor decoding (which
decodes bit-streams produced by the anchor encoding), a 40–
70% increase of decoding time is observed (the lower half of
Table VI). The main reasons include the increased memory
accesses needed to fetch multiple predictors and the extra
operations required for weighting them in a pixel-adaptive

6BilinearH-I is of comparable complexity to 263H-I and gives similar runtime
results.

7The average of the encoding time ratios of some specific algorithm and
the anchor over all test sequences and QP settings.

124 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

TABLE V

BD-Rate Saving Comparison of Various Combinations of In-Loop Filters

Scheme POBMC+EAIF POBMC+QALF EAIF+QALF All Enabled
GoP IPP IBB HB IPP IBB HB IPP IBB HB IPP IBB HB
HD S03 11.3 7.1 4.4 13.9 10.8 10.4 13.9 10.2 10.0 15.1 11.8 11.0

S04 4.0 2.9 3.4 4.4 4.1 5.5 4.0 3.5 5.2 5.2 4.6 6.7
S05 8.2 4.1 4.0 10.8 6.1 6.9 6.6 4.5 6.2 11.1 5.4 7.4
S06 10.5 6.0 4.8 12.0 8.0 6.7 10.9 7.8 7.5 13.6 9.3 8.3
S07 18.9 11.2 10.2 22.4 17.6 14.0 13.8 16.1 13.8 24.0 17.6 14.7

Average 10.6 6.3 5.4 12.7 9.3 8.7 9.8 8.4 8.5 13.8 9.7 9.6
WVGA S08 10.6 8.9 4.9 15.0 11.2 8.5 13.2 13.5 8.9 16.6 15.2 9.8

S09 7.5 4.3 3.0 8.1 5.1 4.2 7.1 5.2 4.9 9.9 6.2 6.0
S10 8.8 2.7 4.0 11.5 8.5 9.8 7.6 8.2 10.1 14.0 9.2 10.6
S11 5.0 2.2 1.9 5.8 3.4 3.2 3.4 3.3 3.1 6.8 3.5 3.9

Average 8.0 4.5 3.5 10.1 7.1 6.4 7.8 7.6 6.8 11.8 8.5 7.6
QWVGA S12 6.0 3.1 2.9 8.2 4.6 4.0 6.1 3.8 4.5 8.3 4.9 4.9

S13 15.9 9.9 8.3 20.0 17.4 18.7 13.8 15.9 19.6 24.6 17.7 20.3
S14 5.3 2.3 2.2 7.1 4.3 4.8 3.7 3.8 4.4 7.8 4.6 4.9
S15 3.2 1.4 0.7 4.0 2.4 2.3 2.1 1.6 2.4 4.3 2.7 2.8

Average 7.6 4.2 3.5 9.8 7.2 7.5 6.4 6.3 7.7 11.3 7.5 8.3
720p S16 9.6 5.3 7.8 14.5 8.9 9.7 13.5 8.5 8.8 14.9 9.1 10.6

S17 14.9 14.7 9.6 18.6 17.7 10.5 12.8 13.7 12.3 18.8 18.1 13.9
S18 11.1 5.8 8.1 14.0 7.2 8.8 12.0 7.7 10.0 14.8 9.4 10.9

Average 11.9 8.6 8.5 15.7 11.3 9.7 12.8 10.0 10.4 16.2 12.2 11.8
Overall 9.4 5.7 5.0 11.9 8.6 8.0 9.0 8.0 8.2 13.1 9.3 9.2

TABLE VI

Runtime Comparison of Various In-Loop Filters

Scheme 263H-I TaoH-I POBMC H-I POBMCH-II POBMCH-II+MD EAIF QALF
IPP 1.47 1.61 1.63 1.71 2.01 2.22 1.40

Encoding IBB 1.37 1.50 1.57 1.62 1.97 2.00 1.45
HB 1.32 1.42 1.48 1.60 2.00 2.12 1.25
IPP 1.40 1.48 1.64 1.68 1.73 1.41 1.53

Decoding IBB 1.35 1.45 1.51 1.57 1.66 1.25 1.56
HB 1.48 1.54 1.62 1.64 1.68 1.46 1.43

manner. Another cause of this increase is an implementa-
tion expedient, which requires parsing the bit-stream twice
(Appendix). Again, the parametric solutions incur a higher
penalty than the non-parametric ones, and ours appear to be
more complex. The latter, however, is not because our schemes
are computationally more demanding, but because the OBMC
mode is selected more often when they are in use. Recall
that these algorithms allow the encoder to switch adaptively
between BMC and OBMC. We also find that when using
non-parametric windows, OBMC exhibits similar decoding
complexity characteristics to EAIF or QALF. Essentially, they
all perform filtering of pixel intensities based on pre-computed
filters.

2) Simplification: In the current implementation of
POBMC (and the other OBMC schemes), generating a pre-
diction value for a pixel may require MVs associated with
the neighboring blocks to its right or below. Such a non-
causal access of MVs requires motion parameters for the entire
picture to be first generated and buffered, which induces a
large delay in both the encoding and the decoding processes.
This, however, can be avoided by utilizing only those MVs in
the causal neighborhood. Some performance loss is expected,
as the pixels in the bottom-right quarter of a prediction block
may not benefit much from OBMC. Table VII compares the
BD-rate savings and the runtimes of POBMCH-II+MD and

TABLE VII

BD-Rate and Runtime Comparisons of POBMC{H−II}+MD and Its

Simplified Version

Scheme POBMCH-II+MD Simplified
GoP IPP IBB HB IPP IBB HB
HD 7.0 2.8 2.2 5.9 2.4 2.3
WVGA 3.9 1.6 1.3 3.2 1.5 1.1
QWVGA 3.9 2.0 1.0 3.3 1.9 0.9
720p 5.7 3.3 2.4 4.5 3.2 2.3
Overall 5.2 2.4 1.7 4.3 2.2 1.6

Time Ratios
Encoding 2.01 1.97 2.00 1.46 1.40 1.33
Decoding 1.73 1.66 1.68 1.34 1.32 1.30

its simplified version based on this notion. Specifically, the
simplifications include a causal MV access and the use of
only one δ option (δ = 16). From the results, we see that the
performance of the simplified POBMC is only slightly worse
than that of POBMCH-II+MD. However, both the encoder
and the decoder run much faster. This is mainly because on
the encoder side, the determination of motion compensation
methods and partition choices can now be done in one single
pass, and on the decoder side, there is no need to first extract
all motion parameters.

CHEN et al.: PARAMETRIC OBMC FOR PIXEL-ADAPTIVE TEMPORAL PREDICTION ON IRREGULAR MOTION SAMPLING GRIDS 125

Fig. 9. (a) Sliding window mechanism used for MV selection in POBMC,
where the blue dots indicate prediction pixels and the gray dots denote MV
sampling points. (b) Bi-prediction extension of POBMC.

To further reduce the complexity of POBMC, additional
constraints can be placed on the number of MVs involved and
on their ranges. Our preliminary study shows that using only
four neighboring MVs, truncated to be in the range of current
MV +/− four pixels, can achieve 10–15% runtime reductions
without introducing noticeable performance degradation. In
addition, the techniques discussed in [18] can be applied
to POBMC. Last, we want to point out that although (11)
inevitably requires floating-point arithmetic, (12) can have a
fixed-point implementation. This can be seen by considering
the prediction of a pixel based on three MVs. In this case, the
OBMC weight associated with one of these MVs is computed
as

w∗
1 =

1
r̂2(s,s1)

1
r̂2(s,s1) + 1

r̂2(s,s2) + 1
r̂2(s,s3)

=
r̂2(s, s2)̂r2(s, s3)

r̂2(s, s1)̂r2(s, s2) + r̂2(s, s2)̂r2(s, s3) + r̂2(s, s3)̂r2(s, s1)
.

Obviously, with proper scaling and rounding, the computations
of the numerator, the denominator, and the quotient can all be
done in fixed-point arithmetic, even though it still takes quite
some work to obtain the result. Compared with (2), which is
adopted by the parametric solution in [19], both (11) and (12)
require less computation. While (12) need not perform matrix
inverse, (11) only has to invert a smaller matrix of dimension
(L − 1) × (L − 1), compared to L × L in (2).

VI. Conclusion

In this paper, we introduced a parametric solution for
OBMC (termed POBMC) and studied its properties from both
theoretical and empirical aspects. In the course, we found
it convenient to approximate block MVs as motion samples
taken at block centers; this expedient helped us to concep-
tualize the combination of OBMC with variable block-size
motion partitioning. Because in practice it is far from adequate
to describe the location of a block MV as a deterministic
variable, we amended our solution to reveal its random nature.
The novelty of our scheme was shown to require only the
geometric relations between the prediction pixel and its nearby
block centers for computing the window function. It thus
lends itself to reconstructing temporal predictors from any
sparsely and irregularly sampled motion data. The superiority

of our scheme over similar previous works was confirmed by
extensive experiments. Moreover, its performance was shown
to be comparable to EAIF and QALF. Above all, it can work
with either (or all) of them to yield an improvement that is
nearly the sum of their separate effects.

Along with the coding tools in KTA2.4r1, part of this paper
[5] was submitted, for subjective viewing tests, in response
to the HEVC Call for Proposals issued jointly by MPEG and
VCEG in April 2010 [2]. It was ranked 12 overall and 10
in low delay configurations among 27 proposals, in terms of
the average mean opinion score [3]. The notion of POBMC
has recently been extended to develop a reduced-overhead bi-
prediction scheme [13], [14]. Owing to its promising results,
the technique is currently being evaluated in a core experiment
of JCT-VC.

We plan to continue this work in several directions: 1) to
study the quantization effect of POBMC coefficients; 2) to
develop efficient motion sampling patterns for POBMC; and,
finally, 3) to combine POBMC with advanced decoder-side
motion inference techniques.

Appendix

This appendix elaborates on the implementation details
of POBMC. The intent here is to help the reader to have
a better understanding of its complexity characteristics and
software runtimes. In our current implementation, generating
a prediction value for a pixel by POBMC may require MVs
corresponding to the neighboring blocks to its right or below.
Hence, the motion parameters for the entire picture have
to be first generated and buffered to ease random access.
Accordingly, the picture-level encoding process must undergo
several sequential passes.

1) In the first pass, the encoder determines the best motion
parameters for each MB based on the conventional
BMC. Here, the motion parameters include the par-
tition choice, the prediction type (forward-prediction,
backward-prediction, or bi-prediction) for each partition,
as well as the corresponding MV(s).

2) In the second pass, POBMC is evaluated against BMC
for each non-skipped MB to see whether the R-D
performance can be improved. The creation of POBMC
predictors reuses motion parameters generated in the
first pass, which have been buffered for a possible non-
causal access.

3) When POBMCH-II+MD is in use, the partition choice
of each MB is additionally updated once in a raster
scan order to optimize motion sampling for POBMC.
This is accomplished by comparing the R-D costs of
coding a MB with various combinations of partition
choices and motion compensation methods (POBMC
and BMC). While the partition choice may be varied, the
corresponding prediction types and MVs are inherited
directly from the first pass; this requires the first step
to also buffer the motion parameters for coding modes
other than the best one. In addition, the updated partition
choice for the current MB will be utilized in evaluating
POBMC for next MB; again, motion parameters belong-

126 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 1, JANUARY 2012

ing to the non-causal region are set to be the same as
those generated in the first pass. Once all MBs have
been processed, Step 2 is repeated based on the new
partitioning to complete the encoding process.

Steps 1 and 2 are followed to implement 263H-I, BilinearH-I,
and TaoH-I. Since the first two schemes are constrained to
use a fixed window function, the MV replication mechanism
(Section III-C) is employed to address the issue of variable
block-size motion partitioning.

For the same reason as stated above, the motion information
also has to be extracted first on the decoder side. To do so, we
have the decoder parse the bit-stream twice before the decod-
ing process begins. Although introducing a considerable delay,
this implementation bottleneck can be avoided by enabling the
data partitioned slices feature in H.264/AVC, with which the
motion data are transported separately from the other coded
data.

In addition, to predict a pixel, POBMC involves computing
a weighted sum of multiple prediction values derived from
MVs in its neighborhood. The neighborhood used in this paper
is specified by a sliding window centered on the 8 × 8 block
containing the prediction pixel. That is, the MVs associated
with the block centers covered by this window are selected for
use [Fig. 9(a)]. In cases where some of these MVs are intended
for bi-prediction, we simply apply them to each pixel within
the block to generate the corresponding input to POBMC
[Fig. 9(b)]. Note that all pixels in this 8 × 8 block share the
same MVs, whereas each pixel has its own weights to associate
with them. The reason for not adapting MV selection on a
pixel-by-pixel basis is to avoid memory access bottleneck.

Clearly, our current implementation contains many heuristic
approaches. There is still plenty of room for further improve-
ments. For example, optimizing prediction types and MVs for
POBMC is expected to offer better compression performance,
and storing motion parameters only for a number of MB rows
or estimating the non-causal MVs based on the causal ones
can reduce storage requirements.

Acknowledgment

The authors would like to thank C.-H. Wu for his help and
support related to this paper.

References

[1] Video Coding for Low Bitrate Communication, document Rec. H.263,
ITU-T, Apr. 1995.

[2] Joint Call for Proposals on Video Compression Technology, document
N11113, ISO/IEC JTC1/SC29/WG11, Jan. 2010.

[3] V. Baroncini, J.-R. Ohm, and G. J. Sullivan, Report of Subjective Test
Results of Responses to the Joint Call for Proposals (CfP) on Video
Coding Technology for High Efficiency Video Coding (HEVC), document
MPEG2010/JCTVC-A204, ISO/IEC JTC1/SC29/WG11, Apr. 2010.

[4] G. Bjöntegaard, Improvements of the BD-PSNR Model, document
VCEG-AI11, ITU-T SG16, Jul. 2008.

[5] Y.-W. Chen, T.-W. Wang, C.-L. Lee, C.-H. Wu, Y.-C. Tseng, C.-H. Chan,
W.-H. Peng, C.-J. Tsai, and H.-M. Hang, Description of Video Coding
Technology Proposal by NCTU, document MPEG2010/JCTVC-A123,
ISO/IEC JTC1/SC29/WG11, Apr. 2010.

[6] B.-D. Choi, J.-W. Han, and S.-J. Ko, “Irregular-grid-overlapped block
motion compensation and its practical application,” IEEE Trans. Circuits
Syst. Video Technol., vol. 19, no. 8, pp. 1221–1226, Aug. 2009.

[7] T. Chujoh, N. Wada, and G. Yasuda, Quadtree-Based Adaptive Loop
Filter, document JVT-C181, ITU-T SG16, Jan. 2009.

[8] G. Heising, D. Marpe, H. L. Cycon, and A. P. Petukhov, “Wavelet-based
very low bit rate video coding using image warping and overlapped
block motion compensation,” IEE Proc. Vis. Image Signal Process., vol.
148, no. 2, pp. 93–101, Apr. 2001.

[9] P. Ishwar and P. Moulin, “Switched control grid interpolation for motion
compensated video coding,” in Proc. IEEE Int. Conf. Image Process.,
vol. 3. Oct. 1997, pp. 650–653.

[10] M. Karczewicz, P. Chen, R. Joshi, X. Wang, W.-J. Chien, and R. Pan-
chal, Video Coding Technology Proposal by Qualcomm Inc., document
JCTVC-A121, ISO/IEC JTC1/SC29/WG11, Apr. 2010.

[11] KTA Software [Online]. Available: http://iphome.hhi.de/suehring/tml/
download/KTA

[12] T.-Y. Kuo and C.-C. J. Kuo, “Fast overlapped block motion com-
pensation with checkerboard block partitioning,” IEEE Trans. Cir-
cuits Syst. Video Technol., vol. 8, no. 6, pp. 705–712, Oct.
1998.

[13] C.-L. Lee, C.-C. Chen, Y.-W. Chen, M.-H. Wu, C.-H. Wu, and W.-
H. Peng, “Bi-prediction combining template and block motion com-
pensations,” in Proc. IEEE Int. Conf. Image Process., Sep. 2011,
to be published [Online]. Available: http://mapl.nctu.edu.tw/ewchen/
ICIP2011PPLUS.pdf

[14] C.-L. Lee, C.-C. Chen, Y.-W. Chen, M.-H. Wu, C.-H. Wu, W.-H.
Peng, and H.-M. Hang, Bi-Prediction Combining Template and Block
Motion Compensations, document MPEG2010/JCTVC-D175, ISO/IEC
JTC1/SC29/WG11, Jan. 2011.

[15] K. McCann, W.-J. Han, I.-K. Kim, J.-H. Min, E. Alshina, T. Lee, J.
Chen, V. Seregin, S. Lee, Y.-M. Hong, M.-S. Cheon, and N. Shlyakhov,
Samsung’s Response to the Call for Proposals on Video Compression
Technology, document JCTVCA124, ISO/IEC JTC1/SC29/WG11, Apr.
2010.

[16] M. T. Orchard and G. J. Sullivan, “Overlapped block motion compen-
sation: An estimation-theoretic approach,” IEEE Trans. Image Process.,
vol. 3, no. 5, pp. 693–699, Sep. 1994.

[17] G. J. Sullivan and R. L. Baker, “Motion compensation for video
compression using control grid interpolation,” in Proc. ICASSP, vol.
4. Apr. 1991, pp. 2713–2716.

[18] G. J. Sullivan and M. T. Orchard, “Methods of reduced-complexity
overlapped block motion compensation,” in Proc. IEEE Int. Conf. Image
Process., vol. 2. Nov. 1994, pp. 957–961.

[19] B. Tao and M. T. Orchard, “A parametric solution for optimal overlapped
block motion compensation,” IEEE Trans. Image Process., vol. 10, no.
3, pp. 341–350, Mar. 2001.

[20] Y.-C. Tseng, C.-H. Wu, Y.-W. Chen, T.-W. Wang, and W.-H. Peng,
“On the analysis and design of motion sampling structure for advanced
motion-compensated prediction,” in Proc. IEEE Int. Conf. Image Pro-
cess., vol. 1. Sep. 2010, pp. 949–952.

[21] Z. Wang, W. Wang, Y. Lu, H. Cui, and K. Tang, “Coding mode adapted
overlapped block motion compensation in H.264,” in Proc. IMACS
Multiconf. Computat. Eng. Syst. Applicat., vol. 1. Oct. 2006, pp. 1665–
1668.

[22] Y. Ye and M. Karczewicz, Enhanced Adaptive Interpolation Filter,
document T05-SG16-C-0464, ITUT SG16, Apr. 2008.

[23] W. Zheng, Y. Shishikui, M. Naemura, Y. Kanatsugu, and S. Itoh,
“Analysis of space-dependent characteristics of motion-compensated
frame differences based on a statistical motion distribution model,”
IEEE Trans. Image Process., vol. 11, no. 4, pp. 377–386, Apr.
2002.

Yi-Wen Chen was born in Taichung, Taiwan, in
1979. He received the B.S. and M.S. degrees in
computer science and information engineering from
National Chiao Tung University, Hsinchu, Taiwan,
in 2001 and 2003, respectively. Currently, he is
pursing the Ph.D. degree in computer science and
information engineering from National Chiao Tung
University.

He is a Moving Picture Expert Group (MPEG)
Delegate. Since 2006, he has actively participated
in ISO’s MPEG digital video coding standardization

process and contributed to the development of the MPEG-4 Part 10 AVC
Amd.2 multiview video coding standard. He is currently devoting himself
to the development of high efficiency video coding, the next-generation
video coding standard. His current research interests include video/image
compression, computer vision, video signal processing, content-based video
indexing and retrieval, and multimedia information systems.

CHEN et al.: PARAMETRIC OBMC FOR PIXEL-ADAPTIVE TEMPORAL PREDICTION ON IRREGULAR MOTION SAMPLING GRIDS 127

Wen-Hsiao Peng was born in Hsinchu, Taiwan, in
1975. He received the B.S., M.S., and Ph.D. degrees
in electronics engineering from National Chiao Tung
University (NCTU), Hsinchu, in 1997, 1999, and
2005, respectively.

From 2000 to 2001, he was with the Intel Mi-
croprocessor Research Laboratory, Santa Clara, CA,
where he developed the first real-time MPEG-4 fine
granularity scalability codec and demonstrated its
application in 3-D, peer-to-peer video conferencing.
In 2005, he joined the Department of Computer

Science, NCTU, where he is currently an Assistant Professor. Since 2003, he
has actively participated in the International Organization for Standardization
Moving Picture Expert Group (MPEG) digital video coding standardization
process and contributed to the development of the MPEG-4 Part 10 AVC
Amd.3 scalable video coding standard. He has published more than 30
technical papers in the field of video and signal processing. His current
research interests include high-efficiency video coding, scalable video coding,
video codec optimization, and platform-based architecture design for video
compression.

Dr. Peng is currently a Technical Committee Member for the Visual Signal
Processing and Communications and Multimedia Systems and Application
tracks for the IEEE Circuits and Systems Society. He organized two special
sessions on high-efficiency video coding in ICME 2010 and APSIPA ASC
2010, and was a Technical Program Co-Chair for VCIP 2011.

