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If the non-Gaussian distribution function of radar glint noise

is known, the Masreliez filter can be applied to improve target

tracking performance. We investigate the glint identification

problem using the maximum likelihood (ML) method. Two models

for the glint distribution are used, a mixture of two Gaussian

distributions and a mixture of a Gaussian and a Laplacian

distribution. An efficient initial estimate method based on the

QQ-plot is also proposed. Simulations show that the ML estimates

converge to truths.
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I. INTRODUCTION

The foundation of a radar tracker is a Kalman
filter. The Kalman filter is optimal if the system is
linear and measurement noise is Gaussian. However,
in reality, the system is often nonlinear and noise
may have non-Gaussian components. Masreliez and
Martin [2] demonstrated that non-Gaussian noise can
severely degrade the performance of the Kalman filter,
in particular for noise with a heavy-tailed distribution.
In a radar system, there exists this heavy-tailed
non-Gaussian noise and it is known as glint noise.
A number of researchers have considered the

problem of Kalman filtering in the non-Gaussian
environment. One of the most effective schemes
was proposed by Masreliez [3—4]. He introduced a
nonlinear score function as the correction term in the
state estimate and the results are often nearly optimal.
While this approach seems promising, it encounters the
difficulty of implementing the convolution operation
involved in the evaluation of the score function.
Wu and Kundu in [6] described an efficient way to
implement the score function. Wu [7] applied the
method to tackle the tracking problem when glint noise
is present.
To use the Masreliez filter, the glint model has

to be known. Glint models have been investigated
for years. A common approach is considering the
physics that describes electromagnetic wave scattering.
Delano [23] found that the glint probability density
can be described by the student t distribution with
two degrees of freedom. Gubonin [24—25] argued
that the glint density is described by generalized
hypergeometric functions. Recently, Sandhu and
Saylor [26] generalized Gubonin’s results. A key
feature of their work is that the mean glint estimator
is unbiased and this enables model parameters to be
estimated from the first-order measured glint data.
They demonstrated that the simulated target signature
is statistically identical with the actual measured data.
Although Sandu’s method can model glint noise well,
it is not suitable for the use in the Masreliez filter. The
main reason is that hypergeometric functions may not
have moment generating functions. This violates the
assumptions in [6]. In addition, as we see in Section
III, hypergeometric functions are complicated and it is
difficult to deal with.
We consider some simplified models here. Two glint

noise models, a mixture of two Gaussian distributions
and a mixture of a Gaussian and a Laplacian
distribution are studied. The Gaussian mixture was
originally proposed by Hewer and Martin in [1]. They
analyzed QQ-plots of empirical glint data and claimed
that this model works well. However, no identification
method was considered. The Gaussian and Laplacian
mixture was used in [7] for robust consideration. No
model identification was mentioned in [7] either.
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These two models are rather simple; however, as we
show, they can describe glint noise almost as well as
hypergeometric functions.
The history of identifying a Gaussian mixture is

a long one. Pearson first considered the problem by
using the method of moments [8], which was studied
later by Cohen [9]. Extensions to more general cases
were recently considered by Fukunaga and Flick [9],
and Derin [11]. During the early nineteenth century,
attention was turned to graphical techniques for
mixture identification. Basically, these techniques
explore the relationship between the shape of the
QQ-plot of the mixture with unknown parameters.
This was originated by Harding [12] extended by
Cassie [13] and studied later by Bhattacharya [14].
Recently, it was reconsidered by Postaire and Vasseur
[15]. The maximum likelihood (ML) method was first
used by Rao [16]. Extension to an arbitrary number
of mixtures was made by Hassleblad [17]. Hosmer
[18] investigated ML identification when the sample
size is small. Day [19] compared the ML method with
a number of other methods and concluded that the
ML method was superior. This same result was also
observed by Fowlkes [20].
One thing worth noting is that most of the studies

consider the case where the mixture has different
means. In such cases, the distribution is frequently
bimodal, however, in our applications, the mixture
is unimodal and identification of this mixture is
somewhat different. The aforementioned works all
consider the identification of a Gaussian mixture.
The identification of our second model, i.e., the
Gaussian and Laplacian mixed distribution has not
been considered before. Existing methods may not
be adequate to solve the problem making further
study necessary. We explore the glint identification
problem using the ML method. Since the ML is an
iterative method and many local minima may exist,
good initial estimates are important. We also propose a
very effective initial estimate method.
The organization of the paper is as follows. In

Section II we briefly review the score function
approach for completeness. In Section III, we discuss
the glint models. In Section IV, we describe the
ML identification problem and the initial estimate
technique. In Section V, some simulations are carried
out. The conclusion is drawn in Section VI.

II. SCORE FUNCTION APPROACH

A. General Filtering Problem

The general filtering problem can be formulated
as the state estimate given all the history of the
observation. Consider a linear system described as
follows:

xk+1 = Ákxk +wk (1)

zk =Hkxk + vk (2)

where xk is the state vector, wk and vk represent white
noise sequences and are assumed to be mutually
independent. The basic problem is to estimate the
state xk from the noisy observation (z1, : : : ,zk). The
probability density of the state conditioned on all the
available observation data is called the a posteriori
density. If this density is known, an estimate for any
type of performance criterion can be found. Thus,
the estimation problem can be viewed as one of
determining the a posteriori density. Denote f(¢) as a
density and Zk = fz0,z1, : : : ,zkg. The a posteriori density
can be described by the following relations

f(xk j Zk) =
f(xk j Zk¡1)f(zk j xk)

f(zk j Zk¡1)
(3)

f(xk j Zk¡1) =
Z
f(xk¡1 j Zk¡1)f(xk j xk¡1)dxk¡1 (4)

where the normalizing constant f(zk j Zk¡1) is given by

f(zk j Zk¡1) =
Z
f(xk j Zk¡1)f(zk j xk)dxk: (5)

The f(zk j xk) in (3) is determined by the observation
noise density f(vk) and (2). Similarly, f(xk j xk¡1) in
(4) is determined by the state noise density f(wk) and
the (1). Theoretically, knowing these densities, we can
determine the a posteriori density f(xk j Zk). However,
it is generally impossible to carry out the integration
in (4) for every instant. Consequently, the a posteriori
density cannot be determined for most applications.
The only one exception is when the initial state and all
the noise sequences are Gaussian. In this case, (3)—(4)
are reduced to the standard Kalman filter equations.

B. Score Function Approach

Consider a linear system described in (1)—(2).
The variables wk and vk can be non-Gaussian. The
density of zk conditioned on the a prior observations
is denoted by f(zk j Zk¡1). We name f(zk j Zk¡1)
the observation prediction density and assume that
it is twice differentiable. Similarly, f(xk j Zk¡1) is
the density of xk conditioned on prior observations
and is named the state prediction density. Assuming
that f(xk j Zk¡1) is a Gaussian density with mean
xk, and covariance matrix Mk, Masreliez has shown
that the minimum variance state estimate x̂k, and its
covariance matrix Pk = Ef(xk ¡ x̂k)(xk ¡ x̂k)t j Zkg can
be recursively calculated as follows [3]:

x̂k = xk +MkH
t
kgk(zk) (6)

Pk =Mk ¡MkHt
kGk(zk)HkMk (7)

xk+1 = Ákx̂k (8)

Mk+1 = ÁkPkÁ
t
k +Qk (9)
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where gk(¢) is a column vector with components:

fgk(zk)gi =¡
·
@f(zk j Zk¡1)

@(zk)i

¸
[f(zk j Zk¡1)]¡1

(10)

and Gk(zk) is a matrix with elements

fGk(zk)gij =
@fgk(zk)gi
@(zk)j

: (11)

The function gk(¢) is called the score function of
f(zk j Zk¡1). The following procedure summarizes the
implementation of the filter.
Step 0 Assume that at stage k¡ 1, x̂k¡1 and Pk¡1

are known.
Step 1 Calculate Mk = Ák¡1Pk¡1Á

t
k¡1 +Qk¡1.

Step 2 Approximate the state prediction density
f(xk j Zk¡1) by a Gaussian distribution with mean
xk = Ák¡1x̂k¡1 and covariance matrix Mk.
Step 3 Find the observation prediction density

f(zk j Zk¡1) by convolving f(Hkxk j Zk¡1) with fvk (¢).
Step 4 Find gk(zk) and Gk(zk).
Step 5 Apply (6)—(7) to find x̂k and Pk.
Step 6 Let k! k+1 and start all over from

Step 1.

III. GLINT MODELS

We first discuss the glint model proposed by
Sandhu and Saylor in [26]. They assumed that the
scatters of a radar target has a dominant deterministic
component which is located at the instantaneous radar
center. Let fakgNk=1 be a set of samples of zero mean
random variables with ak representing the magnitude
of the kth scatter in a particular aspect interval such
that E[

PN
k=1 a

2
k] = 2¾

2. The quantity a0 corresponds
to the dominant, deterministic scatter. Let (xk,yk,zk)
be the coordinate of the kth scatter (with respect to
the target center). f(xk,yk,zk)gNk=1 are assumed to be
uniformly distributed sequences of three independent
random variables within the target volume with means
¹x,¹y,¹z and variancs ¾

2
x ,¾

2
y ,¾

2
z . Since the three axes

are independent, we only consider the glint in x axis in
the following. It is shown in [26] that the glint can be
modeled as

hx = ¹x+¾x¯x (12)

where

¯x =
(r1 +

p
2scosÁ0)r2 + (r3 +

p
2ssinÁ0)r4

(r1 +
p
2scosÁ0)2 + (r3 +

p
2ssinÁ0)2

(13)

where Á0 is the phase delay of the dominant scatter,
r1,r2,r3,r4 are zero mean, unit variance, normal
random variables, and s= a0=

p
2¾. The distribution

of ¯x is shown to be

f(¯x) =
exp(¡s2)
4
p
2b3 1F1

·
¡1=2,1,¡s

2

2b2

¸
(14)

where b = (1+¯2x )=2, and 1F1 is a generalized
hypergeometric function which can be expanded into
modified Bessel functions as

f(¯x) =
exp(¡s2)
4
p
2b3

·μ
1+

s2

2b2

¶
I0

μ
s2

4b2

¶
+
s2

2b2
I1

μ
s2

4b2

¶¸
exp
μ
s2

4b2

¶
:

(15)

As we can see, the glint distribution is rather
complicated. It is difficult to incorporate this model
into the filtering process.
The variable ¹x corresponds to the mean glint and

varies slowly. It can be effectively removed in the
tracking loop [1]. Without loss of generality, we can
assume that ¹x = 0. In [1], the glint is modeled as a
Gaussian mixture which is described by

f(x) = ²f1(x) + (1¡ ²)f2(x)
= ²N(x;0,¾1)+ (1¡ ²)N(x;0,¾2) (16)

where
N(x;´,¾) =

1p
2¼¾

e(x¡´)
2=2¾2, (17)

¾2À ¾1, and ² is a positive number close to (but less
than) one. Note that (16) explicitly assumes that both
Gaussian components have zero means. The validity of
the Gaussian mixture model is verified by the QQ-plot
of the glint noise. A QQ-plot is a plot of the ordered
data x(i) versus the normal quantiles xpi =©

¡1(pi)
where pi = (i¡ 1=2)n, i= 1,2, : : : ,n and ©¡1 is the
inverse of the unit Gaussian distribution. It can be
shown that the QQ plot of a Gaussian distribution is
linear regardless its mean and variance. The QQ-plot
of a Gaussian mixture is locally linear. There could
be three regions where the QQ-plot is linear; one in
the central region and two in the tail. Based on this
observation, Hewer, Martin, and Zeh [1] studied glint
records and concluded that the Gaussian mixture is
a good model. Here, we perform an experiment to
test their argument. We used Sandhu’s model (12) to
generate a glint record and plotted the corresponding
QQ-plot. The parameters we used are the typical
values from [26] (s= 1, ¾x = 5, ¹x = 0, and Á0 =
0:7). Fig. 1 shows the glint data and Fig. 2 shows its
QQ-plot. Fig. 3 shows the theoretical QQ-plot of a
Gaussian mixture. Indeed, comparing Figs. 2 and 3,
we can clearly see that the glint distribution does have
the Gaussian mixture behavior.
From (13), it is easy to see that when s! 0,

f(¯x)! Student t distribution which is very heavy
tailed. Very large glint spikes are observable. Since s is
time varying, these spikes may not be modeled in the
underlying Gaussian mixture. We then are interested
to know if the Masreliez filter can tolerate these
spikes. This is related to the concept of robustness. An
estimator is said to be robust if small changes from an
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Fig. 1. Generated glint record.

Fig. 2. QQ-plot of glint record.

Fig. 3. Theoretical QQ-plot of Gaussian mixture.

assumed nominal model produce only small changes
in the estimate. There are many forms of robustness.
The most fundamental one, which was introduced by
Hampel [27], is qualitative robustness. To define the
qualitative robustness, we need the concept of the
influence curve. For a finite sample, an interpretation
of the influence curve can be made as follows.
Consider the location estimation problem. We are
given n observations from the nominal distribution. Let
¹̂n be an estimate. Now, suppose the nth observation
is contaminated and its value becomes x. Let the
estimate with the contaminated observation be ¹̃n.
Then the influence curve is defined as

IC(x) =
p
n(¹̃n¡ ¹̂n): (18)

Fig. 4. Score functions of distributions.

From (18), we can realize that the influence curve
measures the effect of contamination on the estimate.
An estimator is said to be qualitatively robust if its
influence curve IC(¢) is continuous and bounded. In
other words, if an estimator is qualitatively robust,
a contaminated observation can only have finite
influence on the estimate no matter how large it is.
This interpretation is intuitively appealing and we use
that in our filtering problem.
We now investigate the qualitative robustness of the

Masreliez filter with the Gaussian mixture model. As
described in (6), the state estimate is

x̂k = xk +MkH
t
kgk(zk): (19)

We now have to ask how x̂k will be changed if zk is
contaminated. From (19), we find that the amount
of change is determined by the shape of the score
function of the observation prediction density gk(¢).
Thus, we can say that the score function plays the
same role as the influence curve does. If the score
function is bounded, the contaminated zk will only
have finite influence on x̂k. From (5), we know that
the observation prediction density is obtained by
the convolution of the state prediction density and
observation noise density. Since the state prediction
density is assumed to be Gaussian, the shape of the
score function of observation prediction density is
similar to that of observation noise density. Fig. 4
shows the score functions of the Gaussian mixed and
the Gaussian and Laplacian mixed distribution. The
score function of a Gaussian mixture is piecewisely
linear. The slope in the tail region is smaller. However,
since the slope is not zero, the score function is not
bounded. Thus, the Masreliez filter with the Gaussian
mixed noise model is not qualitatively robust. Now,
when we see the score function of the Gaussian and
Laplacian mixed distribution, we find that the slope of
score function is zero in the tail region. In other words,
it is bounded. Thus, we conclude that the Masreliez
filter with the Gaussian and Laplacian mixed model is
qualitatively robust. This is the reason why the second
glint model, i.e., the Gaussian and Laplacian mixed
distribution, is proposed in [7]. This model can be
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described in the following equation

f(x) = ²f1(x)+ (1¡ ²)f2(x)
= ²N(x;0,¾) + (1¡ ²)L(x;0,¹) (20)

where

L(x;³,¹) =
1
2¹
e¡jx¡³j=¹: (21)

IV. ML GLINT IDENTIFICATION

A. ML Problem

Once we have the models, the next problem is
how to identify parameters. Here we employ the ML
method to solve this problem. Consider the model one
in (16) and let μ = (²,¾1,¾2). For a sample with size
N, the ML estimates of the parameters μ is found by
maximizing the likelihood function Lm(μ)

Lm(μ) =
NY
i=1

f(xi;μ): (22)

For computational efficiency, we can take the
logarithm of (22). This results in a log likelihood
function

ln[Lm(μ)] =
NX
i=1

ln[f(xi;0)]: (23)

Taking first partials with respect to μi and setting
the derivatives equal to zero, we can solve the
maximization problem. However, as we can readily see,
the equations are nonlinear and a closed-form solution
doesn’t exist and we must use iterative algorithms to
find the solution. One such algorithm is proposed in
[17]. Define

p
(k)
1 = ²(k), p

(k)
2 = (1¡ ²(k)) (24)

w
(k)
ij =

p
(k)
i f

(k)
i (xj)

f(k)(xj)
(25)

where f(k)i (xj), i= 1,2 and f
(k)(xj) are the density

functions evaluated at xj and μ(k) (the estimate of μ
in kth iteration). The estimates at the k+1 iterations
are

¾
(k+1)
i =

"PN
j=1w

(k)
ij x

2
jPN

j=1w
(k)
ij

#1=2
, i= 1,2 (26)

²(k+1) =
NX
j=1

w
(k)
1j

N
: (27)

The iterations are continued until some predetermined
criteria are met. If the iterations stop at m iteration
then the estimate is μ̂ = μ(m). Day [19] has pointed
out that w(k)ij is an estimate, using μ(k), of the posteriori

probability that xj came from the population i. There
are singularities in Lm associated with each sample
point, i.e., for each xj , 1· j ·N

lim
¾1!0

Lm(xj ,²,¾1,¾2) = lim
¾2!0

Lm(xj ,²,¾1,¾2) =1:
(28)

This kind of singularity has not occurred in our
simulations. This is because, as described by [18], if
one estimate of the standard deviation did start to
converge to zero the estimate of the probability for
that component converged to zero as fast or faster.
This has the effect of reducing the mixture to a single
component. To assure the absence of the singularity
problem, we can check the validity of the mixture
model during the iteration. This is done as follows. We
first define a lower bound of ¾. Whenever the ¾̂i is
smaller than this value, the probability corresponding
to ¾i is then forced to zero. The Gaussian mixture
model then degenerates to a single component.
For the identification of model two in (20), a

similar technique can be applied. However, (26) is
different

¾(k+1) =

"PN
j=1w

(k)
1j x

2
jPN

j=1w
(k)
1j

#1=2
(29)

¹(k+1) =

"PN
j=1w

(k)
2j jxj jPN

j=1w
(k)
2j

#
: (30)

In our simulations, the singularity problem has not
occurred either. This indicates that the argument made
above is still valid in this case.

B. Initial Estimate

As we saw in the preceding section, the cost
function that the ML method has to optimize is
highly nonlinear. There could be many local minima.
Therefore, good initial estimates are important. There
is a method proposed in [20], however, we find it
is not suitable for our use since our distribution is
unimodal. We now propose a scheme, which uses a
QQ-plot analysis, to obtain the initial estimate. It is
known that the QQ-plot of a Gaussian distribution
is linear. This can be shown as follows. Let the error
function be defined as

erf(x) =
1p
2¼

Z x

0
et
2=2dt: (31)

Then, for an arbitrary Gaussian density with mean ´
and variance ¾2, its cumulative distribution function
(CDF) is 0:5+erf((x¡ ´)=¾). Let x and y denote the
horizontal and the vertical axis of the QQ-plot. The
QQ-plot of the Gaussian distribution can be found by

WU: MAXIMUM LIKELIHOOD IDENTIFICATION OF GLINT NOISE 45



solving

0:5+erf
μ
y¡ ´
¾

¶
= 0:5+erf(x) (32)

y¡¹
¾

= x! y = ¾x+¹: (33)

Thus, for a Gaussian distribution, the QQ-plot is a
straight line and the slope is the standard deviation ¾.
We can use this property to obtain the initial estimate
of the standard deviation of the Gaussian mixture.
As shown in (16), we know that in the central region
of the Gaussian mixture, N(x;0,¾1) dominates. By
contrast, in the tail regions, N(x;0,¾2) dominates,
therefore, the slope of the linear segment (denoted as
L1(x)) in the central QQ-plot can be used as the initial
estimate of ¾1 and that (denoted as L2(x)) in the tail
region as the initial estimate of ¾2

¾̂1 =
dL1(x)
dx

, ¾̂2 =
dL2(x)
dx

: (34)

For a Gaussian and Laplacian mixed distribution,
we can still use the slope of the central region of its
QQ-plot to estimate the initial ¾ (20). Let the straight
line in the central region of the QQ-plot be L1(x).
Thus,

¾̂ =
dL1(x)
dx

: (35)

However, in the tail region, the Laplacian distribution
dominates and the QQ-plot is nonlinear. How
to obtain the initial estimate of ¹ needs further
consideration. First, let’s find the QQ-plot of
the Laplacian distribution. Since the QQ-plot is
symmetrical with respect to zero, we have only to
consider the region where x¸ 0 or x· 0. For x¸ 0,
we have

0:5+
Z y

0

1
2¹
e¡t=¹ dt= 0:5+erf(x): (36)

Performing the integration and rearranging the
equation, we can obtain

e¡y=¹ = 1¡2erf(x): (37)

Now, as we know, there is no closed-form solution
for the error function. We cannot find a closed-form
expression describing the relationship between x and
y, however, we can apply some approximation method.
Taking the logarithm of (37), we obtain

y

¹
=¡ ln[1¡ 2erf(x)]: (38)

The function in the right-hand side of (38) is plotted
and we find it can be well approximated by a quadratic
function. Thus

¡ ln[1¡2erf(x)]¼ c1x2 + c2x+ c3 (39)

Fig. 5. Real and approximated ¡ log[1¡ 2erf(x)].

for some constants c1, c2, and c3. The QQ-plot of a
Laplacian distribution is then

y ¼ ¹(c1x2 + c2x+ c3): (40)

From our experiments, we find that the coefficients of
the quadratic function are

c1 = 0:4687, c2 = 0:5061, c3 = 0:1454:

(41)

The actual and approximated ¡ ln[1¡2erf(x)] are
plotted in Fig. 5. From this figure, we can see that
the approximation is so good that we can barely
distinguish them. We now conclude that the QQ-plot of
a Laplacian distribution is almost a quadratic function.
Now, we may use (40) to obtain the initial estimate of
¹. For an empirical QQ-plot (Laplacian and Gaussian
mixed), we first approximate the curve in the tail
region by a quadratic function. Let the coefficients
of the quadratic function be c01, c

0
2, and c

0
3. Since c1

is shift invariant, ¹ can be estimated by

¹̂=
c01
c1
: (42)

However, our experiments indicate that this estimate is
only good for large sample size. When the quantity of
available data is small, the performance is poor. This
can be explained by the fact that the quadratic function
has more unknowns and the approximation is not
good for the small sample size. One way to overcome
this problem is to use the linear approximation, i.e.,
approximate the function ¡ ln[1¡ 2erf(x)] using a
linear function. This leads to

¡ ln[1¡2erf(x)]¼ d1x+ d2 (43)

y ¼ ¹(d1x+ d2): (44)

From experiments, d1 is found to be 1.95. This is
also shown in Fig. 5. The way to estimate ¹ for small
sample size now is clear. Let the tail region of an
empirical QQ-plot (Gaussian and Laplacian mixed
distribution) be approximated by a straight line that
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Fig. 6. Theoretical QQ-plot for mixture with infinite variance
ratio.

is denoted by L2(x)

L2(x) = d
0
1x+ d

0
2: (45)

Then,

¹̂=
d01
d1
: (46)

Simulations show that this method yields very good
results. We demonstrate this in the next section.
The final parameter we have to estimate is ². If

the Gaussian mixture is bimodal, there is a reflection
coefficient that can be used to estimate ² [20]. In our
case, this is not valid. Here, we propose a simple and
effective way to do the job. Our method can best
be described by an extreme case where ¾1 = 0. That
means one distribution in the mixture is an impulse
and the variane ratio (¾22=¾

2
1) is infinite. The CDF of

the Gaussian mixture is then discontinuous. The jump
occurs at x= 0. The CDFs before and after jump are
0.5 and 0:5+ ². The quantile of the Gaussian mixture
right after jump is 0+. The corresponding quantile of
the unit Gaussian (x-axis of the QQ-plot), denoted as
xj , is obtained by

0:5+ ²= 0:5+erf(xj) (47)

xj = erf
¡1(0:5²): (48)

The QQ-plot (for x > 0) is shown in Fig. 6. We see that
the QQ-plot is zero until x= xj . From the plot, we can
estimate the standard deviations of mixed distributions
using the method discussed before. We define the
region corresponding to 0< x < xj is the central region
and xj < x is the tail region. Thus, L1(x) is just the
x-axis. The plot in the tail region is nonlinear. L2(x)
can be obtained via the linear regression on the curve
in the region. Now, from Fig. 6, we can see that the
x-coordinate of the intersection of L1(x) and L2(x),
denoted as xi, is approximately equal to xj , i.e.,

xi ¼ xj: (49)

In general, the slope of L1(x) is larger than zero.
However, when the slope of L1 increases, the slope

of L2, influenced by L1, will decrease and vice versa.
This leaves the x-coordinate of the intersection almost
unchanged. Thus, we conclude that the x-coordinate of
the intersection of L1(x) and L2(x) is not sensitive to
the variation of ¾1 and ¾2 and (49) holds for ¾2À ¾1
(this is also the assumption of the glint model). Based
on the property described above, a method for the
initial estimate of ² is now proposed.

1) Find the x-coordinate of the intersection of
L1(x) and L2(x) in the empirical QQ-plot, i.e., solving
the equation

L1(xi) = L2(xi): (50)

2) Inverting (48) to find ²̂, i.e.,

²̂= 2erf(xi): (51)

To implement the proposed initial estimate method,
we first have to define the central and the tail regions.
From the models mentioned above, it is reasonable
to assume that ² > 0:5. Thus, we can take the lower
50% of the sample (after ordering) and consider it
is in the central region. Using the linear regression
technique, we can find L1(x). Similarly, we can take
hihger (1¡ ²)£ 100% of the sample and consider it is
in the tail region. However, ² is unknown. To estimate
², L2(x) has to be found. Thus, ²̂ and L2(x) cannot be
determined simultaneously. Here, we propose a simple
iterative method to solve the problem. Let L(n)2 (x) and
²̂(n) be the L2(x) and ²̂ at nth iteration. At (n+1)th
iteration, L(n+1)2 (x) is obtained by the linear regression
on the upper (1¡ ²̂(n))£ 100% of samples and ²̂(n+1)

is obtained by using the intersection of L1(x) and
L
(n+1)
2 (x) (as listed in (51)). The iteration continues
until convergence is observed. The initial ²̂(1) is taken
as 0.5.
In the following, we analyze the proposed

algorithm to understand why it works. Let x0:5i be
the x-intersection of L1(x) and L2(x) when ² is 0.5
and L2(x) is found by using the upper 50% of the
sample; ²̂0:5 be the estimate of ². Also let x

²
i be the

x-intersection of L1(x) and L2(x) when ² is known and
L2(x) is found by using the upper (1¡ ²)£ 100% of the
sample; ²̂ be the estimate of ². As we discussed above,
²̂0:5 will be around 0.5 and ²̂ around ². Since ² > 0:5
and the error function is increasing, x0:5i < x²i and
²̂0:5< ²̂. Now, the real situation is that ² is unknown
and initially we assume that ²= 0:5. Thus, in the
first iteration, we take the upper 50% of the sample
(instead of (1¡ ²)£ 100%) to find L2(x). Let x(1)i be
the x-intersection of L1(x) and L2(x). From Fig. 7,
it is apparent that x0:5i < x

(1)
i < x²i and ²̂0:5< ²̂

(1) < ²̂.
Continue this iteration and we conclude that at the nth
stage x(n¡1)i < x

(n)
i < x²i and ²̂

(n¡1) < ²̂(n) < ²̂. When n is
large enough, x(n) approaches x²i and ²̂

(n) approaches ²̂.
The same procedure can be used to find the initial

estimate of ² in the Gaussian and Laplacian mixed
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Fig. 7. Iterated initial estimate using theoretical QQ-plot.

distribution. If (39) is used, xi corresponds to the
intersection of L1(x) and the quadratic function. If
(45) is used, xi corresponds to the intersection of
L1(x) and L2(x). In the following, we provide some
simulations to test proposed schemes.

V. SIMULATIONS

In this section, we carried out some simulations
to test the performance of the proposed algorithms.
Note that the shape of the QQ-plot is only dependent
on the variance ratio of two mixed components.
The same ratio will give the same shape. Since our
distributions are zero mean and symmetrical, the
theoretical QQ-plot will be symmetrical with respect to
zero. Thus, we can reflect samples with negative value
to the positive side and make the empirical QQ-plot all
positive.
To test proposed schemes, eight cases were

simulated; they correspond to the combinations of
two ²s and four variance ratios. The ²s used are 0.6
and 0.9, th evariance ratios are 9, 25, 49, and 100,
and we performed the Monte Carlo simulation with
100 runs in each case. The sample size was 200. The
resulting mean, variance, and mean square error
(MSE) were taken as the performance indexes. Tables
I and II list the results for the Gaussian mixture.
Tables III and IV list the results for the Gaussian and
Laplacian mixed distribution. We first examine our
initial estimate scheme in Tables I and II. We find the
estimate of ² was remarkably good, particularly when
the variance ratio is high. The results are comparable
with the ML estimates because the assumption of
our initial estimate scheme is more valid when the
variance ratio is high. The mean value of ¾1 estimate
is larger than the actual value due to the influence
of the f2(¢), however, the estimate variance is small.
The mean of ¾2 estimate is also larger than its real
value, which is the property of the QQ-plot. Only when
x goes to infinity, does the slope of L2(x) approach
¾2, otherwise, it will be larger than ¾. When ² is
large, the number of samples used in estimating ¾2 is
small, which results in the larger estimate variance. In

Fig. 8. Initial estimate using empirical QQ-plot
(Gaussian+Gaussian).

TABLE I
Performances of Initial and ML Identification for Gaussian and

Gaussian Mixed Distribution (²= 0:6)

TABLE II
Performances of Initial and ML Identification for Gaussian and

Gaussian Mixed Distribution (²= 0:9)

general, the variance of our initial estimate is within
three times of the ML estimate. Despite the bias, our
initial estimate scheme works very well. Fig. 8 shows a
sample run of the initial estimate. Marks with the plus
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TABLE III
Performances of Initial and ML Identification for Gaussian and

Laplacian Mixed Distribution (²= 0:6)

TABLE IV
Performances of Initial and ML Identification for Gaussian and

Laplacian Mixed Distribution (²= 0:9)

and the star sign represent samples in the positive and
negative side of the original QQ-plot.
Next, we examine the ML results in Tables I and

II. It seems that some properties of the ML estimate
are similar to those of our initial estimate. When ²
is larger, the following properties are observed: the
estimate of ² and the estimate of ¾1 became better
(due to the smaller influence of f2(¢)); the variance
of ¾2 estimate became larger. It seems that for larger
variance ratio, the separation of two components
is easier and the estimate of ² is better. However,
because of the large variance, the estimate of ¾2
became poorer. In all cases, the ML estimate produced
satisfactory results.
In Tables III and IV, we show the result of the

initial and the ML identification of the Gaussian and
Laplacian mixed distribution. Note that for comparison
purposes, the parameters of ¹ were chosen such that
they have the same variance ratios with previous ones.

Fig. 9. Initial estimate using empirical QQ-plot
(Gaussian+Laplacian).

From the tables, we find that the behaviors of the
initial and the ML estimate are similar to those in
Gaussian mixture case. Comparing with the results
in Gaussian mixture, we find the following values
becoming larger: the bias of the initial estimate of ²
(for smaller ²), the variance of ¹ estimate (compare
with ¾2), and the MSE of ² estimate. This reflects
the fact that the Laplacian distribution is long tailed
and more difficult to identify, however, note that in
many cases, the increase of MSE is not significant.
Fig. 9 shows a sample run of the initial estimate. From
the figure, it is difficult to see that the curve in the
tail region is a quadratic function, thus, the linear
approximation is appropriate. In all the simulations,
none of them failed, contrary to the moment method
which has a high probability of failure. Also, the
convergence of the ML method is rather fast. Thus,
we conclude that our initial estimate scheme works
effectively and the ML method using the estimate
produces stable and superior results.
Finally, we applied the ML method to identify the

model parameters using the glint data shown in Fig. 1.
For the Gaussian mixture model, the resulting values
are

²= 0:8354, ¾1 = 2:9084, ¾2 = 15:617:

(52)
For the Gaussian and Laplacian mixed model, the
resulting values are

²= 0:7480, ¾ = 2:7366, ¹= 9:0450:

(53)
To verify the identification results, we plotted the
empirical QQ-plot of the glint data and the theoretical
QQ-plot of the identified models in Fig. 10. From
this, we can see that these two models fit the data
nicely. The spiky character of the glint noise is fully
modeled. Note that in terms of QQ-plots, there is little
difference between two models. Based on experimental
results, we verify that the employed models are indeed
appropriate. For the filtering purposes, the use of
complicated hypergeometric functions is not justified.
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Fig. 10. QQ-plots of identified models.

VI. CONCLUSIONS

In this paper, we have proposed a method for
identification of glint noise. The glint noise is highly
non-Gaussian and it is present in radar systems. Two
models are used for the glint distribution, one is the
Gaussian mixture and the other is the Gaussian and
Laplacian mixed distribution. The ML method is
employed to identify the parameters of the models.
An iterative initial estimate method based on the
QQ-plot analysis is also proposed. Experiments show
that the proposed initial estimate is very effective and
the ML method has good performance. Once the glint
noise is identified, the algorithm proposed in [7] can
be applied to enhance the performance of tracking
algorithm when the glint noise is present. Note that
there is a growing interest in the non-Gaussian noise
processing [22] and identification of this kind of noise
is important. Our method is simple and efficient and it
may find many applications in other areas.
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