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In Satake’s generalized resource budget model of ecology, which was modified from Isagi’s

resource budget model, Satake and Iwasa illustrated, by computing the positive Lyapunov

exponent, that if the depletion coefficient is greater than one, then the system is chaotic. However,

a positive Lyapunov exponent implies only sensitivity in Devaney’s chaos. Therefore, this work

presents mathematical viewpoints and numerical analysis on Satake’s generalized resource budget

model to rigorously prove that the generalized resource budget model is chaotic in Devaney’s

sense by using the snapback repeller theory and the topological entropy theory. Moreover, this

work also investigates that there is a significant difference between the behaviors of positive

odd depletion coefficients and positive even depletion coefficients under numerical computations.
VC 2011 American Institute of Physics. [doi:10.1063/1.3660662]

In this paper, we present mathematical viewpoints and

numerical analysis on Satake’s generalized resource

budget model, which describes the growth of plants in

ecology, to rigorously prove that the model is chaotic in

Devaney’s sense by using the snapback repeller theory

and the topological entropy theory. Moreover, this work

also investigates that there is a significant difference

between the behaviors of positive odd depletion coeffi-

cients and positive even depletion coefficients under

numerical computations.

I. INTRODUCTION

Several explanations of the masting phenomenon have

been proposed.1–22 They involve environmental fluctuations,

weather conditions, swamping predators, the weight of

young deer, bird populations, the reproductive success of

bears, increased efficiency of wind pollination, attraction to

seed distributions, cue masting, and the dispersing of ani-

mals. However, most of these hypotheses explain neither the

mechanism of masting nor the mechanism by which the tim-

ing of reproduction varies among individuals.23

A. Isagi’s resource budget model

Isagi, Sugimura, Sumida, and Ito proposed a simple

model of the mechanism of masting that was based on the

resource budget of an individual tree.24 They assumed that a

constant amount of photosynthate is produced by each tree

annually, given that the environmental conditions are con-

stant from year to year. Photosynthate (PS) is consumed for

the growth and the maintenance of the tree; any that is not

used by the plant is stored in a pool within the tree. The

amount of PS was constant from year to year. In one year

when the accumulated PS exceeded a threshold (LT), the

amount of accumulated PS minus LT was used for flowering

and is regarded as the cost of flowering Cf. Hence, whenever

the amount of photosynthate accumulated in preceding years

was large, the tree was inclined to flower more, and the

amount of flowering in a year also depended on the amount

of photosynthetic products that had accumulated in the previ-

ous years. The amount of accumulated PS was decreased to

LT after the flowering. The flowers were pollinated and bore

fruits at a cost of Ca. The ratio Ca/Cf was assumed to be con-

stant RC. After the fruiting had been completed, the amount

accumulated was LT�Ca¼ LT�RCCf. In the model, PS

accumulates annually, until the tree flowers again when the

amount exceeds LT.

B. Satake’s generalized resource budget model

Let S(t) be the amount of energy reserved at the begin-

ning of year t. If the sum S(t)þPS is below the threshold LT,

then the tree does not reproduce and saves all of its reserved

energy for the following year. If the sum exceeds LT, then

the tree uses energy for flowering. Isagi et al.24 assumed that

the energy expenditure for flowering exactly equals the

excess, S(t)þPS� LT. Satake and Iwasa23 generalized Isagi’s

model by introducing a non-dimensionalized variable

Y(t)¼ (S(t)þPS�LT)/PS, and the resource budget model was

rewritten as

Yðtþ1Þ ¼ YðtÞ þ 1 if YðtÞ � 0;
�jYðtÞ þ 1 if YðtÞ > 0;

�
t ¼ 0; 1;…; (1)

where Yð0Þ 2 R and j denotes the degree of resource

depletion after a reproductive year divided by the excess

amount of energy in reserve before that year and is called

the depletion coefficient. Notably, the quantity Y(t) is posi-

tive if and only if the tree exhibits some reproductive activ-

ity in year t.
The generalized resource budget model (1) includes

only one parameter j. It is clear that Y(tþ1) goes to infinity

eventually at j< 0. On the other hand, Y(tþ1) belongs in

[�jþ 1,1] as t large enough at j� 0. Satake and Iwasa23a)Electronic mail: smchang@math.nctu.edu.tw.
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illustrated trajectories for three different values of j. When

j 2 0; 1½ Þ; Yðtþ1Þ quickly converges to the stable equilibrium

1/(jþ 1). There are a number of two-point cycles corre-

sponding to different initial conditions when j is exactly

equal to 1. When j> 1, Y(tþ1) keeps fluctuating with a cha-

otic time series. Further, the authors studied the model of the

coupling of trees and found perfectly synchronized periodic

reproduction, synchronized reproduction with a chaotic time

series, clustering phenomena, and chaotic reproduction of

trees without synchronization over individuals.

Satake and Iwasa23 identified chaos by computing a pos-

itive Lyapunov exponent as the depletion coefficient j> 1.

It is true25–28 that some investigations regard the positive

Lyapunov exponent as the definition of chaos because sensi-
tivity is the most important property of chaotic systems and

is easily observed. However, a positive Lyapunov exponent

just implies that the map has sensitive dependence on initial

conditions.26,28 The goal here is to prove chaos by identify-

ing density and transitivity rather than sensitivity as in the

chaos of Devaney (defined in Sec. II A).

In this paper, we would like to point out that the general-

ized resource budget model (1) is chaotic in the sense of

Devaney. This paper is organized as follows. In Sec. II, we

first list essential preliminaries. In Sec. III, we prove the

existence of the snapback repeller of the generalized resource

budget model, whenever the depletion coefficient j becomes

greater than one. Numerical analysis of numerical simulations

of the generalized resource budget model are presented in

Sec. IV. Finally, a conclusion is given in Sec. V.

Throughout this paper, the composition of two func-

tions is defined as f � g xð Þ ¼ f g xð Þð Þ. The n-fold composi-

tion of f with itself recurs repeatedly in the sequel, f n, and

it is defined as f n xð Þ ¼ f � � � � � f xð Þ, where n is the number

of iterations.

II. PRELIMINARIES

A. Devaney’s chaos

The chaos of a map has been defined in several ways.29

Although the comment “so many authors, so many defi-

nitions,” is true, a basic component of all definitions is the

unpredictability of the behavior of the trajectory which is

determined with some certain error. (The associated phe-

nomenon is usually described in terms of sensitive depend-

ence on initial conditions.) The definition of the chaos of

Devaney is considered herein because it is fundamental and

widely accepted.

Definition 1: (Devaney’s chaos30) Let X be a metric
space. A continuous map f: X ! X is said to be chaotic on
X if

(Sensitivity): f has sensitive dependence on initial condi-
tions, meaning that there exists d> 0 such that, for any
x 2 X and any neighborhood Nx of x, there exists y 2 Nx

and n 2N such that j f n(x)� f n(y)j> d;

(Density): periodic points are dense in X;
(Transitivity): f is topologically transitive. That is, for any

pair of nonempty open sets U, V � X, there exists k> 0

such that f k Uð Þ \ V 6¼ ;.

A chaotic map possesses three ingredients, which are

unpredictability, an element of regularity, and indecompos-

ability. The system is unpredictable because of the sensitive

dependence on initial conditions.30 In the midst of this ran-

dom behavior, however, is an element of regularity, which is

exhibited by the periodic points that are dense. A chaotic

system cannot be broken down or decomposed into two sub-

systems (two invariant open subsets) that do not interact

under f because of topological transitivity.

B. Snapback repellers

Generally, proving that a dynamical system has chaotic

behavior is difficult. Most techniques for making such a

determination involve computer simulations, which apply

the arithmetic of the Lyapunov exponent, find a period dou-

bling bifurcation, and perform other tasks that are associated

with numerical dynamical systems. However, obtaining such

results by rigorous mathematical proofs is difficult.

A dynamical system with diffeomorphism has chaotic

behavior that can be proved by using known methods, such

as the existence of Smale horseshoe, transversal homoclinic

orbits, or heteroclinic orbits. Noninvertible maps have cha-

otic behavior that can be identified by the existence of snap-

back repellers. However, for general focus problems,

applying the above methods without computer assistance is

difficult. In most cases, the verification must be carried out

with the aid of a computer.31

In 1978, Marotto defined the snapback repeller.32 The ex-

istence of snapback repellers implies that a system is chaotic.

Definition 2: Let f : Rn ! Rn be differentiable in
Br(x*) and x* be a fixed point of f with all eigenvalues of
Df(x*) exceeding 1 in norm, and there exists a constant s> 1

such that k f xð Þ � f yð Þ k> s k x� y k for all x; y 2 Br x�ð Þ.
Suppose there exists a point x0 2 Br x�ð Þ with x0= x* and
some positive integer m such that fm(x0)¼ x* and det

(Dfm(x0))= 0. Then x* is called a snapback repeller of f
(Ref. 33).

Remark:

(1) In one-dimensional space R, the Jacobi matrix

Df(x*)¼ f 0 (x*) and

detðDf mðx0ÞÞ ¼ ðf mÞ0ðx0Þ ¼ f 0ðf m�1ðx0ÞÞ � f 0ðf m�2ðx0ÞÞ
� � � f 0ðf ðx0ÞÞ � f 0ðx0Þ

¼ f 0ðxm�1Þ � f 0ðxm�2Þ � � � f 0ðx1Þ � f 0ðx0Þ;

where xj¼ f j(x0), 1� j�m� 1.

(2) Let snapback repeller x*, f, m, and x0 be the same as Def-

inition 2. x* is said to be a nondegenerate snapback

repeller of f if there exist positive constants l and d0

such that Bd0 x0ð Þ � Br0 x�ð Þ and k f m xð Þ � f m yð Þ k
� l k x� y k for all x; y 2 Bd0 x0ð Þ; x* is called a regu-

lar snapback repeller of f if f(Br0(x*)) is open and there

exists a positive constant d�0 such that Bd�0 x0ð Þ � Br0
x�ð Þ

and x* is an interior point of fm(Bd(x0)) for any positive

constant d � d�0.34,35

The snapback repeller in Marotto’s theorem is nonde-

generate and regular.

043126-2 S.-M. Chang and H.-H. Chen Chaos 21, 043126 (2011)
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Theorem 3: Let snapback repeller x*, f, m, and x0 be
the same as Definition 2. If f is C1 in some neighborhood of
xj (xj¼ fj(x0)), det(Df(xj))= 0, 0� j�m� 1, then f is chaotic
in the sense of Devaney (Refs. 34–38).

C. Topological entropy

Topological entropy was defined by Adler, Konheim,

and McAndrew for topologically conjugate invariance in

1965.39 If the space is compact metric, then the following

definition is equivalent to the definition of Adler, Konheim,

and McAndrew,40 and it is more useful.41

Definition 4: Let f: X ! X be a continuous map on
the space X with metric d. A set S � X is called n; �ð Þ-
separated for f for n a positive integer and � > 0 provided
that for every pair of distinct points x; y 2 S, x= y, there
is at least one k with 0� k< n such that d f k xð Þ; f k yð Þ

� �
> �

(Refs. 26, 40, and 42). The number of different orbits of
length n (as measured by �) is defined by

rðn; �; f Þ ¼ maxf#ðSÞ :

S � Xisaðn; �Þ � separated set for fg;

where #(S) is the cardinality of elements in S. Let

htopð�; f Þ ¼ lim sup
n!1

logðrðn; �; f ÞÞ
n

and define the topological entropy of f as

htopðf Þ ¼ lim
�!0;�>0

htopð�; f Þ:

Consider the continuous map on the compact interval, the

relationship between positive topological entropy (htop

(f)> 0) and Devaney’s chaos is equivalent.

Theorem 5: Let f be a continuous map of a compact
interval I to itself. f has positive topological entropy if and
only if f is chaotic in the sense of Devaney (Refs. 43–46).

The basic result following that is used to help calculate

the entropy, and relates the entropy of a map f to a n-fold

composition of f, f n.

Theorem 6: Assume f: X ! X is uniformly continuous
or X is compact, and n is an integer with n� 1. Then htop

(fn)¼ n � htop (f) (Ref. 26).

III. MATHEMATICAL ANALYSIS

In this section, we will prove that the generalized

resource budget model is chaotic in the sense of Devaney

(defined in Definition 1) by using the preliminaries, the snap-

back repeller theory and the topological entropy theory

(mentioned in Definition 2 and Definition 4).

Theorem 7: The generalized resource budget model (1)
is chaotic in the sense of Devaney when the depletion coeffi-
cient j is greater than 1.00026.

Proof: The generalized resource budget model (1) can

be represented as a map g,

gðxÞ ¼ xþ 1 if x � 0

�jxþ 1 if x > 0

�
; (2)

where j is the depletion coefficient. Then, we would like to

prove that the map g is chaotic in the sense of Devaney when

j> j11	 1.0002538. In this proof, there are three stages.

First, try to find a snapback repeller of g. There exists the

snapback repeller of g when j>j0 with j0 ¼ 1þ
ffiffi
5
p

2

	 1:6180. Therefore, a result will be revealed that the map g
is chaotic in the sense of Devaney as j>j0 by Theorem 3.

Second, improve the result in the first stage to calculate snap-

back repellers of g2. There exists a snapback repeller of g2

when j>j1 with j1 ¼ 1
2
þ

ffiffiffiffiffiffi
23

108

q� �1=3

þ 1
2
�

ffiffiffiffiffiffi
23

108

q� �1=3

	 1:3247. It implies that g2 is chaotic in the sense of Deva-

ney as j>j1 by Theorem 3. Then, according to Theorems 5

and 6, the map g2 has positive topological entropy, htop

(g2)> 0, and htop (g2)¼ 2 � htop (g), meaning that, htop

(g)> 0. Therefore, the map g is chaotic in the sense of Deva-

ney as j>j1 by Theorem 5 again. Finally, apply the tech-

nique in the second stage to the map g2p with p 2N. Here, it

is not easy to find the snapback repellers of g2p. We make a

recurrent formula (3) for representing the map g2p partially

in a specific interval,

g2pðxÞ ¼
L2pðxÞ; x 2 ap�3

1

j

� 	
; ap�2

1

j

� 	
 �

R2pðxÞ; x 2 ap�2

1

j

� 	
; 1


 �
8>>><
>>>:

; (3)

where

L2 pðxÞ ¼
�jR2pðxÞ þ jþ 1; p is odd

�R2pðxÞ þ jþ 1

k
; p is even

8<
: ;

R2pðxÞ ¼ L2p�1 � R2p�1ðxÞ;
R1ðxÞ ¼ �jxþ 1;

L1ðxÞ ¼ xþ 1;

and j 2N,

ajðzÞ ¼
aj�1 � c � c � aj�1ðzÞ; j is odd

aj�1 � b � aj�1ðzÞ; j is even

�
;

with a0 zð Þ ¼ a�1 � b � a�1 zð Þ, where a�1 zð Þ ¼ z; a�2 zð Þ ¼ 0,

bðzÞ ¼ 1
j ð2� zÞ, and cðzÞ ¼ 1

j ð1� zÞ. Then, for different p,

the snapback repeller of g2p can be found from the formula

(3) when the depletion coefficient j> jp, where jp is com-

puted by determining the roots of a polynomial with degree

2pþ1 and listed in Table I. Hence, the result shows that the

map g can possess Devaney’s chaos for the depletion coeffi-

cient j> 1.00026. The details of the proof are in Appendix

A. h

In the proof of Theorem 7, we consider that the iterative

number of the map g is only two to the power of any natural

number to obtain the lower jp. As 1< j�j0 for any positive

odd iterative number n the map gn has only one fixed point,
1

1þj, but it is not a snapback repeller of the map gn. At the

same time, as 1<j� j1, the map gm has only two fixed

points, 1
1þj and 2

1þj, for any positive even iterative number m
but two to the power. However, these two fixed points both

043126-3 Applying snapback repellers in GRBM Chaos 21, 043126 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Wed, 30 Apr 2014 07:53:50



are not snapback repellers of the map gm as m is even but not

two to the power. Hence, it is a unique way to obtain lower

jp by finding the snapback repeller of the map g2p with

p 2N.

It is fortunate for p¼ 0 or 1 that j0 and j1 can be solved

exactly by determining roots of the polynomial with degrees

2 and 4, respectively. However, there is no general formula

to solve the roots of a polynomial with degree 2pþ1 with

p� 2. Therefore, we use numerical computations to obtain

jp in Table I by the software MAPLE 12 with the representa-

tion extended to 100 digits. The computations have to be

done at a higher order of precision by extending the number

of the digits of the representation since the degree 2pþ1 of

the polynomial is very large, even when p is small (for

example, p¼ 10 and then the degree is 211¼ 2048). Further,

it can be observed that the sequence {jp} converges linearly

to j1¼ 1 at a rate of convergence of lim
p!1

jpþ1�j1
jp�j1

¼ 1
2
.

Hence, from a numerical computation point of view, the gen-

eralized resource budget model (1) is chaotic in the sense of

Devaney when the depletion coefficient j is greater than 1.

This section mathematically interprets that the general-

ized resource budget model (1) is chaotic in the sense of

Devaney in Theorem 7. Section IV will analyze the general-

ized resource budget model in numerical simulations under a

computer.

IV. NUMERICAL SIMULATIONS

The bifurcation diagram (Fig. 1) of the generalized

resource budget model (1) with iterations given by the same

random initial condition for the different depletion coefficient

j from 1 to 5 that Theorem 7 yielded rigorous mathematical

results to show that the model is chaotic in the sense of Deva-

ney. However, it eventually converges to a period cycle in

Fig. 1 when the depletion coefficient j is a positive even num-

ber. This is a strange result. From the derivative of the map

(2), we know that the period cycle is unstable. In fact, this

instability is true, and we will prove it later in Theorem 9.

Theorem 8: For any initial value Yð0Þ 2 Q and the
depletion coefficient j 2N, then the behavior of the gener-
alized resource budget model (1) is a period cycle
eventually.

Proof: Without loss of generality, the initial value

Yð0Þ 2 Q \ ½�jþ 1; 1
 and let Yð0Þ ¼ n
m 2 Q with m 2N

and n 2 Z. Let S ¼ j
m 2 ½�jþ 1; 1
 : j 2 Z
� 


, then we have

Yð0Þ 2 S and

Yð1Þ ¼
j

m
þ 1 ¼ jþ m

m
; if Yð0Þ 2 ½�jþ1; 0


ð�jÞj
m þ 1 ¼ ð�jÞjþ m

m ; if Yð0Þ 2 ð0; 1


8><
>: :

TABLE I. jp is computed by determining the roots of a polynomial with

degree 2pþ1 in MAPLE 12 with the representation extended to 100 digits. j0

and j1 are solved exactly by the formulas of solving roots in polynomials

with the degrees 2 and 4, respectively. However, there is no formula to solve

exactly a polynomial with the degree 2pþ1 for p� 2.

p jp

0 1.61803398874989484820458683436563811772030917980576

1 1.32471795724474602596090885447809734073440405690173

2 1.13472413840151949260544605450647284027966722638280

3 1.06829718892084127636942958832387828209363101692083

4 1.03277096644104290932949288833474485665205837114040

5 1.01644386405941707209228020194178727791066232145413

6 1.00814003202116634233667531140811820889364490896404

7 1.00407366638869274027495235413584575421112130983612

8 1.00203177633341699708889327197114297264791893748917

9 1.00101611635023998785395963563019367524570627032394

10 1.00050774307450011494818934717772385917913582101851

11 1.00025388579930649764694803800094131925950701465139

FIG. 1. (Color online) The bifurcation

diagram of an individual tree. The hori-

zontal axis represents the depletion coef-

ficient j, and the vertical axis represents

Y(t) for t> 1000.

043126-4 S.-M. Chang and H.-H. Chen Chaos 21, 043126 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Wed, 30 Apr 2014 07:53:50



It also implies that Yð1Þ 2 S. Therefore, for t¼ 2,3,… YðtÞ

2 S, too. Next, Let S1 be the set, {Y(0),Y(1)Y(2),…, Y(jmþ1)},

then S1 � S. The cardinality of S is denoted by jSj, and

jSj ¼ j

m
2 ½�jþ 1; 1
 : j 2 Z

� �����
���� ¼ jmþ 1:

Since S1 � S and jSj ¼jmþ 1, jS1j � jSj and there exists

YðiÞ 2 S for some i such that Y(i)¼ Y(jmþ1) derived from the

Pigeonhole Principle. It implies that Y(t) always is a period

cycle of period at most jmþ 1� i for any rational initial

value and the depletion coefficient j 2N. h

Further, there is no doubt that Y(0) can only be expressed

using finite digits in binary representation in a computer.

Therefore, for any simulation in the computer, the initial

value is always a rational number such that the behavior of

the generalized resource budget model (1) eventually goes a

period cycle when the depletion coefficient j 2N. In fact,

when the depletion coefficients j are 2 and 4, these behav-

iors only converge to period cycles of period 3 and period 5

(see in Fig. 1), respectively. Satake and Iwasa explained

these phenomena23 as follows, if j is exactly the same as an
integer, after a long transient the trajectory suddenly
becomes a period cycle of period jþ 1; this pathological

behavior would not be realized in real forest because there
is always some noise.

However, pathological behaviors are totally different in

positive even depletion coefficients and positive odd deple-

tion coefficients. In Fig. 1, Y(t) indeed converges to a period

cycle of period jþ 1 and the period cycle is

{�jþ 1, …, 0,1} when j is a positive even number (see

Figs. 2(a) and 2(c)). But, the behavior of Y(t) is not like

“lower” periodic when j is a positive odd number (also see

Figs. 2(b) and 2(d)). Next, we will propose good explana-

tions in Theorem 9 and Theorem 10 for j as a positive even

number and a positive odd number, respectively.

Theorem 9: Under a binary representation of finite dig-
its, if the depletion coefficient j is a positive even number,
then the behavior of the generalized resource budget model
converges to a period cycle {�jþ 1,�jþ 2,…, 0,1} of
period jþ 1.

Proof: According to the result in Theorem 8, the behav-

ior of the generalized resource budget model always con-

verges to a period cycle of period at most jmþ 1 with

YðtÞ ¼ n
m 2 ½0; 1
 for some t and n;m 2N. Here, n

m is repre-

sented in the binary representation of ‘ finite digits. It implies

that m has to be 2i for i 2 0; 1; 2;…; ‘f g and the period is at

most j2iþ 1. Since j is a positive even number,

FIG. 2. (Color online) For the depletion coefficient j is a positive even number ((a) j¼ 2 and (c) j¼ 4) or not ((b) j¼ 3 and (d) j¼ 5), the generalized

resource budget model Y(t) converges to a lower period cycle of period jþ 1 or not.

043126-5 Applying snapback repellers in GRBM Chaos 21, 043126 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Wed, 30 Apr 2014 07:53:50



Y(tþ1)¼�jY(t)þ 1 should be n1

m1
with n1 2 Z and m1¼ 2i�1

such that the behavior of Y(tþ1) converges to a period cycle

of period at most j2i�1þ 1. Again, the period j2i�1þ 1 will

be reduced to jþ 1 in finite iterations. Hence, we completely

understand that the behavior of the generalized resource

budget model eventually converges to the period cycle

{�jþ 1,�jþ 2,…,0,1} of period jþ 1 under a binary rep-

resentation of finite digits when the depletion coefficient j
is a positive even number. The details of the proof is in

Appendix B. h

It is a key point that under a binary representation, a

number can be represented in finite digits or not. For exam-

ple, under the binary representation 02 ¼ 00011 cannot be

represented in finite digits. In fact, the behavior of Y(t) is a

period cycle {0.2,0.6, �0.2,0.8, �0.6,0.4} of period 6 when

Y(0)¼ 0.2 and j¼ 2, not {�1,0,1}.

However, when the depletion coefficient j is a positive

odd number, the following theorem explains that the behav-

ior of Y(t) is totally different to the positive even depletion

coefficient.

Theorem 10: Under a binary representation of finite
digits, if the depletion coefficient j is a positive odd number,
then the behavior of the generalized resource budget model
cannot converge to the period cycle {�jþ 1, �jþ 2,…,

0,1} for any initial value but integer.
Proof: Although the behavior of the generalized

resource budget model converges to a period cycle of period

at most jlþ 1 with YðsÞ ¼ �
l 2 ½0; 1
 for some s and

�;l 2N by the result in Theorem 8, under the binary repre-

sentation of finite digits, the behaviors of Y(t) are very differ-

ent in an even j and an odd j. There is no chance to reduce

the period jlþ 1 as j is a positive odd number for almost

all the initial values. The details of the proof is in Appendix

C. h

V. CONCLUSIONS

Satake and Iwasa proved that the generalized budget

resource model is chaotic when j> 1 by computing the Lya-

punov exponent.23 A map possesses a positive Lyapunov

exponent that implies only sensitive dependence on initial

conditions. Although this result is very important and useful

(it enables a single quantity to be computed to determine

whether the process is highly sensitive to initial condi-

tions26,28), it is just one of the necessary conditions in the

definition of Devaney’s chaos. In this paper, we clearly point

out that the generalized resource budget model is chaotic in

the sense of Devaney as the depletion coefficient j> 1 by

the relationship between Devaney’s chaos, the topological

entropy, and the snapback repeller.

At the same time, it is completely understood that com-

putational simulations cause a lower period-(jþ 1) cycle

when the depletion coefficient j is a positive even number.

Further, all the trajectories will converge to periodic cycles

when the initial value is a rational number and the depletion

coefficient is a natural number. Based on these results of the

generalized resource budget model for describing the growth

of an individual tree, we will continue studying the model of

the coupling of trees in future.
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APPENDIX A: THE PROOF OF THEOREM 7

Suppose j> 1. First, x� ¼ 1
1þj is a fixed point of the

map g in Eq. (2) with jg0(x*)j ¼ j exceeding 1 (jg0(x)j ¼j as

x 2 0; 1ð Þ). Try to find x0 2 0; 1ð Þ such that g2(x0)¼ x*.

Then, x0 ¼ 2jþ1
j2þj and x0< 1, thus, 2jþ1

j2þj < 1 is a necessary con-

dition. It implies that as j > 1þ
ffiffi
5
p

2
, there exists a positive in-

teger m¼ 2 such that gm(x0)¼ x* and det (Dg2(x0))¼ g0(x1) �
g0(x0)= 0, where x1¼ g(x0). Therefore, x* is a snapback

repeller of g as j > j0 ¼ 1þ
ffiffi
5
p

2
. Hence, the map g is chaotic

in the sense of Devaney as j> j0 by Theorem 3.

Second, x�� ¼ 2
1þj is a fixed point of g2 with

jDg2(x**)j ¼ j exceeding 1. Here, jDg2(x)j ¼j as x 2 1
j ; 1
� �

.

Let h¼ g2 and be restricted in the domain [0,1]. It means

that

hðxÞ ¼
j2x� jþ 1; x 2 0; 1

j

� �
�jxþ 2; x 2 1

j ; 1
� �

(
;

Try to find x0 2 1
j ; 1
� �

such that h2(x0)¼ x**. Then,

x0 ¼ 2j3þj2�1
j3ð1þjÞ and x0< 1, thus, 2j3þj2�1

j3ð1þjÞ < 1 is a necessary

condition. It implies that as j > 1
2
þ

ffiffiffiffiffiffi
23

108

q� �1=3

þ 1
2
�

ffiffiffiffiffiffi
23

108

q� �1=3

, there exists a positive integer m¼ 2 such

that hm(x0)¼ x** and det (Dh2(x0))¼ h0(x1) � h0(x0)= 0,

where x1¼ h(x0). Therefore, x** is a snapback repeller of g2

as j > j1 ¼ 1
2
þ

ffiffiffiffiffiffi
23

108

q� �1=3

þ 1
2
�

ffiffiffiffiffiffi
23

108

q� �1=3

. It shows that g2

is chaotic in the sense of Devaney as j>j1 by Theorem 3.

Then, according to Theorems 5 and 6, the map g2 has posi-

tive topological entropy, htop(g2)> 0, and htop(g2)¼ 2 � htop

(g), meaning that, htop(g)> 0. Hence, the map g is chaotic in

the sense of Devaney as j> j1 by Theorem 5 again.

Finally, we focus on the map g2p restricted in the

domain Ip¼ [d(j),1] with 0< d (j)< 1 for p 2N. For dif-

ferent p, the map g2p defined in Ip is represented in (3).

g2pðxÞ ¼
L2pðxÞ; x 2 ap�3

1

j

� 	
; ap�2

1

j

� 	
 �

R2pðxÞ; x 2 ap�2

1

j

� 	
; 1


 �
8>>><
>>>:

;

043126-6 S.-M. Chang and H.-H. Chen Chaos 21, 043126 (2011)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

140.113.38.11 On: Wed, 30 Apr 2014 07:53:50



where

L2pðxÞ ¼
�jR2pðxÞ þ jþ 1; p is odd

�R2pðxÞ þ jþ 1

k
; p is even

8<
: ;

R2pðxÞ ¼ L2p�1 � R2p�1ðxÞ;
R1ðxÞ ¼ �jxþ 1;

L1ðxÞ ¼ xþ 1;

and j 2N,

ajðzÞ ¼
aj�1 � c � c � aj�1ðzÞ; j is odd

aj�1 � b � aj�1ðzÞ; j is even

(
;

with a0 zð Þ ¼ a�1 � b � a�1 zð Þ, where a�1 zð Þ ¼ z; a�2 zð Þ ¼ 0,

bðzÞ ¼ 1
j ð2� zÞ, and cðzÞ ¼ 1

j ð1� zÞ. Then, Ip

¼ ap�3
1
j

� �
; 1

� �
, and we can obtain a fixed point xp of g2p in

ap�2
1
j

� �
; 1

� �
� Ip and check jDg2p (x)j> 1 as

x 2 ap�2
1
j

� �
; 1

� �
. Try to find x0 2 ap�2

1
j

� �
; 1

� �
such that

g2p � g2p x0ð Þ ¼ xp. Thus, there exists x0 under a necessary

condition j>jp, where jp is determined by a root of a poly-

nomial with degree 2pþ1. Let x1¼Dg2p (x0), then

x1 2 ap�3
1
j

� �
; ap�2

1
j

� �� �
. At the same time, the derivatives of

L2p xð Þ and R2p xð Þ are not equal to zeros on the domain

ap�3
1
j

� �
; ap�2

1
j

� �� �
and ap�2

1
j

� �
; 1

� �
, respectively. Hence,

det D g2p � g2p x0ð Þð Þð Þ ¼ Dg2p x1ð Þ � Dg2p x0ð Þ 6¼ 0. It implies

that xp is a snapback repeller of g2p as j> jp and g2p is cha-

otic in the sense of Devaney as j> jp by Theorem 3.

According to Theorem 5 and 6, the map g2p has positive top-

ological entropy, htop (g2p)> 0, and htop (g2p)¼ 2p � htop (g),

meaning that, htop (g)> 0. It shows that the map g is chaotic

in the sense of Devaney as j>jp by Theorem 5 again. In

Table I, we use numerical computations to obtain jp, and in

this paper, we arrive at j11	 1.0002538. Hence, the map g
can possess Devaney’s chaos for the depletion coefficient

j> 1.00026.

APPENDIX B: THE PROOF OF THEOREM 9

Under a binary representation with ‘ valid digits

(‘ 2N), for any non-integer number y> 0, it can be repre-

sented in 0:e1e2 � � � ead1d2 � � � db or e1e2 � � � ea:d1d2 � � � db for

some positive integers a, b, with aþ b� ‘, where

ei 2 0; 1f g; i ¼ 1;…; a and dj 2 0; 1f g, j¼ 1,…,b. Then, jy
will be represented in ~e1~e2 � � � ~e~a:~d2

~d3 � � � ~db or

~e1~e2 � � � ~e~a:ê2ê3 � � � êa
~d1

~d2 � � � ~db for some positive integer ~a,

with ~aþ aþ b � ‘, where ~ei 2 f0; 1g, i ¼ 1;…; ~a,
~dj 2 f0; 1g, j¼ 1,…,b, and êk 2 f0; 1g, k¼ 2,…,a, under the

binary representation of ‘ valid digits, since j is a positive

even number. It means that the number of nonzero digits at

the right hand side of the point will reduce at less than one

after multiplying j as j is a positive even number. The result

is true even if y< 0. Further, the operation (plus one) does

not affect the number of nonzero digits at the right hand side

of the point. Therefore, in the generalized resource budget

model (1) with the positive even depletion coefficient j,

without loss of generality, for any initial value Yð0Þ 2 0; 1ð Þ,

the number of nonzero digits at the right hand side of the

point of jY(0) has to be less than one or more than Y(0). It

shows that nonzero digits at the right hand side of the point

of Y(t) will disappear when t is large enough (after to multi-

ply j‘ times at most), meaning that the behavior of Y(t) goes

to a period cycle {�jþ 1,�jþ 2,…,0,1} of period jþ 1 in

finite iterations.

APPENDIX C: THE PROOF OF THEOREM 10

Under a binary representation with ‘ valid digits (‘ 2N

and ‘> 3), for y 2 0; 1ð Þ, let y ¼ 0:d1d2 � � � db with 1� b
� ‘/2 and di 2 0; 1f g; i ¼ 1;…; b but not all zeros. Assume

that j is lower than or equal to 2‘/2 and db¼ 1. Then, Under

the binary representation with ‘ valid digits, jy will be repre-

sented in e1e2 � � � ea:~d1
~d2 � � � ~db�1db with 1� a� ‘/2 for

some positive integer a, where ei 2 0; 1f g, i¼ 1,…,a, and
~dj 2 f0; 1g, j¼ 1,…,b� 1. It means that the number of non-

zero digits at the farthest right of the point will not change

after to multiply j, i.e., the bth digit at the right hand side of

the point, db, is still equal to 1. The result is true even if

y< 0. Further, the operation (plus one) does not affect the

number of nonzero digits at the farthest right of the point.

Therefore, in the generalized resource budget model (1) with

the positive odd depletion coefficient j, the number of non-

zero digits at the farthest right of the point of jY(0) will be

the same with Y(0)’s for any initial value Yð0Þ 2 0; 1ð Þ. It

shows that nonzero digits at the farthest right of the point of

Y(t) will not disappear for all t, meaning that the behavior of

Y(t) cannot go to a period cycle {�jþ 1,�jþ 2,…,0,1} for

any initial value but integer.
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